Araştırma Makalesi
BibTex RIS Kaynak Göster

BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ

Yıl 2018, Cilt: 7 Sayı: 2, 227 - 238, 17.08.2018
https://doi.org/10.18036/aubtdc.397326

Öz

Bu
çalışmada oleginous maya olan Rhodotorula
glutinis’
ten
lipit
üretimi ve ekstre edilen lipitten biyodizel üretimi gerçekleştirilmiştir.
Maksimum lipit üretim koşullarının belirlenmesi amacıyla başlangıç pH’sı,
sıcaklık, çalkalama hızı,  farklı karbon
ve azot kaynakları gibi çeşitli sistem paremetrelerinin etkisi kesikli
fermentasyon sisteminde incelenmiştir. Biyodizel üretim maliyetini azaltmak
için melas ve peynir altı suyu içeren besiyerleri de test edilmiştir. Ayrıca
belirlediğimiz optimum koşullarda iki basamaklı fermentasyon sistemiyle lipit
üretilmiştir. Kültür ortamlarından lipit ekstraksiyonu modifiye Bligh ve Dyer
yöntemine göre gerçekleştirilmiş ve elde edilen lipitler biyodizel üretiminde
kullanılmıştır. Yağ asidi ve yağ asidi metil esterlerinin analizi gaz
kromatoğrafisi-kütle spektrometresi cihazında yapılmıştır. Bu çalışma sonucunda
üretilen maksimum lipit içeriği ve biyodizel verimi sırasıyla  % 29.53±0.46 ve % 80.65 olarak tespit
edilmiştir. Palmitik asit, oleik asit ve stearik asit içeren lipitlerin, yağ
asidi kompozisyonunun biyodizel üretimine uygun olduğu belirlenmiştir. 

Kaynakça

  • [1] Knothe G, Razon LF. Biodiesel fuels. Prog Energy Combust Sci 2017; 58: 36-59.
  • [2] Shi S, Rodriguez J, Siewers V, Nielsen J. Prospects for microbial biodiesel production. Biotechnol. J. 2011; 6, 277-285.
  • [3] Carioca JOB. (2010). Biofuels: Problems, challenges and perspectives. Biotechnol J. 2010; 5, 260-273.
  • [4] Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007; 315, 801-804.
  • [5] Meng X, Yang, J Zu, X Zhang, L Nie Q, Xian M. 2009; Biodiesel production from oleaginous microorganisms. Renew. Energ. 2009; 34, 1-5.
  • [6] Demirbaş A. Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources. 2002; 24, 835-841.
  • [7] Alptekin E. Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine. Energy 2017; 119, 44-52.
  • [8] Carrraretto C, Macor A, Mirandola A, Stoppato A, Tonon S. Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy. 2004; 29, 2195-2211.
  • [9] Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM. Production of biodiesel from waste frying oil. Waste Manage. 2006; 26:5, 487-494.
  • [10] Phan AN, Phan TM. Biodiesel production from waste cooking oils. Fuel. 2008; 87, 3490-3496.
  • [11] Kulkarni M, Dalai A. Waste cooking oils an economical source for biodiesel: a review. Ind Eng Chem Res. 2006; 45, 2901-2913.
  • [12] Soccol CR, Neto CJD, Soccol VT, Sydney EB, Costa ESFD, Medeiros ABP, Vandenberghe LPDS. Pilot scale biodiesel production from microbial oil Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study. Bioresour. Technol. 2017; 223, 259-268.
  • [13] Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S, Garre V. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 2009; 48:1, 22–27.
  • [14] Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008; 80, 749-756.
  • [15] Peng X, Cheng Y. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. Bioresour. Technol. 2008; 99, 3885-3889.
  • [16] Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD, Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci. Rep. 2016; 6, 24985.
  • [17] Papanikolaou S, Aggelis G. Lipids of oleaginous yeast. Part I: Biochemistry of single cell oil production. Eur.J. Sci. Technol. 2011; 113, 1031-1051.
  • [18] Denli Y, Tekin A. Oil production and microorganisms. Gıda. 2000; 25:4, 265-270.
  • [19] Ratledge C. Microbial oils and fats; an assesment of their commercial potential. Indust. Microbiol. 1982; 16, 119-206.
  • [20] Feiyan X, Zhang X, Luo H, Tan T. A new method for preparing raw material for biodiesel production. Pro. Biochem. 2006; 41, 1699-1702.
  • [21] Wu H, Li Y, Chen L, Zong M. Production of microbial oil with high oleic acid content by Trichosporon capitatum. Appl. Energ. 2011; 88, 138-142.
  • [22] Tao J, Dai CC, Yang QY, Guan XY, Shao WL. Production of biodiesel with acid hydrolysate of Populus euramevicana cv leaves by Rhodotorula glutinis. Int. J. Green Energy. 2010; 7, 387-396.
  • [23] Yen HW, Zhang Z. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis. J. Bioscience Bioeng. 2011; 112:1, 71-74.
  • [24] Yen H, Liu YX. Application of airlift bioreactor for the cultivation of aerobic oleaginous yeast Rhodotorula glutinis with different aeration rates J. Biosci. Bioeng. 2014; 118:2, 195-198.
  • [25] Johnson V, Singh M, Saini VS, Sista VR, Yadav NK. Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. W. J. Microbiol. 1992; 8, 382-384.
  • [26] Enshaeieh M, Abdoli A, Nahvi İ, Madani M. Bioconversion of different carbon sources in to microbial oil and biodiesel using oleaginous yeast. J. Biology T. World. 2012; 1:2, 82-92.
  • [27] Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipit production of a new isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Nat. Sci. 2010; 44, 436-445.
  • [28] Evans CT, Ratledge C. Effect of nitrogen source on lipid accumulation in oleaginous yeast. J. G. Microbiol. 1984; 130, 1693-1704.
  • [29] Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002; 51, 1-51.
  • [30] Kolouchova I, Maltatkova O, Sigler K, Masak J, Rezanka T. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol. 2016; 61, 431-438.
  • [31] Patel A, Arora N, Mehtani J, Pruthi V, Pruthi PA. Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production, Renewable and Sustainable Energy Reviews, Renewable and Sustainable Energy Reviews 2017; 77 604–616.
  • [32] Lin J, Shen H, Tan H, Zhang X, Wu S, Hu C, Zhao ZK. Lipit production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J. Biotechnol. 2011; 152:4, 184-188.
  • [33] Zhu LY, Zhong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour. Technol. 2008; 99, 7881-7885.
  • [34] Karatay SE, Dönmez G. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Biores. Technol. 2010; 101, 7988-7990.
  • [35] Taskin M, Ortucu S, Aydogan MN, Arslan NP, Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29, Renewable Energy 2016; 99, 198-204.
  • [36] Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng. Life Sci. 2010; 10:4, 348–360.
  • [37] Castanha RF, Mariano AP, Morais LASD, Scramin S, Monteiro RTR. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses. Braz. J. Microbiol. 2014; 45, 379-387.

PRODUTION OF LIPIDS FROM OLEAGIOUS YEAST CELL IN DIFFERENT CULTURAL TYPES AND MEDIUMS FOR USAGE IN BIODIESEL PRODUCTION

Yıl 2018, Cilt: 7 Sayı: 2, 227 - 238, 17.08.2018
https://doi.org/10.18036/aubtdc.397326

Öz

In this study, lipid production from oleaginous yeast Rhodotorula glutinis and biodiesel production from the extracted lipid was performed. In order to determine the maximum lipid production conditions, the effect of various system parameters such as initial pH, temperature, agitation rate, different carbon and nitrogen sources has been examined in batch fermentation system. Media containing molasses and cheese whey were also tested to reduce the cost of biodiesel production. In addition, under optimum conditions, lipid was produced with a two-step fermentation system. Lipid was extracted from culture media according to the modified Bligh and Dyer method and lipids obtained were used for biodiesel production. Analysis of fatty acids and fatty acid methyl esters was carried out on the gas chromatograph-mass spectrometer. As a result of this study, maximum lipid content and biodiesel production were 29.53 ± 0.46% and 80.65%, respectively. It has been determined that fatty acid composition of lipids containing palmitic acid, oleic acid and stearic acid is suitable for biodiesel production.

Kaynakça

  • [1] Knothe G, Razon LF. Biodiesel fuels. Prog Energy Combust Sci 2017; 58: 36-59.
  • [2] Shi S, Rodriguez J, Siewers V, Nielsen J. Prospects for microbial biodiesel production. Biotechnol. J. 2011; 6, 277-285.
  • [3] Carioca JOB. (2010). Biofuels: Problems, challenges and perspectives. Biotechnol J. 2010; 5, 260-273.
  • [4] Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007; 315, 801-804.
  • [5] Meng X, Yang, J Zu, X Zhang, L Nie Q, Xian M. 2009; Biodiesel production from oleaginous microorganisms. Renew. Energ. 2009; 34, 1-5.
  • [6] Demirbaş A. Diesel fuel from vegetable oil via transesterification and soap pyrolysis. Energy Sources. 2002; 24, 835-841.
  • [7] Alptekin E. Emission, injection and combustion characteristics of biodiesel and oxygenated fuel blends in a common rail diesel engine. Energy 2017; 119, 44-52.
  • [8] Carrraretto C, Macor A, Mirandola A, Stoppato A, Tonon S. Biodiesel as alternative fuel: experimental analysis and energetic evaluations. Energy. 2004; 29, 2195-2211.
  • [9] Felizardo P, Correia MJN, Raposo I, Mendes JF, Berkemeier R, Bordado JM. Production of biodiesel from waste frying oil. Waste Manage. 2006; 26:5, 487-494.
  • [10] Phan AN, Phan TM. Biodiesel production from waste cooking oils. Fuel. 2008; 87, 3490-3496.
  • [11] Kulkarni M, Dalai A. Waste cooking oils an economical source for biodiesel: a review. Ind Eng Chem Res. 2006; 45, 2901-2913.
  • [12] Soccol CR, Neto CJD, Soccol VT, Sydney EB, Costa ESFD, Medeiros ABP, Vandenberghe LPDS. Pilot scale biodiesel production from microbial oil Rhodosporidium toruloides DEBB 5533 using sugarcane juice: Performance in diesel engine and preliminary economic study. Bioresour. Technol. 2017; 223, 259-268.
  • [13] Vicente G, Bautista LF, Rodríguez R, Gutiérrez FJ, Sádaba I, Ruiz-Vázquez RM, Torres-Martínez S, Garre V. Biodiesel production from biomass of an oleaginous fungus. Biochem. Eng. J. 2009; 48:1, 22–27.
  • [14] Li Q, Du W, Liu D. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008; 80, 749-756.
  • [15] Peng X, Cheng Y. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. Bioresour. Technol. 2008; 99, 3885-3889.
  • [16] Amara S, Seghezzi N, Otani H, Diaz-Salazar C, Liu J, Eltis LD, Characterization of key triacylglycerol biosynthesis processes in rhodococci. Sci. Rep. 2016; 6, 24985.
  • [17] Papanikolaou S, Aggelis G. Lipids of oleaginous yeast. Part I: Biochemistry of single cell oil production. Eur.J. Sci. Technol. 2011; 113, 1031-1051.
  • [18] Denli Y, Tekin A. Oil production and microorganisms. Gıda. 2000; 25:4, 265-270.
  • [19] Ratledge C. Microbial oils and fats; an assesment of their commercial potential. Indust. Microbiol. 1982; 16, 119-206.
  • [20] Feiyan X, Zhang X, Luo H, Tan T. A new method for preparing raw material for biodiesel production. Pro. Biochem. 2006; 41, 1699-1702.
  • [21] Wu H, Li Y, Chen L, Zong M. Production of microbial oil with high oleic acid content by Trichosporon capitatum. Appl. Energ. 2011; 88, 138-142.
  • [22] Tao J, Dai CC, Yang QY, Guan XY, Shao WL. Production of biodiesel with acid hydrolysate of Populus euramevicana cv leaves by Rhodotorula glutinis. Int. J. Green Energy. 2010; 7, 387-396.
  • [23] Yen HW, Zhang Z. Effects of dissolved oxygen level on cell growth and total lipid accumulation in the cultivation of Rhodotorula glutinis. J. Bioscience Bioeng. 2011; 112:1, 71-74.
  • [24] Yen H, Liu YX. Application of airlift bioreactor for the cultivation of aerobic oleaginous yeast Rhodotorula glutinis with different aeration rates J. Biosci. Bioeng. 2014; 118:2, 195-198.
  • [25] Johnson V, Singh M, Saini VS, Sista VR, Yadav NK. Effect of pH on lipid accumulation by an oleaginous yeast: Rhodotorula glutinis IIP-30. W. J. Microbiol. 1992; 8, 382-384.
  • [26] Enshaeieh M, Abdoli A, Nahvi İ, Madani M. Bioconversion of different carbon sources in to microbial oil and biodiesel using oleaginous yeast. J. Biology T. World. 2012; 1:2, 82-92.
  • [27] Kraisintu P, Yongmanitchai W, Limtong S. Selection and optimization for lipit production of a new isolated oleaginous yeast, Rhodosporidium toruloides DMKU3-TK16. Nat. Sci. 2010; 44, 436-445.
  • [28] Evans CT, Ratledge C. Effect of nitrogen source on lipid accumulation in oleaginous yeast. J. G. Microbiol. 1984; 130, 1693-1704.
  • [29] Ratledge C, Wynn JP. The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol. 2002; 51, 1-51.
  • [30] Kolouchova I, Maltatkova O, Sigler K, Masak J, Rezanka T. Lipid accumulation by oleaginous and non-oleaginous yeast strains in nitrogen and phosphate limitation. Folia Microbiol. 2016; 61, 431-438.
  • [31] Patel A, Arora N, Mehtani J, Pruthi V, Pruthi PA. Assessment of fuel properties on the basis of fatty acid profiles of oleaginous yeast for potential biodiesel production, Renewable and Sustainable Energy Reviews, Renewable and Sustainable Energy Reviews 2017; 77 604–616.
  • [32] Lin J, Shen H, Tan H, Zhang X, Wu S, Hu C, Zhao ZK. Lipit production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. J. Biotechnol. 2011; 152:4, 184-188.
  • [33] Zhu LY, Zhong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour. Technol. 2008; 99, 7881-7885.
  • [34] Karatay SE, Dönmez G. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Biores. Technol. 2010; 101, 7988-7990.
  • [35] Taskin M, Ortucu S, Aydogan MN, Arslan NP, Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29, Renewable Energy 2016; 99, 198-204.
  • [36] Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng. Life Sci. 2010; 10:4, 348–360.
  • [37] Castanha RF, Mariano AP, Morais LASD, Scramin S, Monteiro RTR. Optimization of lipids production by Cryptococcus laurentii 11 using cheese whey with molasses. Braz. J. Microbiol. 2014; 45, 379-387.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Seval Cing Yıldırım 0000-0001-7163-9512

Turgay Kanat Bu kişi benim

Yayımlanma Tarihi 17 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

APA Cing Yıldırım, S., & Kanat, T. (2018). BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, 7(2), 227-238. https://doi.org/10.18036/aubtdc.397326
AMA Cing Yıldırım S, Kanat T. BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. Ağustos 2018;7(2):227-238. doi:10.18036/aubtdc.397326
Chicago Cing Yıldırım, Seval, ve Turgay Kanat. “BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7, sy. 2 (Ağustos 2018): 227-38. https://doi.org/10.18036/aubtdc.397326.
EndNote Cing Yıldırım S, Kanat T (01 Ağustos 2018) BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7 2 227–238.
IEEE S. Cing Yıldırım ve T. Kanat, “BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ”, Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, c. 7, sy. 2, ss. 227–238, 2018, doi: 10.18036/aubtdc.397326.
ISNAD Cing Yıldırım, Seval - Kanat, Turgay. “BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology 7/2 (Ağustos 2018), 227-238. https://doi.org/10.18036/aubtdc.397326.
JAMA Cing Yıldırım S, Kanat T. BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7:227–238.
MLA Cing Yıldırım, Seval ve Turgay Kanat. “BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ”. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology, c. 7, sy. 2, 2018, ss. 227-38, doi:10.18036/aubtdc.397326.
Vancouver Cing Yıldırım S, Kanat T. BİYODİZEL ELDESİNDE KULLANILMAK ÜZERE OLEAGİNOUS MAYA HÜCRELERİNDEN FARKLI KÜLTÜR TİPİ VE ORTAMLARDA LİPİT ÜRETİMİ. Anadolu University Journal of Science and Technology C - Life Sciences and Biotechnology. 2018;7(2):227-38.