Araştırma Makalesi
BibTex RIS Kaynak Göster

THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES

Yıl 2017, Cilt: 18 Sayı: 3, 746 - 753, 30.09.2017
https://doi.org/10.18038/aubtda.323483

Öz

In
this study, hollow glass microspheres (HGM) filled polypropylene (PP)
composites were prepared by melt extrusion method. In order to understand the
effect of structure and physical properties on the performance of composites,
the morphologies, tensile properties and thermal conductivities of composites
were investigated.  The surface of HGMs
were modified with 3-(Trimethoxysilyl) propyl methacrylate (
TMSM)
silane coupling agent to improve the compatibility between PP matrix and HGMs.
The physical properties of silane modified and unmodified HGMs were
characterized by Fourier Transform Infrared Spectroscopy (FT-IR) and
Scanning Electron Microscope (SEM). The effect of HGM content and surface
modification of HGM on morphological, mechanical and thermal conductivity
properties of composites were evaluated.
The
results indicated that the surface modification of HGM enhance the interfacial
region between HGM and polymer matrix. When 20 wt % modified HGM was added to
neat PP, the modulus of the composite obtained was 1057 MPa, increasing by
15.1% compared with that of the PP/unmodified HGM composite.  However, any positive or consistent effect of surface
modification and HGM addition on thermal conductivity of samples can not be
observed.
 

Kaynakça

  • Kratmann KK, Sutcliffe MPF, Lilleheden LT, Pyrz R. and Thomsen OT. A novel image analysis procedure for measuring fibre waviness in unidirectional fibre composites, Compos Sci Technol 2009; 69:228-238.
  • Vipulanandan C, Ahossin Guezo YJ. Effects of temperature and strain rate on the tensile behavior of polypropylene composites insulator coatings used in offshore deepwater pipelines. J Appl Polym Sci 2017; 134:45209.
  • Ochoa OO, Reddy JN. Finite element analysis of composite laminates. Dordrecht: Springer Science & Business Media, 1992.
  • Sorensen L, Gmür T, Botsis J. Delamination propagation measurement using long gauge-length FBG sensors. In: Proceedings of the 3rd International Conference on Composites Testing and Model Identification CompTest, 10-12 April 2006, Porto, Portugal, April 10-12, 2006, University Press, Porto, Paper 41, 2006, pp. 174-175.
  • Debasmita M, Alok S. Development of Theoretical Model for Effective Thermal Conductivity of Glass Microsphere Filled Polymer Composites, Plast Polym Technol 2013; 2: 39-47.
  • Liang JZ. Estimation of thermal conductivity for polypropylene/hollow glass bead composites, Compos Part B-Eng 2014; 56: 431-434.
  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos Part A-Appl S 2010; 41; 806-819.
  • Patankar SN, Das A, Kranov YA. Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Compos Part A-Appl S 2010; 40; 897-903.
  • Nordin NH, Ahmad Z. J. Monitoring Chemical Changes on the Surface of Borosilicate Glass Covers during the Silanisation Process. J Appl Phys 2015; 26: 11–22.
  • Zhu BL, Zheng H, Wang J, Ma J, Wu J, Wu R. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos Part B-Eng 2014; 58: 91-102.
  • Buga MR, Zaharia C, Bălan M, Bressy C, Ziarelli F, Margaillan A. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications. Mater Sci Eng 2015; 51: 233-241.
  • Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA. Synthesis of poly(methyl methacrylate)–silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 2008; 49:5636-5642.
  • Yung KC, Zhu BL, Yue TM, Xie CS. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos Sci Technol 2009; 69:260-264.
Yıl 2017, Cilt: 18 Sayı: 3, 746 - 753, 30.09.2017
https://doi.org/10.18038/aubtda.323483

Öz

Kaynakça

  • Kratmann KK, Sutcliffe MPF, Lilleheden LT, Pyrz R. and Thomsen OT. A novel image analysis procedure for measuring fibre waviness in unidirectional fibre composites, Compos Sci Technol 2009; 69:228-238.
  • Vipulanandan C, Ahossin Guezo YJ. Effects of temperature and strain rate on the tensile behavior of polypropylene composites insulator coatings used in offshore deepwater pipelines. J Appl Polym Sci 2017; 134:45209.
  • Ochoa OO, Reddy JN. Finite element analysis of composite laminates. Dordrecht: Springer Science & Business Media, 1992.
  • Sorensen L, Gmür T, Botsis J. Delamination propagation measurement using long gauge-length FBG sensors. In: Proceedings of the 3rd International Conference on Composites Testing and Model Identification CompTest, 10-12 April 2006, Porto, Portugal, April 10-12, 2006, University Press, Porto, Paper 41, 2006, pp. 174-175.
  • Debasmita M, Alok S. Development of Theoretical Model for Effective Thermal Conductivity of Glass Microsphere Filled Polymer Composites, Plast Polym Technol 2013; 2: 39-47.
  • Liang JZ. Estimation of thermal conductivity for polypropylene/hollow glass bead composites, Compos Part B-Eng 2014; 56: 431-434.
  • Xie Y, Hill CAS, Xiao Z, Militz H, Mai C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos Part A-Appl S 2010; 41; 806-819.
  • Patankar SN, Das A, Kranov YA. Interface engineering via compatibilization in HDPE composite reinforced with sodium borosilicate hollow glass microspheres. Compos Part A-Appl S 2010; 40; 897-903.
  • Nordin NH, Ahmad Z. J. Monitoring Chemical Changes on the Surface of Borosilicate Glass Covers during the Silanisation Process. J Appl Phys 2015; 26: 11–22.
  • Zhu BL, Zheng H, Wang J, Ma J, Wu J, Wu R. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos Part B-Eng 2014; 58: 91-102.
  • Buga MR, Zaharia C, Bălan M, Bressy C, Ziarelli F, Margaillan A. Surface modification of silk fibroin fibers with poly(methyl methacrylate) and poly(tributylsilyl methacrylate) via RAFT polymerization for marine antifouling applications. Mater Sci Eng 2015; 51: 233-241.
  • Chinthamanipeta PS, Kobukata S, Nakata H, Shipp DA. Synthesis of poly(methyl methacrylate)–silica nanocomposites using methacrylate-functionalized silica nanoparticles and RAFT polymerization. Polymer 2008; 49:5636-5642.
  • Yung KC, Zhu BL, Yue TM, Xie CS. Preparation and properties of hollow glass microsphere-filled epoxy-matrix composites. Compos Sci Technol 2009; 69:260-264.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Hande Çelebi

Yayımlanma Tarihi 30 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 18 Sayı: 3

Kaynak Göster

APA Çelebi, H. (2017). THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 18(3), 746-753. https://doi.org/10.18038/aubtda.323483
AMA Çelebi H. THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES. AUBTD-A. Eylül 2017;18(3):746-753. doi:10.18038/aubtda.323483
Chicago Çelebi, Hande. “THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18, sy. 3 (Eylül 2017): 746-53. https://doi.org/10.18038/aubtda.323483.
EndNote Çelebi H (01 Eylül 2017) THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18 3 746–753.
IEEE H. Çelebi, “THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES”, AUBTD-A, c. 18, sy. 3, ss. 746–753, 2017, doi: 10.18038/aubtda.323483.
ISNAD Çelebi, Hande. “THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 18/3 (Eylül 2017), 746-753. https://doi.org/10.18038/aubtda.323483.
JAMA Çelebi H. THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES. AUBTD-A. 2017;18:746–753.
MLA Çelebi, Hande. “THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 18, sy. 3, 2017, ss. 746-53, doi:10.18038/aubtda.323483.
Vancouver Çelebi H. THERMAL CONDUCTIVITY and TENSILE PROPERTIES OF HOLLOW GLASS MICROSPHERE / POLYPROPYLENE COMPOSITES. AUBTD-A. 2017;18(3):746-53.