Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2017, Cilt: 5 Sayı: 2, 40 - 49, 01.09.2017
https://doi.org/10.17694/bajece.334348

Öz

Kaynakça

  • [1] Chedid, R. & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems, IEEE Transactions on Energy Conversion, 12(1), pp. 79-85.
  • [2] Bonanno, F., Consoli, A., Raciti, A., Morgana, B. & Nocera, U.(1999). Transient analysis of integrated diesel/wind/photovoltaic generation systems, IEEE Transactions on Energy Conversion, 14(2), pp. 232-238.
  • [3] Habib, M. A., Said, S. A. M., El Hadidy, M. A. & Al-Zaharna, I.(1999).Optimization procedure of a hybrid photovoltaic wind energy system, Energy, 24(11), pp. 919-929.
  • [4] Bayer, H. G. & Christian, L.(1996).A method for the identification of configurations of PV / wind hybrid systems for the reliable supply of small loads, Solar Energy, 57(5), pp. 381-391.
  • [5] Morgan , T. R., Marshall, R. H. & Brinkworth, B. J.(1997).A refined Simulation program for the sizing and optimization of autonomous hybrid energy systems, Solar Energy, 59, pp. 205-215.
  • [6] Rajendra, P. A. & Natarajan, E. (2006).Optimization of integrated photovoltaic–wind power generation systems with battery storage, Energy, 31(12), pp. 1943–1954.
  • [7] Altaş, İ. H. (1993).Control strategies for maximum power tracking and energy utilization of a stand-alone photovoltaic energy system, PhD diss., The University of New Brunswick, Faculty of Engineering, Department of Electrical Engineering, Fredericton, Canada.
  • [8] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M. & Louche, A.(2007).A methodology for optimal sizing of autonomous hybrid PV/wind system, International Journal of Energy Policy, 35(11), pp. 5708-5718.
  • [9] Mittal, R., Sandu, K. S. & Jain, D. K.(2010).Battery energy storage system for variable speed driven pmsg for wind energy conversion system, Power Electronics, Drives and Energy Systems,1, pp. 300-304. [10] El Ali, A., Moubayed, N. & Outbib, R. (2007). Comparison between solar and wind energy in Lebanon, 9th International Conference on Electrical Power Quality and utilization, pp. 1-5.
  • [11] Gagliano, S., Neri, D., Pitrone, N., Savalli, N. & Tina, G. (2009). Low-cost solar radiation sensing transducer for photovoltaic systems, WSEAS Transactions on Environment and Development, 5(2), pp. 119-125.
  • [12] Barsali, S. & Ceraolo, M. (2002). Dynamical Models of Lead-Acid Batteries: Implementation Issues, IEEE Transactions on Energy Conversion, 17(1), pp. 16-23.
  • [13] Moubayed, N., Kouta, J., El-Ali, A., Dernayka, H. & Outbib, R. (2008). Parameter identification of the lead-acid battery model, 33rd IEEE Photovoltaic Specialists Conference, pp. 1-6.
  • [14] Onar, O. C., Uzunoglu , M. & Alam, M. S. (2006). Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system, Journal of Power Sources, 161(1), pp. 707–722.
  • [15] Thiringer, T. & Linders, J. (1993).Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range, IEEE Transactions on Energy Conversion, 8(3), pp. 520-526.
  • [16] Molina, M. G. & Juanicó, L. E. (2010). Dynamic modelling and control design of advanced photovoltaic solar system for distributed generation applications, Journal of Electrical Engineering: Theory and Application, 1(3), pp. 141-150.
  • [17] Valenciaga, F., Puleston, P. F. & Battaiotto, P. E. (2003). Power control of a solar/wind generation system without wind measurement: a passivity/sliding mode approach, IEEE Transactions on Energy Conversion, 18(4), pp. 501-507.
  • [18] Borowy, B. S. & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system, IEEE Transactions on Energy Conversion, 9(3), pp. 482 – 488.
  • [19] Bogdan, S. B. & Salameh, Z. M. (1996). Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Transactions on Energy Conversion, 11(2), pp. 367-375.
  • [20] Elhadidy, M. A. & Shaahid, S. M. (2005). Decentralized /standalone hybrid Wind–Diesel power systems to meet residential loads of hot coastal regions, Energy Conversion and Management, 46(15-16), pp. 2501-2513.
  • [21] Hajizadeh, A., Tesfahunegn, S. G. & Undeland, T. M. (2011). Intelligent control of hybrid photovoltaic/fuel cell/energy storage power generation system, Journal of Renewable and Sustainable Energy, 3(4), 043112.
  • [22] Garrison, J. B. & Webber, M. E. (2011). An integrated energy storage scheme for a dispatchable solar and wind powered energy system, Journal of Renewable and Sustainable Energy, 043101.
  • [23] Bakić, V., Pezo, M., Stevanović, Ž., Živković, M. & Grubor, B. (2012). Dynamical simulation of PV/wind hybrid energy conversion system, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, 45(1), pp. 324–328.
  • [24] Belfkira, R., Zhang , L. & Barakat, G. (2011). Optimal sizing study of hybrid wind/PV/diesel power generation unit, Solar Energy, 85(1), pp. 100-110.
  • [25] González, I., Ramiro, A., Calderón, M., Calderón, A. J. & González, J. F. (2012). Estimation of the state-of-charge of gel lead-acid batteries and application to the control of a stand-alone wind-solar test-bed with hydrogen support”, International Journal of Hydrogen Energy, 37 (15), pp. 11090-11103.

Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage

Yıl 2017, Cilt: 5 Sayı: 2, 40 - 49, 01.09.2017
https://doi.org/10.17694/bajece.334348

Öz

In this paper, a battery-supported hybrid wind-solar energy generation
system with switching power flow control is presented to supply stable
electrical power to two laboratories at the Electric & Electronic
Engineering Department.
For this
purpose, 600W 3-phase permanent magnet synchronous generator (PMSG) based on
the wind power generation system (WPGS) and the solar power generation system
(SPGS) consisting of 190W 3 pieces mono crystal solar panel were combined to
build a 1170W hybrid wind-solar power generation system (HWSPGS). The solar and wind power generation systems were used as the main
energy sources while
100 Ah 12V 6
pieces gel jeep cycle accumulator groups were used as
the energy storage device
to ensure
continuity of energy. Also dynamic modeling and switching power flow control
of the battery supported the HWSPGS were performed using Matlab/Simulink in this
study. Determining the switching positions of the
charge control unit according to loading and battery charge situations of the
HWSPGS, power flow control between the generation unit and consumer was made in
planned manner. When the curves of electrical magnitudes obtained from
simulation results were examined, it was determined that no big difference
existed in electrical and mechanical magnitudes in parallel to dynamic behavior
of the installed hybrid power generation system
.

Kaynakça

  • [1] Chedid, R. & Rahman, S.(1997). Unit sizing and control of hybrid wind-solar power systems, IEEE Transactions on Energy Conversion, 12(1), pp. 79-85.
  • [2] Bonanno, F., Consoli, A., Raciti, A., Morgana, B. & Nocera, U.(1999). Transient analysis of integrated diesel/wind/photovoltaic generation systems, IEEE Transactions on Energy Conversion, 14(2), pp. 232-238.
  • [3] Habib, M. A., Said, S. A. M., El Hadidy, M. A. & Al-Zaharna, I.(1999).Optimization procedure of a hybrid photovoltaic wind energy system, Energy, 24(11), pp. 919-929.
  • [4] Bayer, H. G. & Christian, L.(1996).A method for the identification of configurations of PV / wind hybrid systems for the reliable supply of small loads, Solar Energy, 57(5), pp. 381-391.
  • [5] Morgan , T. R., Marshall, R. H. & Brinkworth, B. J.(1997).A refined Simulation program for the sizing and optimization of autonomous hybrid energy systems, Solar Energy, 59, pp. 205-215.
  • [6] Rajendra, P. A. & Natarajan, E. (2006).Optimization of integrated photovoltaic–wind power generation systems with battery storage, Energy, 31(12), pp. 1943–1954.
  • [7] Altaş, İ. H. (1993).Control strategies for maximum power tracking and energy utilization of a stand-alone photovoltaic energy system, PhD diss., The University of New Brunswick, Faculty of Engineering, Department of Electrical Engineering, Fredericton, Canada.
  • [8] Diaf, S., Diaf, D., Belhamel, M., Haddadi, M. & Louche, A.(2007).A methodology for optimal sizing of autonomous hybrid PV/wind system, International Journal of Energy Policy, 35(11), pp. 5708-5718.
  • [9] Mittal, R., Sandu, K. S. & Jain, D. K.(2010).Battery energy storage system for variable speed driven pmsg for wind energy conversion system, Power Electronics, Drives and Energy Systems,1, pp. 300-304. [10] El Ali, A., Moubayed, N. & Outbib, R. (2007). Comparison between solar and wind energy in Lebanon, 9th International Conference on Electrical Power Quality and utilization, pp. 1-5.
  • [11] Gagliano, S., Neri, D., Pitrone, N., Savalli, N. & Tina, G. (2009). Low-cost solar radiation sensing transducer for photovoltaic systems, WSEAS Transactions on Environment and Development, 5(2), pp. 119-125.
  • [12] Barsali, S. & Ceraolo, M. (2002). Dynamical Models of Lead-Acid Batteries: Implementation Issues, IEEE Transactions on Energy Conversion, 17(1), pp. 16-23.
  • [13] Moubayed, N., Kouta, J., El-Ali, A., Dernayka, H. & Outbib, R. (2008). Parameter identification of the lead-acid battery model, 33rd IEEE Photovoltaic Specialists Conference, pp. 1-6.
  • [14] Onar, O. C., Uzunoglu , M. & Alam, M. S. (2006). Dynamic modeling, design and simulation of a wind/fuel cell/ultra-capacitor-based hybrid power generation system, Journal of Power Sources, 161(1), pp. 707–722.
  • [15] Thiringer, T. & Linders, J. (1993).Control by variable rotor speed of a fixed-pitch wind turbine operating in a wide speed range, IEEE Transactions on Energy Conversion, 8(3), pp. 520-526.
  • [16] Molina, M. G. & Juanicó, L. E. (2010). Dynamic modelling and control design of advanced photovoltaic solar system for distributed generation applications, Journal of Electrical Engineering: Theory and Application, 1(3), pp. 141-150.
  • [17] Valenciaga, F., Puleston, P. F. & Battaiotto, P. E. (2003). Power control of a solar/wind generation system without wind measurement: a passivity/sliding mode approach, IEEE Transactions on Energy Conversion, 18(4), pp. 501-507.
  • [18] Borowy, B. S. & Salameh, Z. M. (1994). Optimum photovoltaic array size for a hybrid wind/PV system, IEEE Transactions on Energy Conversion, 9(3), pp. 482 – 488.
  • [19] Bogdan, S. B. & Salameh, Z. M. (1996). Methodology for optimally sizing the combination of a battery bank and PV array in a wind/PV hybrid system, IEEE Transactions on Energy Conversion, 11(2), pp. 367-375.
  • [20] Elhadidy, M. A. & Shaahid, S. M. (2005). Decentralized /standalone hybrid Wind–Diesel power systems to meet residential loads of hot coastal regions, Energy Conversion and Management, 46(15-16), pp. 2501-2513.
  • [21] Hajizadeh, A., Tesfahunegn, S. G. & Undeland, T. M. (2011). Intelligent control of hybrid photovoltaic/fuel cell/energy storage power generation system, Journal of Renewable and Sustainable Energy, 3(4), 043112.
  • [22] Garrison, J. B. & Webber, M. E. (2011). An integrated energy storage scheme for a dispatchable solar and wind powered energy system, Journal of Renewable and Sustainable Energy, 043101.
  • [23] Bakić, V., Pezo, M., Stevanović, Ž., Živković, M. & Grubor, B. (2012). Dynamical simulation of PV/wind hybrid energy conversion system, The 24th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy, 45(1), pp. 324–328.
  • [24] Belfkira, R., Zhang , L. & Barakat, G. (2011). Optimal sizing study of hybrid wind/PV/diesel power generation unit, Solar Energy, 85(1), pp. 100-110.
  • [25] González, I., Ramiro, A., Calderón, M., Calderón, A. J. & González, J. F. (2012). Estimation of the state-of-charge of gel lead-acid batteries and application to the control of a stand-alone wind-solar test-bed with hydrogen support”, International Journal of Hydrogen Energy, 37 (15), pp. 11090-11103.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Bölüm Araştırma Makalesi
Yazarlar

Emrah Oguz Bu kişi benim

Hasan Çimen

Yüksel Oğuz

Yayımlanma Tarihi 1 Eylül 2017
Yayımlandığı Sayı Yıl 2017 Cilt: 5 Sayı: 2

Kaynak Göster

APA Oguz, E., Çimen, H., & Oğuz, Y. (2017). Simulation and Power Flow Control Using Switching’s Method of Isolated Wind-Solar Hybrid Power Generation System with Battery Storage. Balkan Journal of Electrical and Computer Engineering, 5(2), 40-49. https://doi.org/10.17694/bajece.334348

All articles published by BAJECE are licensed under the Creative Commons Attribution 4.0 International License. This permits anyone to copy, redistribute, remix, transmit and adapt the work provided the original work and source is appropriately cited.Creative Commons Lisansı