Araştırma Makalesi
BibTex RIS Kaynak Göster

Atıktan Türetilmiş Yakıtın Demineralizasyonu

Yıl 2019, Cilt: 8 Sayı: 2, 604 - 616, 28.06.2019
https://doi.org/10.17798/bitlisfen.485179

Öz

Çalışma, atıktan türetilmiş yakıtın (ATY) yapısındaki kül oluşturan elementlerin su ve farklı konsantrasyonlarda asit çözeltileri ile özütlenerek yakıtın modifiye edilmesini ve bu demineralizasyon işleminin yakıtın temel özelliklerine (elementel analiz, ısıl değer, piroliz ve yanma karakteristikleri) etkisinin incelenmesini içermektedir. Su, HCl (%2, %5 ve %10) ve HNO3(%2, %5 ve %10) çözeltileri ile yapılan özütlemelerden sonra kurutulan ATY'ların yakıt özelliklerine bakıldığında, özütlemenin, yakıt özelliklerinden kül içeriğini, elementel bileşimini, piroliz kademelerini, tutuşma sıcaklığı ve tükenme sıcaklığını etkilediği görülmüştür. Özütleme işleminin gerçekleştiği karıştırma süresinin etkin bir parametre olmadığı belirlenmiştir. Fakat özütlemenin su, HCl ya da HNO3çözeltileri ile gerçekleştirilmesinin ve özellikle asit konsantrasyonunun yakıtın özelliklerinde etkin bir parametre olduğu gözlemlenmiştir. Özütleme işleminde kullanılan asit çözeltisinin türüne ve konsantrasyonuna bağlı olarak kül içeriğinin %34’ten %14’e kadar indiği (%5 HCl çözeltisi); ısıl değerin %13 oranında arttığı (%5 ve %10 HCl çözeltisi); karbon yüzdesinin ise %38 oranında arttığı (%10 HCl çözeltisi) gözlemlenmiştir. Asit çözeltileriyle yapılan özütleme sonrası ATY'ların pirolizinin iki adımda gerçekleştiği, tutuşma sıcaklıklarının 4-24°C ötelendiği, tükenme sıcaklığının ise 32-140°C azaldığı tespit edilmiştir. 

Kaynakça

  • Baernthaler G., Zischka M., Haraldsson C., Obernberger, I. 2006. Determination of Major and Minor Ash-forming Elements in Solid. Biofuels, Biomass and Bioenergy, (30): 983-997.
  • Bessi C., Lombardi L., Meoni R., Canovai A., Corti A. 2016. Solid Recovered Fuel: An Experiment on Classification and Potential Aapplications. Waste Management, (47): 184-194.
  • Blasi C.D., Branca C., D'Errico G. 2000. Degradation Characteristics of Straw and Washed Straw. Thermochimica Acta, (364): 133–142.
  • Caputo A.C., Pelagagge P.M., 2002. RDF Production Plants: I Design and Costs. Applied Thermal Engineering, (22): 423-437.
  • Chang N., Chang Y., Chen W.C. 1997. Evaluation of Heat Value and Its Prediction for Refuse-Derived Fuel. The Science of the Total Environment, (197): 139-148.
  • Davidsson K.O., Korsgren J.G., Petterson J.B.C., Jaglid U. 2002. The Effects of Fuel Washing Techniques on Alkali Release from Biomass. Fuel, (81): 137-142.
  • Deng L., Zhang T., Che D. 2013. Effect of Water Washing on Fuel Properties, Pyrolysis and Combustion Characteristics and Ash Fusibility of Biomass. Fuel Processing Technology, (106): 712-720.
  • Efika, E.C., Onwudili, J. A., Williams, P.T., 2015. Products from the high temperature pyrolysis of rdf at slow and rapid heating rates. Journal of Analytical and Applied Pyrolysis, (112): 14-22.
  • Fang X., Jia L. 2012. Experimental Study on Ash Fusion Characteristics of Biomass. Bioresource Technology, (104): 769-774.
  • Fodor Z., Klemes J.J. 2012. Waste as Alternative Fuel-Minimising Emissions and Effluents by Advanced Design. Process Safety and Environmental Protection, (90): 263-284.
  • Garg A., Smith R., Longhurst P.J., Pollard S.J.T., Simms N., Hill, D. 2007. Comparative Evaluation of SRF and RDF Co-combustion with Coal in a Fluidized Bed Combustor. Proceedings of the Eleventh International Waste Management and Landfill Symposium, Cagliari, Italy.
  • Grammelis P., Basinas P., Malliopoulou A., Sakellaropoulos G. 2009. Pyrolysis Kinetics and Combustion Characteristics of Waste Recovered Fuels. Fuel, (88): 195–205. Haykırı-Açma H. 2003. Combustion Characteristic of Different Biomass Materials. Energy Conversion and Management, (44): 155-162.
  • Hsisheng T., Chou W.Y. 1998. Thermogravimetric Studies on the Kinetics of Rice Hull Pyrolysis and the İnfluence of Water Treatment. Industrial & Engineering Chemistry Research, (37): 3806–3811.
  • Idris S. S., Rahman N.A., Ismail K. 2012. Combustion Characteristics of Malaysian Oil Palm Biomass, Sub-Bituminuous Coal and Their Respective Blends via Thermogravimetric Analysis (TGA). Bioresource Technology, (123): 581-591.
  • Jayaraman K., Gökalp I. 2015. Pyrolysis, Combustion and Gasification Characteristics of Miscanthus and Sewage Sludge. Energy Conversion and Management, (89): 83-91.
  • Jenkins B.M., Bakker R.R., Wei J.B. 1996. On the Properties of Washed Straw. Biomass and Bioenergy, 10 (4): 177-200.
  • Jensen P.A., Frandsen F.J., Hansen J., Dam-Johansen K., Henriksen N., Horlyck S. 2004. SEM Investigation of Superheater Deposits from Biomass-Fired Boilers. Energy & Fuels, (18): 378–384.
  • Krüger B., Mrotzek A., Wirtz S. 2014. Separation of Harmful Impurities from Refuse Derived Fuels (RDF) by a Fluidized Bed. Waste Management, (34): 390-401.
  • Lai Z., Tang X., Ma Y., Lin H. 2012. Thermogravimetric Analysis of the Thermal Decomposition of MSW in N2, Co2 and CO2/N2 Atmospheres. Fuel Processing Technology, 102, 18-23.
  • Li X.G., Lv Y., Ma BG., Jian S.W., Tan H.B. 2011. Thermogravimetric Investigation on Co-Combustion Characteristics of Tobacco Residue and High-Ash Anthracite Coal. Bioresource Technology, (102): 9783-9787.
  • Lombardi L., Carnevale E., Corti A. 2015. A Review of Technologies and Performances of Thermal Treatment Systems for Energy Recovery From Waste. Waste Management, (37): 26-44.
  • Lv D., Xu M., Liu X., Zhan Z., Li Z., Yao H. 2010. Effect of Cellulose, Lignin, Alkali and Alkaline Earth Metallic Species on Biomass Pyrolysis and Gasification. Fuel Processing Technology, (91): 903-909.
  • Manya, J.J., Garcia-Ceballos, F., Azuara, M., Latorre, N., Royo, C., 2015. Pyrolysis and char reactivity of a poor-quality refuse-derived fuel (rdf) from municipal solid waste. Fuel Processing Technology, (140): 276-284.
  • Marsh R., Griffiths A.J., Williams K.P., Wilcox S.J. 2007. Physical and Thermal Properties of Extruded Refuse Derived Fuel. Fuel Processing Technology, (88): 701-706. McKendry P. 2002. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresource Technology, (83): 37-46.
  • Miskolczi, N., Borsodi, N., Buyong, F., Angyal, A., Williams, P.T., 2011. Production of pyrolytic oils by catalytic pyrolysis of malaysian refuse-derived fuels in continuously stirred batch reactor. Fuel Processing Technology, (92): 925-932.
  • Montane, D., Abello, S., Farriol, X., Berrueco, C., 2013. Volatilization characteristics of solid recovered fuels (SRFs). Fuel Processing Technology, (113): 90-96.
  • Ollila H.J., Moilanen A., Tiainen M.S., Laitinen R.S. 2006. SEM-EDS Characterization of Inorganic Material in Refuse-Derived Fuels. Fuel, (85): 2586–2592.
  • Porteous A., 2005. Why Energy from Waste Incineration is an Essential Component of Environmentally Responsible Waste Management. Waste Management, (25): 451-459.
  • Qin K., Thunman H. 2015. Diversity of Chemical Composition and Combustion Reactivity of Various Biomass Fuels. Fuel, (147): 161-169.
  • Rao T. R., Sharma A. 1998. Pyrolysis Rates of Biomass Materials. Energy, (23): 973–8.
  • Raveendran K., Ganesh A., Khilar K. C. 1995. Influence of Mineral Matter on Biomass Pyrolysis Characteristics. Fuel, (74): 1812-1822.
  • Rocca S., Zomeren A., Costa G., Dijkstra J.J., Comans R.N.J., Lombardi F. 2012. Characterisation of Major Component Leaching and Buffering Capacity of RDF Incineration and Gasification Bottom Ash in Relation to Reuse or Disposal Scenarios. Waste Management, (32): 759-768.
  • Shi L., Yu S., Wang F., Wang J. 2012. Pyrolytic Characteristics of Rice Straw and Its Constituents Catalyzed by Internal Alkali and Alkali Earth Metals. Fuel, (96): 586-594. Skreiberg A., Skreiberg Ø., Sandquist J,. Sorum L. 2011. TGA and Macro-TGA Characterisation of Biomass Fuels and Fuel Mixtures. Fuel, (90): 2182-2197.
  • Usón A.A., López-Sabirón A.M., Ferreira G., Sastresa E.L. 2013. Uses of Alternative Fuels and Raw Materials in the Cement industry as Sustainable Waste Management Options. Renewable and Sustainable Energy Reviews, (23): 242-260.
  • Vekemans O., Chaouki J. 2016. Municipal Solid Waste Cofiring in Coal Power Plants: Combustion Performance. Developments in Combustion Technology. INTECH Publishing.
  • Velis C., Wagland S., Longhurst P., Robson B., Sinfield K., Wise S., Pollard S. 2012. Solid Recovered Fuel: Influence of Waste Stream Composition and Processing on Chlorine Content and Fuel Quality. Environmental Science & Technology, (46): 1923-1931.
  • Wagland, S.T., Kilgallon, P., Coveney, R., Garg, A., Smith, R., Longhurst, P.J., Pollard, S. J. T., Simms, N., 2011. Comparison of coa/solid recovered fuel (srf) with coal/refuse derived fuel (rdf) in a fluidised bed reactor. Waste Management, (31): 1176-1183.
  • Yang H., Yan R., Chen H., Lee D.H., Zheng C. 2007. Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis. Fuel, (86): 1781-1788.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makalesi
Yazarlar

Sibel Başakçılardan Kabakcı

Gizem Genç Çelikçi

Yayımlanma Tarihi 28 Haziran 2019
Gönderilme Tarihi 19 Kasım 2018
Kabul Tarihi 13 Mart 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 8 Sayı: 2

Kaynak Göster

IEEE S. Başakçılardan Kabakcı ve G. Genç Çelikçi, “Atıktan Türetilmiş Yakıtın Demineralizasyonu”, Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, c. 8, sy. 2, ss. 604–616, 2019, doi: 10.17798/bitlisfen.485179.



Bitlis Eren Üniversitesi
Fen Bilimleri Dergisi Editörlüğü

Bitlis Eren Üniversitesi Lisansüstü Eğitim Enstitüsü        
Beş Minare Mah. Ahmet Eren Bulvarı, Merkez Kampüs, 13000 BİTLİS        
E-posta: fbe@beu.edu.tr