BibTex RIS Kaynak Göster

Effects of Different Sweet Cherry Rootstocks and Drought Stress on

Yıl 2015, Cilt: 21 Sayı: 3, 431 - 438, 12.08.2015
https://doi.org/10.15832/ankutbd.25153

Öz

Relation between drought stress, genotypic differences and nutrients are important in plant growth. The aim of the study was to determine the effects of different sweet cherry rootstocks grown in 50-liter pots and drought stress on nutrient (N, P, K, Ca, Mg, Zn, Mn, and Cu) concentrations of leaves. In this study 0900 Ziraat sweet cherry variety grafted on five different rootstocks (P. mahaleb, Mazzard, Gisela-6, MaxMa 14, CAB 6) were used. Four irrigation treatments (control or 100%, 75%, 50%, and 25% and of the field capacity) were used and irrigation intervals were four days in the study. As a result, mineral concentrations of leaves were changed with both rootstocks and drought stress treatments. In general, “Mazzard and Gisela 6” sweet cherry rootstocks had higher nutrient concentrations than “MaxMa 14” under drought stress conditions. The results showed that drought stress reduced the concentration of N, P, K, Ca, Mg, Zn, Mn, and Cu concentrations. CAB 6 rootstock was not affected by water deficiencies and had higher performance on nutrition than the other rootstocks under drought stress conditions. In conclusion, drought stress and rootstocks have substantial effects on nutrient concentrations of sweet cherry leaves.

Kaynakça

  • Abrisqueta I, Quezada-Martin R, Munguia-Lopez J, Ruiz-Sanchez M C, Abrisqueta J M & Vera J (2011). Nutrient concentrations of peach-tree leaves under deficit irrigation. Journal of Plant Nutrition and Soil Science 174: 81-87
  • Bergmann W (1992). Colour Atlas. Nutritional Disorders of Plants. Gustav Fischer Verlag Jena
  • Betran J A, Val J, Milla´n L M, Monge E, Montan˜e´s L & Moreno M A (1997). Influence of rootstock on the mineral concentrations of flowers and leaves from sweet cherry. Acta Horticulturae 448: 163-167
  • Brito G, Costa A, Fonseca H M & Santos C V (2003). Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotic stress. Scientia Horticulturae 97: 411-417
  • Dodd I (2009). Rhizosphere manipulation to maximize ‘crop perdrop’ during deficit irrigation. Journal of Experimental Botany 60: 2454-2459
  • FAO (2013). FAO. Erişim Tarihi. 15.05.2013. http:// faostat3.fao.org/home/ index.html# Download
  • Getachew M (2014). Influence of Soil Water Deficit and Phosphorus Application on Phosphorus Uptake and Yield of Soybean (Glycine max L.) at Dejen, North- West Ethiopia. American Journal of Plant Sciences 5: 1889-1906
  • Güneş A, Çiçek N, İnal A, Alpaslan M, Eraslan F, Güneri E & Güzelordu T (2006). Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and-post anthesis stages and its relations with nutrient uptake and efficiency. Plant and Soil Environment 52: 368-376
  • Jimenez S, Pinochet Y, Gogorcena J A, Betra´n J A & Moreno M A (2007). Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Scientia Horticulturae 112: 73-79 of Agriculture. Ankara, Turkey Ankara
  • Kacar B & İnal A (2008). Plant Analysis, Nobel, Ankara
  • Kayan N (2008). Variation for yield components in two winter sown lentil cultivars (Lens culinaris Medic.). Bulgarian Journal of Agricultural Science 14: 460- 465
  • Küçükyumuk Z & Erdal İ (2011). Rootstock and cultivar effect in mineral nutrition, seasonal nutrient variation. Bulgarian Journal of Agricultural Science 17(5): 633- 641
  • Marschner H, Romheld V & Kissel M (1986a). Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition 9: 695-713
  • Marschner H, Romheld V, Horst W J & Martin P (1986b). Root-induced changes in rhizosphere: Importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung Bodenkunde 149: 441-456
  • Molassiotis A N, Sotiropoulos T, Tanou G, Kofidis G, Diamantidis G & Therios, I (2006). Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Journal of Crustacean Biology 29(3): 293-301
  • Nahar K & Gretzmacher R (2002). Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Die Bodenkultur 53(1): 45-51
  • Nakajima H, Behboudian M H, Greven M & Zegbe- Domínguez J A (2004). Mineral content of grape, olive, apple and tomato under reduced irrigation. Journal of Plant Nutrition and Soil Science 167: 91–92
  • Reddy A R, Chaitanya K V & Vivekanandan M (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189–1202
  • Romero P, Navarro J M, Pérez-Pérez J, García-Sánchez F., Gómez-Gómez A, Porras I, Martinez V & Botía P (2006). Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiology 26(12): 1537-1548
  • Roversi A, Malvicini G L, Porro D & Plessi C (2010). Sweet cherry leaf composition as influenced by genotype, rootstock and orchard management. Acta Horticulturae 868: 243-246
  • Sanchez-Rodriguez E, Leyva R, Consta´n-Aguilar C, Romero L & Ruiz JM (2012). Grafting under water stress in tomato cherry: improving the fruit yield and quality. Annals of Applied Biology 161: 302–312
  • Sarker B C, Hara M & Uemura M (2005). Prolinesynthesis, physiological responses and biomass, yield of eggplants during and after repetitive soil moisture stress. Scientia Horticulturae 103: 387-402
  • Sitarek M, Grzyb Z S & Olszewski T (1998). The mineral elements concentration in leaves of two sweet cherry cultivars grafted on different rootstocks. Acta Horticulturae 468: 373-376
  • Sivritepe N, Ertürk U, Yerlikaya C, Türkan I, Bor M & Özdemir F (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum 52(3): 573-576
  • Sotirov D (2011). Macro-elements content of the leaves of Van sweet cherry cultivar on different rootstocks. Rastenievudni Nauki 48(1): 43-46
  • Yl Q, Zhang F C & Li K F (2009). Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake. National Center for Biotechnology Information 20(10): 2399-2405
  • Yurtseven E, Öztürk H S & Avcı S (2014). Mass balance criteria in soil salinity management: Different irrigation water qualities and leaching ratio. Tarım

Kirazın Mineral Beslenmesi Üzerine Farklı Anaçlar ve Kuraklık Stresinin Etkisi

Yıl 2015, Cilt: 21 Sayı: 3, 431 - 438, 12.08.2015
https://doi.org/10.15832/ankutbd.25153

Öz

Bitki yetiştiriciliğinde, kuraklık stresi, genotipik farklılık ve besin elementleri arasındaki ilişkiler önemlidir. Bu
çalışmada 50 litrelik saksılarda yetiştirilen kirazın mineral beslenmesi (N, P, K, Ca, Mg, Zn, Mn, Cu) üzerine farklı
anaçlar ve kuraklık stresinin etkilerini belirlemek amaçlanmıştır. Çalışmada, beş farklı (P. mahaleb, Mazzard, Gisela-6,
MaxMa 14, CAB 6) anaç üzerine aşılı 0900 Ziraat kiraz çeşidi kullanılmıştır. Denemede kontrol (her sulamada eksik
nem tarla kapasitesine getirilene kadar sulama) ve 3 farklı su seviyesi (tarla kapasitesinin % 25, % 50 ve % 75’i)
olmak üzere dört farklı sulama uygulaması yer almıştır. Denemede evapotraspiraasyonla eksilen su dört günde bir
tamamlanmıştır. Sonuç olarak, bitkilerin mineral beslenmeleri farklı anaç ve kuraklık stresinden etkilenmiştir. Genellikle
kuraklık stresi koşullarında “Mazzard ve Gisela 6” anaçları “MaxMa 14” anacına göre daha fazla besin elementi
konsantrasyonuna sahip olmuştur. Sonuçlar, kuraklık stresinin N, P, K, Ca, Mg, Zn, Mn ve Cu konsantrasyonlarını
düşürdüğünü göstermiştir. Kuraklık stresinde, CAB 6 anacının beslenme performansına etkisi diğer anaçlara göre daha
yüksek bulunmuş ve kısıtlı sulamadan etkilenmemiştir. Sonuç olarak, kuraklık stresi ve farklı anaçların kiraz yaprakları
besin elementi konsantrasyonları üzerine etkisi önemli bulunmuştur

Kaynakça

  • Abrisqueta I, Quezada-Martin R, Munguia-Lopez J, Ruiz-Sanchez M C, Abrisqueta J M & Vera J (2011). Nutrient concentrations of peach-tree leaves under deficit irrigation. Journal of Plant Nutrition and Soil Science 174: 81-87
  • Bergmann W (1992). Colour Atlas. Nutritional Disorders of Plants. Gustav Fischer Verlag Jena
  • Betran J A, Val J, Milla´n L M, Monge E, Montan˜e´s L & Moreno M A (1997). Influence of rootstock on the mineral concentrations of flowers and leaves from sweet cherry. Acta Horticulturae 448: 163-167
  • Brito G, Costa A, Fonseca H M & Santos C V (2003). Response of Olea europaea ssp. maderensis in vitro shoots exposed to osmotic stress. Scientia Horticulturae 97: 411-417
  • Dodd I (2009). Rhizosphere manipulation to maximize ‘crop perdrop’ during deficit irrigation. Journal of Experimental Botany 60: 2454-2459
  • FAO (2013). FAO. Erişim Tarihi. 15.05.2013. http:// faostat3.fao.org/home/ index.html# Download
  • Getachew M (2014). Influence of Soil Water Deficit and Phosphorus Application on Phosphorus Uptake and Yield of Soybean (Glycine max L.) at Dejen, North- West Ethiopia. American Journal of Plant Sciences 5: 1889-1906
  • Güneş A, Çiçek N, İnal A, Alpaslan M, Eraslan F, Güneri E & Güzelordu T (2006). Genotypic response of chickpea (Cicer arietinum L.) cultivars to drought stress implemented at pre-and-post anthesis stages and its relations with nutrient uptake and efficiency. Plant and Soil Environment 52: 368-376
  • Jimenez S, Pinochet Y, Gogorcena J A, Betra´n J A & Moreno M A (2007). Influence of different vigour cherry rootstocks on leaves and shoots mineral composition. Scientia Horticulturae 112: 73-79 of Agriculture. Ankara, Turkey Ankara
  • Kacar B & İnal A (2008). Plant Analysis, Nobel, Ankara
  • Kayan N (2008). Variation for yield components in two winter sown lentil cultivars (Lens culinaris Medic.). Bulgarian Journal of Agricultural Science 14: 460- 465
  • Küçükyumuk Z & Erdal İ (2011). Rootstock and cultivar effect in mineral nutrition, seasonal nutrient variation. Bulgarian Journal of Agricultural Science 17(5): 633- 641
  • Marschner H, Romheld V & Kissel M (1986a). Different strategies in higher plants in mobilization and uptake of iron. Journal of Plant Nutrition 9: 695-713
  • Marschner H, Romheld V, Horst W J & Martin P (1986b). Root-induced changes in rhizosphere: Importance for the mineral nutrition of plants. Zeitschrift für Pflanzenernährung Bodenkunde 149: 441-456
  • Molassiotis A N, Sotiropoulos T, Tanou G, Kofidis G, Diamantidis G & Therios, I (2006). Antioxidant and anatomical responses in shoot culture of the apple rootstock MM 106 treated with NaCl, KCl, mannitol or sorbitol. Journal of Crustacean Biology 29(3): 293-301
  • Nahar K & Gretzmacher R (2002). Effect of water stress on nutrient uptake, yield and quality of tomato (Lycopersicon esculentum Mill.) under subtropical conditions. Die Bodenkultur 53(1): 45-51
  • Nakajima H, Behboudian M H, Greven M & Zegbe- Domínguez J A (2004). Mineral content of grape, olive, apple and tomato under reduced irrigation. Journal of Plant Nutrition and Soil Science 167: 91–92
  • Reddy A R, Chaitanya K V & Vivekanandan M (2004). Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. Journal of Plant Physiology 161: 1189–1202
  • Romero P, Navarro J M, Pérez-Pérez J, García-Sánchez F., Gómez-Gómez A, Porras I, Martinez V & Botía P (2006). Deficit irrigation and rootstock: their effects on water relations, vegetative development, yield, fruit quality and mineral nutrition of Clemenules mandarin. Tree Physiology 26(12): 1537-1548
  • Roversi A, Malvicini G L, Porro D & Plessi C (2010). Sweet cherry leaf composition as influenced by genotype, rootstock and orchard management. Acta Horticulturae 868: 243-246
  • Sanchez-Rodriguez E, Leyva R, Consta´n-Aguilar C, Romero L & Ruiz JM (2012). Grafting under water stress in tomato cherry: improving the fruit yield and quality. Annals of Applied Biology 161: 302–312
  • Sarker B C, Hara M & Uemura M (2005). Prolinesynthesis, physiological responses and biomass, yield of eggplants during and after repetitive soil moisture stress. Scientia Horticulturae 103: 387-402
  • Sitarek M, Grzyb Z S & Olszewski T (1998). The mineral elements concentration in leaves of two sweet cherry cultivars grafted on different rootstocks. Acta Horticulturae 468: 373-376
  • Sivritepe N, Ertürk U, Yerlikaya C, Türkan I, Bor M & Özdemir F (2008). Response of the cherry rootstock to water stress induced in vitro. Biologia Plantarum 52(3): 573-576
  • Sotirov D (2011). Macro-elements content of the leaves of Van sweet cherry cultivar on different rootstocks. Rastenievudni Nauki 48(1): 43-46
  • Yl Q, Zhang F C & Li K F (2009). Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake. National Center for Biotechnology Information 20(10): 2399-2405
  • Yurtseven E, Öztürk H S & Avcı S (2014). Mass balance criteria in soil salinity management: Different irrigation water qualities and leaching ratio. Tarım
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Zeliha Küçükyumuk

Cenk Küçükyumuk Bu kişi benim

İbrahim Erdal Bu kişi benim

Figen Eraslan Bu kişi benim

Yayımlanma Tarihi 12 Ağustos 2015
Gönderilme Tarihi 20 Şubat 2014
Yayımlandığı Sayı Yıl 2015 Cilt: 21 Sayı: 3

Kaynak Göster

APA Küçükyumuk, Z., Küçükyumuk, C., Erdal, İ., Eraslan, F. (2015). Kirazın Mineral Beslenmesi Üzerine Farklı Anaçlar ve Kuraklık Stresinin Etkisi. Journal of Agricultural Sciences, 21(3), 431-438. https://doi.org/10.15832/ankutbd.25153

Journal of Agricultural Sciences is published open access journal. All articles are published under the terms of the Creative Commons Attribution License (CC BY).