Sâlih Zeki (1864-1921) Dârü‘l-fünûn’un Konferans salonunda 1914
ve 1916 yılları arasında matematiğe dair bir dizi konferanslar vermiştir.
Bu konferanslar daha sonra iki cilt halinde, sırasıyla 1915 ve 1916
senelerinde eski yazıyla Dârü‘l-fünûn Konferansları (DFK) başlığıyla
basılmıştır. DFK’nın Birinci Cildinin esas konusu, gayri-Öklidyen
geometriler ve onların keşfi meselesidir. Sâlih Zeki, Birinci Cildin
ilk konferansında, bu geometrilerin nasıl keşfedildiğine dair olan
görüşünü sunmaktadır.
Sâlih Zeki’nin konferansı, Türkçe yazılı materyaller içinde bu yeni geometrilerin keşfinden bahsetme ve bu meselelerle uğraşma hususunda
ilk olma özelliğine sahiptir. Sadece bu niteliğinden ötürü bile bu konferanslar üzerine çalışılmağı hak etmektedirler. Burada amacım basit:
Sâlih Zeki’nin, gayri-Öklidyen geometrilerin nasıl keşfedildiğine dair
bu konferansta sunduğu yorumunun ana kaynağını ortaya çıkarmak.
Böylece, Sâlih Zeki’nin yeni geometrilerin keşfine dair olan görüşünü
geliştirmesine dayanak olan matematiksel, felsefi ve metodolojik
eğilimlerini daha iyi anlayıp değerlendirebileceğiz.
Clifford, William Kingdon (1873). “On the hypotheses which lie at the bases of geometry”. Nature 8: 14-17, 36-37.
Gray, Jeremy (2008). Linear Differential Equations and Group Theory from Riemann to Poincaré. Boston: Birkhäuser.
Helmholtz, Hermann von (1866). “Ueber die thatsächlichen Grundlagen der Geometrie”. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg 4: 197-202.
Helmholtz, Hermann von (1868). “Über die Thatsachen, die der Geometrie zum Grunde liegen”. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen 9: 193-221.
Hoüel, Jules (1870). “Sur les hypothèses qui servent de fondement à la géométrie; mémoire posthume de B. Riemann”. Annali di matematica 31: 309-326.
Kadıoğlu, Dilek (2013). Salih Zeki’s Darülfünun Konferansları and his treatment of the discovery of Non-Euclidean Geometries. MA Thesis. Ankara: Middle East Technical University.
Kant, Immanuel (1985). Prolegomena. Translated by J. W. Ellington. Indianapolis: Hackett.
Kant, Immanuel (1987). Critique of Pure Reason. Translated by N. K. Smith. London: Macmillan.
Klein, Felix (1893). “The Most Recent Researches in Non-Euclidean Geometry”. The Evanston Colloquium Lectures on Mathematics. Boston, Mass.: Macmillan and Co.
Klein, Felix (1898). Conférences sur les mathématiques, faites au congrès de mathématiques tenu à l’occasion de l’exposition de Chicago (1893). Recueillies par Alex. Ziwet, trad. par M. L. Laugel. Paris: A. Hermann.
Klein, Felix (1908/2004). Elementary Mathematics from an Advanced Standpoint. NY: Dover.
Laugel, Léonce (1895/1898). Oeuvres mathématiques de Riemann. Trad. par L. Laugel; avec une préf. de M. Hermite; et un discours de M. Félix Klein. Paris: Gauthier-Villars.
Legendre, Adrien-Marie (1794). Eléments de Géométrie. Paris: F. Didot.
Legendre, Adrien-Marie (1833). “Réflexions sur différentes maniéres de démontrer la théorie des paralléles ou le théoréme sur la somme des trois angles du triangle”. Mémoires de l’académie royale des sciences de l’institut de France XII: 367-411.
Lobachevsky, Nikolai Ivanovich (1837). “Géométry Imaginarie”. Journal für die reine und angewandte Mathematik 17: 295-320.
Poincaré, Henri (1899). “Des fondements de la géométrie; à propos d’un livre de M.Russell”. Revue de métaphysique et de morale 7: 254.
Riemann, Bernhard (1867). “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen’. Abhandlungen der Königlichen Geselleschaft der Wissenschaften zu Göttingen, mathematische Klasse 13: 133-152.
Russell, Bertrand (1897). An Essay on the Foundations of Geometry. Cambridge: Cambridge University Press.
Russell, Bertrand (1901). Essai sur les fondements de la Géométrie. Traduction par Albert Cadenat, revue et annotée par l’auteur et par Louis Couturat. Paris: Gauthier-Villars.
Sâlih Zeki presented a series of lectures on mathematics, which were
later published in the old Turkish script. They are about certain developments and fields that arose in mathematics in the 19th century. He
talks in a concise and historical manner about non-Euclidean geometries and their discovery in the first five lectures of the first volume.
In the first lecture, he presents the gist of his views concerning how
these geometries were discovered.
Sâlih Zeki’s lecture seems to be the first addressing and dealing with
this discovery among the available printed materials in Turkish. It,
thus, certainly deserves to be examined. My aim is to determine his
main source on which he structured his account of this discovery in
order to appreciate, and asses better his mathematical, philosophical
and methodological concerns.
Clifford, William Kingdon (1873). “On the hypotheses which lie at the bases of geometry”. Nature 8: 14-17, 36-37.
Gray, Jeremy (2008). Linear Differential Equations and Group Theory from Riemann to Poincaré. Boston: Birkhäuser.
Helmholtz, Hermann von (1866). “Ueber die thatsächlichen Grundlagen der Geometrie”. Verhandlungen des naturhistorisch-medicinischen Vereins zu Heidelberg 4: 197-202.
Helmholtz, Hermann von (1868). “Über die Thatsachen, die der Geometrie zum Grunde liegen”. Nachrichten von der Königl. Gesellschaft der Wissenschaften zu Göttingen 9: 193-221.
Hoüel, Jules (1870). “Sur les hypothèses qui servent de fondement à la géométrie; mémoire posthume de B. Riemann”. Annali di matematica 31: 309-326.
Kadıoğlu, Dilek (2013). Salih Zeki’s Darülfünun Konferansları and his treatment of the discovery of Non-Euclidean Geometries. MA Thesis. Ankara: Middle East Technical University.
Kant, Immanuel (1985). Prolegomena. Translated by J. W. Ellington. Indianapolis: Hackett.
Kant, Immanuel (1987). Critique of Pure Reason. Translated by N. K. Smith. London: Macmillan.
Klein, Felix (1893). “The Most Recent Researches in Non-Euclidean Geometry”. The Evanston Colloquium Lectures on Mathematics. Boston, Mass.: Macmillan and Co.
Klein, Felix (1898). Conférences sur les mathématiques, faites au congrès de mathématiques tenu à l’occasion de l’exposition de Chicago (1893). Recueillies par Alex. Ziwet, trad. par M. L. Laugel. Paris: A. Hermann.
Klein, Felix (1908/2004). Elementary Mathematics from an Advanced Standpoint. NY: Dover.
Laugel, Léonce (1895/1898). Oeuvres mathématiques de Riemann. Trad. par L. Laugel; avec une préf. de M. Hermite; et un discours de M. Félix Klein. Paris: Gauthier-Villars.
Legendre, Adrien-Marie (1794). Eléments de Géométrie. Paris: F. Didot.
Legendre, Adrien-Marie (1833). “Réflexions sur différentes maniéres de démontrer la théorie des paralléles ou le théoréme sur la somme des trois angles du triangle”. Mémoires de l’académie royale des sciences de l’institut de France XII: 367-411.
Lobachevsky, Nikolai Ivanovich (1837). “Géométry Imaginarie”. Journal für die reine und angewandte Mathematik 17: 295-320.
Poincaré, Henri (1899). “Des fondements de la géométrie; à propos d’un livre de M.Russell”. Revue de métaphysique et de morale 7: 254.
Riemann, Bernhard (1867). “Ueber die Hypothesen, welche der Geometrie zu Grunde liegen’. Abhandlungen der Königlichen Geselleschaft der Wissenschaften zu Göttingen, mathematische Klasse 13: 133-152.
Russell, Bertrand (1897). An Essay on the Foundations of Geometry. Cambridge: Cambridge University Press.
Russell, Bertrand (1901). Essai sur les fondements de la Géométrie. Traduction par Albert Cadenat, revue et annotée par l’auteur et par Louis Couturat. Paris: Gauthier-Villars.