Araştırma Makalesi
BibTex RIS Kaynak Göster

Production and Characterization of α-MnO2/Graphene/CNT Nanocomposite Electrodes for Li-O2 Batteries

Yıl 2018, Cilt: 6 Sayı: 1, 49 - 55, 31.01.2018
https://doi.org/10.21541/apjes.349419

Öz

In this study, of α-MnO2/Graphene/CNT nanocomposites were
produced and characterized as electrode for Li-O2 batteries. Graphene
was produced with Hummer method and carbon nano tubes were added to graphene as
spacers between layers.
α-MnO2nanorods were synthesized and α-MnO2/Graphene/CNT
nanocomposites were fabricated by vacuum filtration technique as a paper
electrode.
α-MnO2nanorods were added to composite at three different rates and electrodes
were characterized by FESEM and XRD. The electrochemical characterization was
carried out in ECC-air test cells.  

Kaynakça

  • [1] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, and P. Mustarelli, “Recent advances in the development of Li-air batteries,” J. Power Sources, vol. 220, pp. 253–263, 2012.
  • [2] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: Present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015.
  • [3] M. J. Song and M. W. Shin, “Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery,” Appl. Surf. Sci., vol. 320, pp. 435–440, 2014.
  • [4] A. Kraytsberg and Y. Ein-Eli, “Review on Li-air batteries - Opportunities, limitations and perspective,” J. Power Sources, vol. 196, no. 3, pp. 886–893, 2011.
  • [5] J. Liu, R. Younesi, T. Gustafsson, K. Edström, and J. Zhu, “Pt/α-MnO2 nanotube: A highly active electrocatalyst for Li-O2 battery,” Nano Energy, vol. 10, pp. 19–27, 2014.
  • [6] W. Xiao, Z. Wang, H. Guo, X. Li, J. Wang, S. Huang, and L. Gan, “Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries,” Appl. Surf. Sci., vol. 266, pp. 148–154, 2013.
  • [7] Y. Wen, C. Huang, L. Wang, and D. Hulicova-Jurcakova, “Heteroatom-doped graphene for electrochemical energy storage,” Chinese Sci. Bull., vol. 59, no. 18, pp. 2102–2121, 2014.
  • [8] G. Gnana kumar, Z. Awan, K. Suk Nahm, and J. Stanley Xavier, “Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells,” Biosens. Bioelectron., vol. 53, pp. 528–534, 2014.
  • [9] H. Zhou, X. Yang, J. Lv, Q. Dang, L. Kang, Z. Lei, Z. Yang, Z. Hao, and Z. H. Liu, “Graphene/MnO2 hybrid film with high capacitive performance,” Electrochim. Acta, vol. 154, pp. 300–307, 2015.
  • [10] Y. Wimalasiri and L. Zou, “Carbon nanotube/graphene composite for enhanced capacitive deionization performance,” Carbon N. Y., vol. 59, pp. 464–471, 2013.
  • [11] L. Zhang, F. Zhang, G. Huang, J. Wang, X. Du, Y. Qin, and L. Wang, “Freestanding MnO2@carbon papers air electrodes for rechargeable Li-O2 batteries,” J. Power Sources, vol. 261, pp. 311–316, 2014.
  • [12] R. S. Kalubarme, C. H. Ahn, and C. J. Park, “Electrochemical characteristics of graphene/manganese oxide composite catalyst for Li-oxygen rechargeable batteries,” Scr. Mater., vol. 68, no. 8, pp. 619–622, 2013.
  • [13] D. A. Tompsett, S. C. Parker, and M. S. Islam, “Surface properties of α-MnO 2 : relevance to catalytic and supercapacitor behaviour,” J. Mater. Chem. A, vol. 2, no. 37, pp. 15509–15518, 2014.

Li-O2 Piller için α-MnO2/Grafen/KNT Nanokompozit Elektrotlarının Üretimi ve Karakterizasyonu

Yıl 2018, Cilt: 6 Sayı: 1, 49 - 55, 31.01.2018
https://doi.org/10.21541/apjes.349419

Öz

Bu çalışmada
Li-O2 pilleri için elektrot malzemesi α
-MnO2/Grafen/KNT
nanokompozitleri üretilmiş ve karakterize edilmiştir. Grafen Hummer metodu ile
üretilmiş ve tabakalar arası boşluk yapıcı olarak karbon nano tüp ilavesi
yapılmıştır. α
-MnO2
nano çubuklar sentezlenerek α
-MnO2/Grafen/KNT
nanokompozitleri vakum filtrasyon yöntemi ile kağıt halinde elektrot olarak
üretilmiştir. Üç farklı oranda ilave edilen α
-MnO2
nano çubukları ile elektrotların yapısal karakterizasyonu FESEM, XRD
kullanılarak ve elektrokimyasal karakterizasyonu da ECC-hava
test hücreleri ile yapılmıştır. 

Kaynakça

  • [1] D. Capsoni, M. Bini, S. Ferrari, E. Quartarone, and P. Mustarelli, “Recent advances in the development of Li-air batteries,” J. Power Sources, vol. 220, pp. 253–263, 2012.
  • [2] N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: Present and future,” Mater. Today, vol. 18, no. 5, pp. 252–264, 2015.
  • [3] M. J. Song and M. W. Shin, “Fabrication and characterization of carbon nanofiber@mesoporous carbon core-shell composite for the Li-air battery,” Appl. Surf. Sci., vol. 320, pp. 435–440, 2014.
  • [4] A. Kraytsberg and Y. Ein-Eli, “Review on Li-air batteries - Opportunities, limitations and perspective,” J. Power Sources, vol. 196, no. 3, pp. 886–893, 2011.
  • [5] J. Liu, R. Younesi, T. Gustafsson, K. Edström, and J. Zhu, “Pt/α-MnO2 nanotube: A highly active electrocatalyst for Li-O2 battery,” Nano Energy, vol. 10, pp. 19–27, 2014.
  • [6] W. Xiao, Z. Wang, H. Guo, X. Li, J. Wang, S. Huang, and L. Gan, “Fe2O3 particles enwrapped by graphene with excellent cyclability and rate capability as anode materials for lithium ion batteries,” Appl. Surf. Sci., vol. 266, pp. 148–154, 2013.
  • [7] Y. Wen, C. Huang, L. Wang, and D. Hulicova-Jurcakova, “Heteroatom-doped graphene for electrochemical energy storage,” Chinese Sci. Bull., vol. 59, no. 18, pp. 2102–2121, 2014.
  • [8] G. Gnana kumar, Z. Awan, K. Suk Nahm, and J. Stanley Xavier, “Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells,” Biosens. Bioelectron., vol. 53, pp. 528–534, 2014.
  • [9] H. Zhou, X. Yang, J. Lv, Q. Dang, L. Kang, Z. Lei, Z. Yang, Z. Hao, and Z. H. Liu, “Graphene/MnO2 hybrid film with high capacitive performance,” Electrochim. Acta, vol. 154, pp. 300–307, 2015.
  • [10] Y. Wimalasiri and L. Zou, “Carbon nanotube/graphene composite for enhanced capacitive deionization performance,” Carbon N. Y., vol. 59, pp. 464–471, 2013.
  • [11] L. Zhang, F. Zhang, G. Huang, J. Wang, X. Du, Y. Qin, and L. Wang, “Freestanding MnO2@carbon papers air electrodes for rechargeable Li-O2 batteries,” J. Power Sources, vol. 261, pp. 311–316, 2014.
  • [12] R. S. Kalubarme, C. H. Ahn, and C. J. Park, “Electrochemical characteristics of graphene/manganese oxide composite catalyst for Li-oxygen rechargeable batteries,” Scr. Mater., vol. 68, no. 8, pp. 619–622, 2013.
  • [13] D. A. Tompsett, S. C. Parker, and M. S. Islam, “Surface properties of α-MnO 2 : relevance to catalytic and supercapacitor behaviour,” J. Mater. Chem. A, vol. 2, no. 37, pp. 15509–15518, 2014.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Makaleler
Yazarlar

Miraç Alaf

Ubeyd Toçoğlu Bu kişi benim

Hatem Akbulut

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 5 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 6 Sayı: 1

Kaynak Göster

IEEE M. Alaf, U. Toçoğlu, ve H. Akbulut, “Production and Characterization of α-MnO2/Graphene/CNT Nanocomposite Electrodes for Li-O2 Batteries”, APJES, c. 6, sy. 1, ss. 49–55, 2018, doi: 10.21541/apjes.349419.