Araştırma Makalesi
BibTex RIS Kaynak Göster

PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS

Yıl 2018, Cilt: 19 Sayı: 2, 468 - 483, 30.06.2018
https://doi.org/10.18038/aubtda.328064

Öz

This
study reports the preparation of hybrids of tungsten trioxide/polythiophene (WO3/PTh)
and tungsten trioxide/polyfuran  (WO3/PFu)
using a rotating capacitively coupled radio frequency (rf) plasma process. The
prepared hybrid characteristics were measured using
scanning electron microscopy-energy dispersive X-ray
spectroscopy (SEM-EDS)
and X-ray diffraction analysis (XRD). WO3, WO3/PTh,
WO3/PFu thin films were deposited onto flexible substrates using electron
beam evaporation technique for high electrochromic performance purposes. The
effect of thiophene and furan moieties on the
optical and electrochromic properties of the flexible hybrid-based ECDs was investigated using optical and electrochemical measurements. Especially, the WO3/PTh-based ECD shows marked
improvements of cathodic electrochromism over WO3-based ECD: the
optical contrast of 33% at 750 nm, the switching
times (bleaching time: 1.63 s, coloration time: 0.41 s),  the coloration efficiency of 502 cm2/C.  

Kaynakça

  • REFERENCES
  • [1] Sun S., Lu T., Chang X., Hu X., Dong L., Yin Y. Flexible electrochromic device based on WO3·H2O nanoflakes synthesized by a facile sonochemical method. Materials Letters 2016; 185: 319–322.
  • [2] Lee H., Kim M., Kim I., Lee H. Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene. Adv. Mater. 2016; 28: 4541–4548.
  • [3] Kim, T.-H., Park S.-H., Kim D.-H., Nah Y.-C., Kim H.-K. Roll-to-roll sputtered ITO/Ag/ITO multilayers for highly transparent and flexible electrochromic applications. Solar Energy Materials & Solar Cells 2017; 160: 203-210.
  • [4] Kiristi M., Bozduman F., Oksuz A. U., Oksuz L., Hala A. Solid State Electrochromic Devices of Plasma Modified WO3 Hybrids. Ind. Eng. Chem. Res. 2014; 53: 15917−15922.
  • [5] Xiao L., Lv Y., Dong W., Zhang N., Liu X. Dual-Functional WO3 Nanocolumns with Broad band Antireflective and High-Performance Flexible Electrochromic Properties. ACS Appl. Mater. Interfaces 2016; 8: 27107−27114.
  • [6] Dulgerbaki C., Oksuz A. U. Efficient Electrochromic Materials Based on PEDOT/WO3 Composites Synthesized in Ionic Liquid Media. Electroanalysis 2014; 26: 2501 – 2512.
  • [7] Hu Y., Jiang F., Lu B., Liu C., Hou J., Xu J. Free-standing oligo(oxyethylene)-functionalized polythiophene with the 3,4-ethylenedioxythiophene building block: electrosynthesis, electrochromic and thermoelectric properties. Electrochimica Acta 2017; 228: 361–370.
  • [8] Najafi-Ashtiani H., Bahari A., Ghasemi S. A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: Enhanced electrochromic coloration efficiency and switching response. Journal of Electroanalytical Chemistry 2016; 774: 14–21.
  • [9] Kim T.-H., Jeon H. J., Lee J.-W., Nah Y.-C. Enhanced electrochromic properties of hybrid P3HT/WO3 composites with multiple colorations. Electrochemistry Communications 2015; 57: 65–69.
  • [10] Nguyen T.-T.N., Chan C.-Y., He J.-L. One-step inkjet printing of tungsten oxide-poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hybrid film and its applications in electrochromic devices. Thin Solid Films 2016; 603: 276-282.
  • [11] Gaikwad D. K., Mali S. S., Hong C. K., Kadam A. V. Influence of disordered morphology on electrochromic stability of WO3/PPy. Journal of Alloys and Compounds 2016; 669: 240-245.
  • [12] Karaca G. Y., Eren E., Alver C., Koc U., Uygun E., Oksuz L., Oksuz A. U. Plasma Modified V2O5/PEDOT Hybrid Based Flexible Electrochromic Devices. Electroanalysis 2017; 29: 1324-1331.
  • [13] Oksuz A. U., Manolache S., Oksuz L., Hershkowitz N. Plasma Nanocoating of Thiophene onto TiO2 Nanoparticles. Ind. Eng. Chem. Res. 2013; 52: 6610−6616.
  • [14] Dulgerbaki C., Oksuz A. U. Fabricating polypyrrole/tungsten oxide hybrid based electrochromic devices using different ionic liquids. Polym. Adv. Technol. 2016; 27: 73–81.
  • [15] Vos C. D., Vandencasteele N., Kakaroglou A., Nisol B., Graeve I. d., Assche G. V., Mele B. V., Terryn H., Reniers F. Plasma Polymerization of a Saturated Branched Hydrocarbon. The Case of Heptamethylnonane. Plasma Process. Polym. 2013; 10: 51-59.
  • [16] Cools P., Geyter N. D., Vanderleyden E., Barberis F., Dubruel P., Morent R. Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surface & Coatings Technology 2016; 294: 201–209.
  • [17] Zhao X.-Y., Wang M.-Z., Wang Z., Zhang B.-Z. Structural and dielectric properties of conjugated polynitrile thin films deposited by plasma polymerization. Thin Solid Films 2008; 516:8272–8277.
  • [18] Jiang F., Li W., Zou R., Liu Q., Xu K., An L., Hu J. MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 2014; 7: 72–79.
  • [19] Turkaslan B. E., Dikmen S., Oksuz L., Oksuz A. U. Plasma nanocoating of thiophene onto MoS2 nanotubes. Applied Surface Science 2015; 357: 1558–1564.
  • [20] Evecan D., Gurcuoglu O., Zayim E. O. Electrochromic device application of tungsten oxide film with polymer electrolytes. Microelectronic Engineering 2014; 128: 42–47.
  • [21] Akpinar H. Z., Udum Y. A., Toppare L. Spray-Processable Thiazolothiazole-Based Copolymers with Altered Donor Groups and Their Electrochromic Properties. Journal of polymer science, Part A: Polymer chemistry 2013; 51: 3901–3906.
  • [22] Wei H., Yan X., Wu S., Luo Z., Wei S., Guo Z. Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. J. Phys. Chem. C 2012; 166: 25052−25064.
  • [23] Fernandes M., Leones R., Pereira S., Costa A. M. S., Mano J. F., Silva M. M., Fortunato E., Bermude V. d. Z. Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta. 2017; 232: 484-494.
  • [24] Fu X., Jia C., Wan Z., Weng X., Xie J., Deng L. Hybrid electrochromic film based on polyaniline and TiO2 nanorods array. Organic Electronics 2014; 15: 2702–2709.
  • [25] Adhikari S., Sarkar D. Synthesis and Electrochemical Properties of Nanocuboid and Nanofiber WO3. Journal of The Electrochemical Society 2015; 162: H1-H7.
  • [26] Kondalkar V. V., Kharade R. R., Mali S.S., Mane R.M., Patil P.B., Patil P.S., Choudhury S., Bhosale P.N. Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures 2014; 73: 290–295.
  • [27] Huang H., Tian J., Zhang W. K., Gan Y.P., Tao X. Y., Xia X. H., Tu J. P., Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window. Electrochimica Acta 2011; 56: 4281–4286.
  • [28] Kondalkar V. V., Mali S. S., Kharade R. R., Khot K. V., Patil P. B., Mane R. M., Choudhury S., Patil P. S., Hong C. K., Kim J. H., Bhosale P. N. High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: hydrothermal assisted synthesis. Dalton Trans. 2015; 44: 2788-2800.
  • [29] Dulgerbaki C., Maslakci N. N., Komur A. I., Oksuz A. U. PEDOT/WO3 Hybrid Nanofiber Architectures for High Performance Electrochromic Devices. Electroanalysis 2016; 28: 1873 – 1879.
  • [30] Najafi-Ashtiani H., Bahari A., Ghasemi S. A dual electrochromic film based on nanocomposite of aniline and o-toluidine copolymer with tungsten oxide nanoparticles. Organic Electronics 2016; 37: 213-221.
  • [31] Kim D.-M., Yoon J.-H., Won M.-S., Shim Y.-B. Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell. Electrochimica Acta 2012; 67: 201– 207.
  • [32] Cai G. F., Tu J.P., Zhou D., Zhang J. H., Wang X. L., Gu C. D. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Solar Energy Materials & Solar Cells 2012; 122: 51–58.
  • [33] Zhang J., Tu J.-P., Zhang D., Qiao Y.Q., Xia X.-H., Wang X.-L., Gu C.-D. Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis. J. Mater. Chem. 2011, 21, 17316-17324.
  • [34] Xiao L., Lv Y., Dong W., Zhang D., Liu X. Dual-Functional WO3 Nanocolumns with Broadband Antireflective and High-Performance Flexible Electrochromic Properties. ACS Appl. Mater. Interfaces 2016; 8: 27107−27114.
  • [35] Li H., Lv Y., Zhang X., Wang X., Liu X. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials & Solar Cells. 2015; 136: 86–91.
  • [36] Zhang J., Wang S., Xu M., Wang Y., Xia H., Zhang S., Guo X., Wu S. Polypyrrole-Coated SnO2 Hollow Spheres and Their Application for Ammonia Sensor. J. Phys. Chem. C 2009; 113: 1662–1665.
  • [37] Kavak E., Us C. N., Yavuz E., Kivrak A., Özkut M. I. A Camouflage Material: p- and n-Type Dopable Furan Based Low Band Gap Electrochromic Polymer and Its EDOT Based Copolymer. Electrochimica Acta 2015; 182: 537–543.
  • [38] Karabay L. C., Karabay B., Karakoy M. S., Cihaner A. Effect of furan, thiophene and selenophene donor groups on benzoselenadiazole based donor-acceptor-donor systems. Journal of Electroanalytical Chemistry 2016; 780: 84–89.
  • [39] Fringuelli F., Marino G., Taticchi A., Grandolini G. A comparative study of the aromatic character of furan, thiophen, selenophen, and tellurophen. J. Chem. Soc. Perkin Trans. 1974; 2: 332-337.
Yıl 2018, Cilt: 19 Sayı: 2, 468 - 483, 30.06.2018
https://doi.org/10.18038/aubtda.328064

Öz

Kaynakça

  • REFERENCES
  • [1] Sun S., Lu T., Chang X., Hu X., Dong L., Yin Y. Flexible electrochromic device based on WO3·H2O nanoflakes synthesized by a facile sonochemical method. Materials Letters 2016; 185: 319–322.
  • [2] Lee H., Kim M., Kim I., Lee H. Flexible and Stretchable Optoelectronic Devices using Silver Nanowires and Graphene. Adv. Mater. 2016; 28: 4541–4548.
  • [3] Kim, T.-H., Park S.-H., Kim D.-H., Nah Y.-C., Kim H.-K. Roll-to-roll sputtered ITO/Ag/ITO multilayers for highly transparent and flexible electrochromic applications. Solar Energy Materials & Solar Cells 2017; 160: 203-210.
  • [4] Kiristi M., Bozduman F., Oksuz A. U., Oksuz L., Hala A. Solid State Electrochromic Devices of Plasma Modified WO3 Hybrids. Ind. Eng. Chem. Res. 2014; 53: 15917−15922.
  • [5] Xiao L., Lv Y., Dong W., Zhang N., Liu X. Dual-Functional WO3 Nanocolumns with Broad band Antireflective and High-Performance Flexible Electrochromic Properties. ACS Appl. Mater. Interfaces 2016; 8: 27107−27114.
  • [6] Dulgerbaki C., Oksuz A. U. Efficient Electrochromic Materials Based on PEDOT/WO3 Composites Synthesized in Ionic Liquid Media. Electroanalysis 2014; 26: 2501 – 2512.
  • [7] Hu Y., Jiang F., Lu B., Liu C., Hou J., Xu J. Free-standing oligo(oxyethylene)-functionalized polythiophene with the 3,4-ethylenedioxythiophene building block: electrosynthesis, electrochromic and thermoelectric properties. Electrochimica Acta 2017; 228: 361–370.
  • [8] Najafi-Ashtiani H., Bahari A., Ghasemi S. A dual electrochromic film based on nanocomposite of copolymer and WO3 nanoparticles: Enhanced electrochromic coloration efficiency and switching response. Journal of Electroanalytical Chemistry 2016; 774: 14–21.
  • [9] Kim T.-H., Jeon H. J., Lee J.-W., Nah Y.-C. Enhanced electrochromic properties of hybrid P3HT/WO3 composites with multiple colorations. Electrochemistry Communications 2015; 57: 65–69.
  • [10] Nguyen T.-T.N., Chan C.-Y., He J.-L. One-step inkjet printing of tungsten oxide-poly(3,4-ethylenedioxythiophene):polystyrene sulphonate hybrid film and its applications in electrochromic devices. Thin Solid Films 2016; 603: 276-282.
  • [11] Gaikwad D. K., Mali S. S., Hong C. K., Kadam A. V. Influence of disordered morphology on electrochromic stability of WO3/PPy. Journal of Alloys and Compounds 2016; 669: 240-245.
  • [12] Karaca G. Y., Eren E., Alver C., Koc U., Uygun E., Oksuz L., Oksuz A. U. Plasma Modified V2O5/PEDOT Hybrid Based Flexible Electrochromic Devices. Electroanalysis 2017; 29: 1324-1331.
  • [13] Oksuz A. U., Manolache S., Oksuz L., Hershkowitz N. Plasma Nanocoating of Thiophene onto TiO2 Nanoparticles. Ind. Eng. Chem. Res. 2013; 52: 6610−6616.
  • [14] Dulgerbaki C., Oksuz A. U. Fabricating polypyrrole/tungsten oxide hybrid based electrochromic devices using different ionic liquids. Polym. Adv. Technol. 2016; 27: 73–81.
  • [15] Vos C. D., Vandencasteele N., Kakaroglou A., Nisol B., Graeve I. d., Assche G. V., Mele B. V., Terryn H., Reniers F. Plasma Polymerization of a Saturated Branched Hydrocarbon. The Case of Heptamethylnonane. Plasma Process. Polym. 2013; 10: 51-59.
  • [16] Cools P., Geyter N. D., Vanderleyden E., Barberis F., Dubruel P., Morent R. Adhesion improvement at the PMMA bone cement-titanium implant interface using methyl methacrylate atmospheric pressure plasma polymerization. Surface & Coatings Technology 2016; 294: 201–209.
  • [17] Zhao X.-Y., Wang M.-Z., Wang Z., Zhang B.-Z. Structural and dielectric properties of conjugated polynitrile thin films deposited by plasma polymerization. Thin Solid Films 2008; 516:8272–8277.
  • [18] Jiang F., Li W., Zou R., Liu Q., Xu K., An L., Hu J. MoO3/PANI coaxial heterostructure nanobelts by in situ polymerization for high performance supercapacitors. Nano Energy 2014; 7: 72–79.
  • [19] Turkaslan B. E., Dikmen S., Oksuz L., Oksuz A. U. Plasma nanocoating of thiophene onto MoS2 nanotubes. Applied Surface Science 2015; 357: 1558–1564.
  • [20] Evecan D., Gurcuoglu O., Zayim E. O. Electrochromic device application of tungsten oxide film with polymer electrolytes. Microelectronic Engineering 2014; 128: 42–47.
  • [21] Akpinar H. Z., Udum Y. A., Toppare L. Spray-Processable Thiazolothiazole-Based Copolymers with Altered Donor Groups and Their Electrochromic Properties. Journal of polymer science, Part A: Polymer chemistry 2013; 51: 3901–3906.
  • [22] Wei H., Yan X., Wu S., Luo Z., Wei S., Guo Z. Electropolymerized Polyaniline Stabilized Tungsten Oxide Nanocomposite Films: Electrochromic Behavior and Electrochemical Energy Storage. J. Phys. Chem. C 2012; 166: 25052−25064.
  • [23] Fernandes M., Leones R., Pereira S., Costa A. M. S., Mano J. F., Silva M. M., Fortunato E., Bermude V. d. Z. Eco-friendly sol-gel derived sodium-based ormolytes for electrochromic devices. Electrochimica Acta. 2017; 232: 484-494.
  • [24] Fu X., Jia C., Wan Z., Weng X., Xie J., Deng L. Hybrid electrochromic film based on polyaniline and TiO2 nanorods array. Organic Electronics 2014; 15: 2702–2709.
  • [25] Adhikari S., Sarkar D. Synthesis and Electrochemical Properties of Nanocuboid and Nanofiber WO3. Journal of The Electrochemical Society 2015; 162: H1-H7.
  • [26] Kondalkar V. V., Kharade R. R., Mali S.S., Mane R.M., Patil P.B., Patil P.S., Choudhury S., Bhosale P.N. Nanobrick-like WO3 thin films: Hydrothermal synthesis and electrochromic application. Superlattices and Microstructures 2014; 73: 290–295.
  • [27] Huang H., Tian J., Zhang W. K., Gan Y.P., Tao X. Y., Xia X. H., Tu J. P., Electrochromic properties of porous NiO thin film as a counter electrode for NiO/WO3 complementary electrochromic window. Electrochimica Acta 2011; 56: 4281–4286.
  • [28] Kondalkar V. V., Mali S. S., Kharade R. R., Khot K. V., Patil P. B., Mane R. M., Choudhury S., Patil P. S., Hong C. K., Kim J. H., Bhosale P. N. High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: hydrothermal assisted synthesis. Dalton Trans. 2015; 44: 2788-2800.
  • [29] Dulgerbaki C., Maslakci N. N., Komur A. I., Oksuz A. U. PEDOT/WO3 Hybrid Nanofiber Architectures for High Performance Electrochromic Devices. Electroanalysis 2016; 28: 1873 – 1879.
  • [30] Najafi-Ashtiani H., Bahari A., Ghasemi S. A dual electrochromic film based on nanocomposite of aniline and o-toluidine copolymer with tungsten oxide nanoparticles. Organic Electronics 2016; 37: 213-221.
  • [31] Kim D.-M., Yoon J.-H., Won M.-S., Shim Y.-B. Electrochemical characterization of newly synthesized polyterthiophene benzoate and its applications to an electrochromic device and a photovoltaic cell. Electrochimica Acta 2012; 67: 201– 207.
  • [32] Cai G. F., Tu J.P., Zhou D., Zhang J. H., Wang X. L., Gu C. D. Dual electrochromic film based on WO3/polyaniline core/shell nanowire array. Solar Energy Materials & Solar Cells 2012; 122: 51–58.
  • [33] Zhang J., Tu J.-P., Zhang D., Qiao Y.Q., Xia X.-H., Wang X.-L., Gu C.-D. Multicolor electrochromic polyaniline–WO3 hybrid thin films: One-pot molecular assembling synthesis. J. Mater. Chem. 2011, 21, 17316-17324.
  • [34] Xiao L., Lv Y., Dong W., Zhang D., Liu X. Dual-Functional WO3 Nanocolumns with Broadband Antireflective and High-Performance Flexible Electrochromic Properties. ACS Appl. Mater. Interfaces 2016; 8: 27107−27114.
  • [35] Li H., Lv Y., Zhang X., Wang X., Liu X. High-performance ITO-free electrochromic films based on bi-functional stacked WO3/Ag/WO3 structures. Solar Energy Materials & Solar Cells. 2015; 136: 86–91.
  • [36] Zhang J., Wang S., Xu M., Wang Y., Xia H., Zhang S., Guo X., Wu S. Polypyrrole-Coated SnO2 Hollow Spheres and Their Application for Ammonia Sensor. J. Phys. Chem. C 2009; 113: 1662–1665.
  • [37] Kavak E., Us C. N., Yavuz E., Kivrak A., Özkut M. I. A Camouflage Material: p- and n-Type Dopable Furan Based Low Band Gap Electrochromic Polymer and Its EDOT Based Copolymer. Electrochimica Acta 2015; 182: 537–543.
  • [38] Karabay L. C., Karabay B., Karakoy M. S., Cihaner A. Effect of furan, thiophene and selenophene donor groups on benzoselenadiazole based donor-acceptor-donor systems. Journal of Electroanalytical Chemistry 2016; 780: 84–89.
  • [39] Fringuelli F., Marino G., Taticchi A., Grandolini G. A comparative study of the aromatic character of furan, thiophen, selenophen, and tellurophen. J. Chem. Soc. Perkin Trans. 1974; 2: 332-337.
Toplam 40 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Araştırma Makalesi
Yazarlar

Esin Eren

Ceyda Alver Bu kişi benim

Aysegul Uygun Oksuz

Yayımlanma Tarihi 30 Haziran 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 19 Sayı: 2

Kaynak Göster

APA Eren, E., Alver, C., & Uygun Oksuz, A. (2018). PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, 19(2), 468-483. https://doi.org/10.18038/aubtda.328064
AMA Eren E, Alver C, Uygun Oksuz A. PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS. AUBTD-A. Haziran 2018;19(2):468-483. doi:10.18038/aubtda.328064
Chicago Eren, Esin, Ceyda Alver, ve Aysegul Uygun Oksuz. “PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19, sy. 2 (Haziran 2018): 468-83. https://doi.org/10.18038/aubtda.328064.
EndNote Eren E, Alver C, Uygun Oksuz A (01 Haziran 2018) PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19 2 468–483.
IEEE E. Eren, C. Alver, ve A. Uygun Oksuz, “PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS”, AUBTD-A, c. 19, sy. 2, ss. 468–483, 2018, doi: 10.18038/aubtda.328064.
ISNAD Eren, Esin vd. “PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering 19/2 (Haziran 2018), 468-483. https://doi.org/10.18038/aubtda.328064.
JAMA Eren E, Alver C, Uygun Oksuz A. PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS. AUBTD-A. 2018;19:468–483.
MLA Eren, Esin vd. “PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS”. Anadolu University Journal of Science and Technology A - Applied Sciences and Engineering, c. 19, sy. 2, 2018, ss. 468-83, doi:10.18038/aubtda.328064.
Vancouver Eren E, Alver C, Uygun Oksuz A. PLASMA MODIFIED WO3 HYBRIDS WITH ALTERED DONOR GROUPS FOR FLEXIBLE ELECTROCHROMIC APPLICATIONS. AUBTD-A. 2018;19(2):468-83.