Araştırma Makalesi
BibTex RIS Kaynak Göster

Effects of TiB2 and La2O3 Particle Reinforcements on the Tungsten Matrix Composites Fabricated by Mechanical Alloying and Activated Sintering

Yıl 2019, Cilt: 7 Sayı: 1, 95 - 105, 15.01.2019
https://doi.org/10.21541/apjes.410375

Öz

In this study, 1 wt.% Ni activated tungsten matrix
composites (W1Ni) reinforced with different amounts of TiB2 and La2O3
particles were fabricated using mechanical alloying, cold pressing and
pressureless sintering methods. In this scope, different amounts of TiB2
(3 and 4 wt.%) and La2O3 (0.5 and 1 wt.%) particles were
incorporated into W1Ni matrix and mechanical alloying process was conducted for
different durations (6 and 12 h). As-blended and mechanically alloyed powders
were cold pressed using a uniaxial hydraulic press and green bodies were
sintered under Ar/H2 gas flowing condition. The physical,
microstructural and hardness properties of cold pressed and sintered W1Ni
composites reinforced with different amounts of TiB2 and La2O3
particles were investigated. The addition of TiB2 and La2O3
reinforcements led an increase in the density and/or microhardness values of
the composites. It was observed that mechanical alloying time had a significant
effect on the properties and microstructure of the sintered products. The
combined usage of 3 or 4 wt.% TiB2 with 1 wt.% La2O3
reinforcement resulted in the formation of W2B phase in addition to
the dominant W phase after sintering. The highest relative density and
microhardness values were obtained as % 92.14 and 6.27
±1.54 GPa, respectively, for the W1Ni-3 wt.% TiB2-1
wt.% La2O3 composite after mechanical alloying for 6 h,
cold pressing and sintering.

Kaynakça

  • [1] E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, New York: Kluwer Academic, 1999.
  • [2] W. Song and Y. Zhou, “Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications”, Int. J. Refract. Met. Hard Mater., vol. 21, pp. 1-12, March 2003.
  • [3] A. Genç, S. Coşkun and M. L. Öveçoğlu, “Microstructural characterizations of Ni activated sintered W–2 wt% TiC composites produced via mechanical alloying”, J. Alloys Compd., vol. 497, no 1-2, pp. 80-89, May 2010.
  • [4] T. Tanabe, M. Wada, T. Ohgo, V. Philipps, M. Rubel, A. Huber, J. Seggernd, K. Ohyae, A. Pospieszczykd, B. Schweerd, Textor team, “Application of tungsten for plasma limiters in TEXTOR”, J. Nucl. Mater., vol. 283-287, pp. 1128-33, December 2000.
  • [5] M. A. Monge, M. A. Auger, T. Leguey, Y. Ortega, L. Bolzoni, E. Gordo and R. Parejaa, “Characterization of novel W alloys produced by HIP”, J. Nucl. Mater., vol. 388, pp. 613-7, April 2009.
  • [6] D. Ağaoğulları, Ö. Balcı, H. Gökçe, M. L. Öveçoğlu and İ. Duman, “Comparative investigations of the activated sintered W-1 wt.% Ni composites reinforced with various oxide and boride particles”, Int. J. Refract. Met. Hard Mater., vol. 41, pp. 577-584, November 2013.
  • [7] C. Li and R. M. German, “The properties of tungsten processed by chemically activated sintering”, Metall. Trans. A, vol. 14, no 10, pp. 2031-2041, October 1983.
  • [8] R. M. German and Z. A. Munir, “Enhanced low-temperature sintering of tungsten”, Metall. Mater. Trans. A, vol. 7, pp. 1873-1877, December 1976.
  • [9] H. W. Hayden and J. H. Brophy, “The activated sintering of tungsten with Group VIII elements”, J. Electrochem. Soc., vol. 110, no 7, pp. 805-810, February 1963.
  • [10] S. W. Kim, S. I. Lee, Y. D. Kim and I. H. Moon, “High temperature compressive deformation and fracture characteristics of the activated sintered W-Ni compacts”, Int. J. Refract. Met. Hard Mater., vol. 21, pp. 183-192, May 2003.
  • [11] Y. Chen, Y. C. Wu, F. W. Yu and J. L. Chen, “Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles”, Int. J. Refract. Met. Hard Mater., vol. 26, pp. 525-529, November 2008.
  • [12] T. Zhang, Y. Wang, Y. Zhou and G. Song, “Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites”, Mater. Sci. Eng. A, vol. 512, no 1-2, pp. 19-25, June 2009.
  • [13] A. Genç, S. Coşkun and M. L. Öveçoğlu, “Fabrication and properties of mechanically alloyed and Ni activated sintered W matrix composites reinforced with Y2O3 and TiB2 particles”, Mater. Charact., vol. 61, no 7, pp. 740-748, July 2010.
  • [14] H. Gökçe, Ö. Balcı, D. Ağaoğulları, Ö. U. Demirkan, A. Genç, M. L. Öveçoğlu and İ. Duman, “Characterization investigations of W–Ni matrix composites reinforced with TiB2 and La2O3”, Acta Phys. Pol. A, vol. 123, no 2, pp. 309-11, April 2013.
  • [15] D. Ağaoğulları, Ö. Balcı, Ö. U. Demirkan, H. Gökçe, A. Genç, M. L. Öveçoğlu and İ. Duman, “Development of mechanically alloyed and sintered W-1 wt.% Ni matrix composites reinforced with TiB2”, Solid State Phenomena, vol. 194, pp. 194-198, November 2013.
  • [16] Y. M. Kim, K. H. Lee, E. P. Kim, D. Cheong and S. H. Hong, “Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process”, Int. J. Refract. Met. Hard Mater., vol. 27, pp. 842-846, September 2009.
  • [17] Ö. Balcı, Ö. U. Demirkan, D. Ağaoğulları, H. Gökçe, A. Genç, M. L. Öveçoğlu and İ. Duman, “Effects of La2O3 addition on the microstructure and properties of activated sintered W-Ni compacts”, Solid State Phenomena, vol. 194, pp. 217-221, March 2013.
  • [18] M. Mabuchi, K. Okamoto, N. Saito, T. Asahina and T. Igarashi, “Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3”, Mater. Sci. Eng. A, vol. 237, pp. 241-249, September 1997.
  • [19] J. Castaining and P. Costa, Boron and Refractory Boride, 1st edition, New York: Springer-Verlag, Berlin 1977.
  • [20] R. G. Munro, “Material properties of titanium diboride”, J. Res. Nat. Inst. Stand., vol. 105, no 5, pp. 709-720, July 2000.
  • [21] R. M. German, Powder Metallurgy Science, 2nd editon, NJ: Metal Powder Industries Federation, Princeton, 1994.
  • [22] C. Suryanarayana, “Mechanical alloying and milling”, Prog. Mater Sci., vol. 46, no 1-2, pp. 1-184, January 2001.
  • [23] D. Ağaoğulları, Ö. Balcı, M. L. Öveçoğlu, “Effect of milling type on the microstructural and mechanical properties of W-Ni-ZrC-Y2O3 composites”, Ceram. Int., vol. 43, no 9, pp. 7106-7114, June 2017.

TiB2 ve La2O3 Partikül Takviyelerinin Mekanik Alaşımlama ve Aktifleştirilmiş Sinterleme ile Üretilen Volfram Matrisli Kompozitler Üzerindeki Etkisinin İncelenmesi

Yıl 2019, Cilt: 7 Sayı: 1, 95 - 105, 15.01.2019
https://doi.org/10.21541/apjes.410375

Öz

Bu çalışmada, farklı miktarlarda
TiB2 ve La2O3 partikülleri ile takviye edilmiş
ve ağırlıkça % 1 Ni ile aktifleştirilmiş volfram matrisli (W1Ni) kompozitler
mekanik alaşımlama, soğuk presleme ve basınçsız sinterleme yöntemleri
kullanılarak üretilmiştir. Bu kapsamda, farklı miktarlardaki TiB2
(ağ.% 3 ve 4) ve La2O3 (ağ.% 0,5 ve 1) partikülleri W1Ni
matris içerisine katkılandırılmış ve farklı sürelerde (6 ve 12 sa) mekanik
alaşımlama prosesi uygulanmıştır. Karıştırılmış ve mekanik alaşımlanmış tozlar
tek eksenli hidrolik pres kullanılarak soğuk preslenmiş ve pekiştirilen
bünyeler Ar/H2 gaz akış şartlarında sinterlenmiştir. Farklı
miktarlardaki TiB2 ve La2O3 partikülleri ile
takviye edilmiş, preslenmiş ve sinterlenmiş W1Ni matrisli kompozitlerin
fiziksel, mikroyapısal ve mikrosertlik özellikleri incelenmiştir. TiB2
veya La2O3 katkılarının, numunelerin yoğunluk ve/veya
mikrosertlik değerlerinde artışa neden olduğu saptanmıştır. Mekanik alaşımlama
süresinin, sinter ürün özelliklerinde ve mikroyapıda önemli bir etkisinin
olduğu gözlemlenmiştir. Ağ.% 3 veya 4 miktarındaki TiB2 ve ağ.% 1
miktarındaki La2O3 katkılarının birlikte kullanımı,
sinterlenme sonrasında, baskın W fazına ek olarak W2B faz oluşumuna
neden olmuştur. En yüksek rölatif yoğunluk ve mikrosertlik değerleri sırasıyla
% 92,14 ve 6,27±1,54
GPa olup, 6 sa mekanik alaşımlama uygulanmış, preslenmiş ve sinterlenmiş olan
W1Ni-ağ.% 3 TiB2-ağ.%1 La2O3 kompozisyonu için
elde edilmiştir.

Kaynakça

  • [1] E. Lassner and W. D. Schubert, Tungsten: Properties, Chemistry, Technology of the Element, Alloys and Chemical Compounds, New York: Kluwer Academic, 1999.
  • [2] W. Song and Y. Zhou, “Thermomechanical properties of TiC particle-reinforced tungsten composites for high temperature applications”, Int. J. Refract. Met. Hard Mater., vol. 21, pp. 1-12, March 2003.
  • [3] A. Genç, S. Coşkun and M. L. Öveçoğlu, “Microstructural characterizations of Ni activated sintered W–2 wt% TiC composites produced via mechanical alloying”, J. Alloys Compd., vol. 497, no 1-2, pp. 80-89, May 2010.
  • [4] T. Tanabe, M. Wada, T. Ohgo, V. Philipps, M. Rubel, A. Huber, J. Seggernd, K. Ohyae, A. Pospieszczykd, B. Schweerd, Textor team, “Application of tungsten for plasma limiters in TEXTOR”, J. Nucl. Mater., vol. 283-287, pp. 1128-33, December 2000.
  • [5] M. A. Monge, M. A. Auger, T. Leguey, Y. Ortega, L. Bolzoni, E. Gordo and R. Parejaa, “Characterization of novel W alloys produced by HIP”, J. Nucl. Mater., vol. 388, pp. 613-7, April 2009.
  • [6] D. Ağaoğulları, Ö. Balcı, H. Gökçe, M. L. Öveçoğlu and İ. Duman, “Comparative investigations of the activated sintered W-1 wt.% Ni composites reinforced with various oxide and boride particles”, Int. J. Refract. Met. Hard Mater., vol. 41, pp. 577-584, November 2013.
  • [7] C. Li and R. M. German, “The properties of tungsten processed by chemically activated sintering”, Metall. Trans. A, vol. 14, no 10, pp. 2031-2041, October 1983.
  • [8] R. M. German and Z. A. Munir, “Enhanced low-temperature sintering of tungsten”, Metall. Mater. Trans. A, vol. 7, pp. 1873-1877, December 1976.
  • [9] H. W. Hayden and J. H. Brophy, “The activated sintering of tungsten with Group VIII elements”, J. Electrochem. Soc., vol. 110, no 7, pp. 805-810, February 1963.
  • [10] S. W. Kim, S. I. Lee, Y. D. Kim and I. H. Moon, “High temperature compressive deformation and fracture characteristics of the activated sintered W-Ni compacts”, Int. J. Refract. Met. Hard Mater., vol. 21, pp. 183-192, May 2003.
  • [11] Y. Chen, Y. C. Wu, F. W. Yu and J. L. Chen, “Microstructure and mechanical properties of tungsten composites co-strengthened by dispersed TiC and La2O3 particles”, Int. J. Refract. Met. Hard Mater., vol. 26, pp. 525-529, November 2008.
  • [12] T. Zhang, Y. Wang, Y. Zhou and G. Song, “Effect of heat treatment on microstructure and mechanical properties of ZrC particles reinforced tungsten-matrix composites”, Mater. Sci. Eng. A, vol. 512, no 1-2, pp. 19-25, June 2009.
  • [13] A. Genç, S. Coşkun and M. L. Öveçoğlu, “Fabrication and properties of mechanically alloyed and Ni activated sintered W matrix composites reinforced with Y2O3 and TiB2 particles”, Mater. Charact., vol. 61, no 7, pp. 740-748, July 2010.
  • [14] H. Gökçe, Ö. Balcı, D. Ağaoğulları, Ö. U. Demirkan, A. Genç, M. L. Öveçoğlu and İ. Duman, “Characterization investigations of W–Ni matrix composites reinforced with TiB2 and La2O3”, Acta Phys. Pol. A, vol. 123, no 2, pp. 309-11, April 2013.
  • [15] D. Ağaoğulları, Ö. Balcı, Ö. U. Demirkan, H. Gökçe, A. Genç, M. L. Öveçoğlu and İ. Duman, “Development of mechanically alloyed and sintered W-1 wt.% Ni matrix composites reinforced with TiB2”, Solid State Phenomena, vol. 194, pp. 194-198, November 2013.
  • [16] Y. M. Kim, K. H. Lee, E. P. Kim, D. Cheong and S. H. Hong, “Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process”, Int. J. Refract. Met. Hard Mater., vol. 27, pp. 842-846, September 2009.
  • [17] Ö. Balcı, Ö. U. Demirkan, D. Ağaoğulları, H. Gökçe, A. Genç, M. L. Öveçoğlu and İ. Duman, “Effects of La2O3 addition on the microstructure and properties of activated sintered W-Ni compacts”, Solid State Phenomena, vol. 194, pp. 217-221, March 2013.
  • [18] M. Mabuchi, K. Okamoto, N. Saito, T. Asahina and T. Igarashi, “Deformation behavior and strengthening mechanisms at intermediate temperatures in W-La2O3”, Mater. Sci. Eng. A, vol. 237, pp. 241-249, September 1997.
  • [19] J. Castaining and P. Costa, Boron and Refractory Boride, 1st edition, New York: Springer-Verlag, Berlin 1977.
  • [20] R. G. Munro, “Material properties of titanium diboride”, J. Res. Nat. Inst. Stand., vol. 105, no 5, pp. 709-720, July 2000.
  • [21] R. M. German, Powder Metallurgy Science, 2nd editon, NJ: Metal Powder Industries Federation, Princeton, 1994.
  • [22] C. Suryanarayana, “Mechanical alloying and milling”, Prog. Mater Sci., vol. 46, no 1-2, pp. 1-184, January 2001.
  • [23] D. Ağaoğulları, Ö. Balcı, M. L. Öveçoğlu, “Effect of milling type on the microstructural and mechanical properties of W-Ni-ZrC-Y2O3 composites”, Ceram. Int., vol. 43, no 9, pp. 7106-7114, June 2017.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Duygu Ağaoğulları 0000-0002-0623-5586

Özge Balcı 0000-0001-6756-3180

Hasan Gökçe 0000-0003-3672-4919

Didem Ovalı Bu kişi benim 0000-0002-7934-6535

M. Lütfi Öveçoğlu 0000-0002-1536-4961

Yayımlanma Tarihi 15 Ocak 2019
Gönderilme Tarihi 28 Mart 2018
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

IEEE D. Ağaoğulları, Ö. Balcı, H. Gökçe, D. Ovalı, ve M. L. Öveçoğlu, “TiB2 ve La2O3 Partikül Takviyelerinin Mekanik Alaşımlama ve Aktifleştirilmiş Sinterleme ile Üretilen Volfram Matrisli Kompozitler Üzerindeki Etkisinin İncelenmesi”, APJES, c. 7, sy. 1, ss. 95–105, 2019, doi: 10.21541/apjes.410375.