BibTex RIS Kaynak Göster

-

Yıl 2014, Cilt: 3 Sayı: 2, 273 - 292, 15.07.2014

Öz

Bartin University Journal of Faculty of Education (BUJFED) is a international refereed journal that is published two times a year. The responsibility lies with the authors of papers

Kaynakça

  • Antchev, G., Aspell, P., Atanassov, I., Avati, V., Baechler, J., Berardi, V., ... & Oljemark, F. (2011). First measurement of the total proton-proton cross-section at the LHC energy of chem { sqrt {s}= 7, TeV}. EPL (Europhysics Letters) , 96 (2) , 21002.
  • Arnaud, J. A. (1976). Analogy between optical rays and nonrelativistic particle trajectories: a comment. American Journal of Physics, 44 (11) , 1067-1069.
  • Bhiday, M. R., Gaud, S. W., & Kanitkar, P. L. (1977). Versatile optical bench for teaching, development, and testing of electron and ion optical systems. American Journal of Physics, 45 (4) , 382-383.
  • Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42 (4) , 429-464.
  • Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: implications from research. International Journal of Science Education, 27 (2) , 183-198.
  • Cosgrove, M. (1995). A study of science‐in‐the‐making as students generate an analogy for electricity. International Journal of Science Education, 17 (3) , 295-310.
  • CPO programı, ücretsiz sürümü www.electronoptics.com adresinde mevcuttur.
  • Dagher, Z. R. (1995). Review of studies on the effectiveness of instructional analogies in science education. Science education, 79 (3) , 295-312.
  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science education, 75 (6) , 649-672.
  • El-Kareh A. B. & El-Kareh J. C. J. (1970). Electron Beams, Lenses and Optics (London: Academic)
  • Geissler, P., & Zadunaisky, J. (2005). Electron optics for biologists: physical origins of spherical aberrations. American Journal of Physics, 42 (11) , 1002-1005.
  • Gentner, D. (1989). The mechanisms of analogical learning. Similarity and analogical reasoning, 199, 241.
  • Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.). (2001). The analogical mind: Perspectives from cognitive science. MIT press.
  • Gil, S., Saleta, M. E., & Tobia, D. (2002). Experimental study of the Neumann and Dirichlet boundary conditions in two-dimensional electrostatic problems. American Journal of Physics, 70 (12) , 1208-1213.
  • Glynn, S. (2007). The teaching-with-analogies model. Science and Children, 44 (8) , 52-55.
  • Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. The psychology of learning science, 219-240.
  • Griffiths, D. J., & Reed College. (1999). Introduction to electrodynamics (Vol. 3). Upper Saddle River, NJ: prentice Hall.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22 (9) , 1011-1026.
  • Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies. In Metaphor and analogy in science education (pp. 11-24). Springer Netherlands.
  • Harting, E., Read, F. H., & Brunt, J. N. H. (1976). Electrostatic lenses. Elsevier Scientific Publishing Company.
  • Hawkes, P. W., & Kasper, E. Principles of Electron Optics, 1989. See in particular Chapters, 24.
  • Heddle, D. W. (2010). Electrostatic lens systems (Vol. 1). CRC Press.
  • Hulshof, H., & Verloop, N. (2002). The use of analogies in language teaching: Representing the content of teachers' practical knowledge. Journal of Curriculum Studies, 34 (1) , 77-90.
  • Iding, M. K. (1997). How analogies foster learning from science texts. Instructional Science, 25 (4) , 233-253.
  • Jack. R Fraenkel, & Wallen, N. E. (2000). How to design and evaluate research in education. McGraw-Hill.
  • Jackson, J. D. (1998). Classical electrodynamics. Classical Electrodynamics, 3rd Edition, by John David Jackson, pp. 832. ISBN 0-471-30932-X. Wiley-VCH, July 1998., 1.
  • King, G. C. (1995). Electron and ion optics. Experimental Methods in the Physical Sciences Vol 29A (New York: Academic)
  • Liu, G., Wang, G., Zhu, Y., Zhang, H., Zhang, G., Wang, X., ... & Zhou, X. J. (2008). Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1meV. Review of Scientific Instruments, 79 (2) , 023105.
  • McBride, J. R.; Kippeny, T. C.; Pennycook, S. J.; Rosenthal, S. J. (2004). Aberration-Corrected Z-contrast Scanning Transmission Electron Microscopy of CdSe Nanocrystals. Nano letters. 4, 1279-1283
  • Moore, J. H., Davis, C. C., & Coplan, M. A. (1983). Building Scientific Apparatus, Addison-Wesley. Reading, MA, 168.
  • Mulligan, F. J. (1992). An illustration of method of finite differences in the solution of Laplace's equation. European journal of physics, 13 (2) , 57.
  • Richland, L. E., Holyoak, K. J., & Stigler, J. W. (2004). Analogy use in eighth-grade mathematics classrooms. Cognition and Instruction, 22 (1) , 37-60.
  • Romagnoli, R. J. (1972). Electron optics: a topic of a computer applications course. American Journal of Physics, 40 (3) , 401-403.
  • Sherzer, O. (1936). On Some Defects of Electron Lenses. Zeitschrifl fiir Physik, 101, 593.
  • SIMION 3D v8.0, Scientific Instrument Services Inc. www.simion.com
  • Şişe, O., Manura, D. J., & Dogan, M. (2008). Exploring focal and aberration properties of electrostatic lenses through computer simulation. European Journal of Physics, 29 (6) , 1165.
  • Şişe, O., Okumus, N., Ulu, M., & Dogan, M. (2009). Computer simulation of electrostatic aperture lens systems for electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 175 (1) , 76-86.
  • Şişe, O., Ulu, M., & Dogan, M. (2005). Multi-element cylindrical electrostatic lens systems for focusing and controlling charged particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 554 (1) , 114-131.
  • Şişe, O., Ulu, M., & Dogan, M. (2007). Aberration coefficients of multi-element cylindrical electrostatic lens systems for charged particle beam applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 573 (3) , 329-339.
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34 (9) , 1337-1370.
  • Snir, J., Smith, C., & Grosslight, L. (1993). Conceptually enhanced simulations: A computer tool for science teaching. Journal of Science Education and Technology, 2 (2) , 373-388.
  • Stollak, M. A., & Alexander, L. (1998). The Use of Analogy in the Rehearsal. Music Educators Journal, 84 (6) , 17-21.
  • Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54 (4) , 1078-1088.
  • van der Merwe, J. P. (1980). Electron optics cannot be taught through computation?. American Journal of Physics, 48 (7) , 569-576.
  • Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Journal of research in science teaching, 35 (2) , 145-160.
  • Yavor, M. (2009). Optics of charged particle analyzers. Academic Press.
  • Zietsman, A. I., & Hewson, P. W. (1986). Effect of instruction using microcomputer simulations and conceptual change strategies on science learning. Journal of Research in Science Teaching, 23 (1) , 27-39.

Elektron Optiğinin Öğretilmesinde Işık Optiği ile Zenginleştirilmiş Analoji Kurulumu

Yıl 2014, Cilt: 3 Sayı: 2, 273 - 292, 15.07.2014

Öz

Elektron optiği iyi bir matematiksel altyapı gerektirdiği için fen eğitiminde, özellikle fizik
eğitiminde anlaşılması zor bir konudur. Elektron optiğinde kullanılan kurallar, ışık optiğinden
alınmaktadır. Ayrıca, ışık optiğinde kullanılan formalizasyon son derece gelişmiş olduğu için, elektron
optiği tartışmalarında aynı terminoloji ve formüllerden yararlanılması bir gelenek haline gelmiştir. Bu
sebeple, ışık ve elektron optiği ile arasında analojiler kurarak ve simülasyon araçları kullanarak lisans ve
lisansüstü öğrencilerine elektron optiğinin temelleri basitleştirilerek öğretilebilir.
Çalışmamızda ilk olarak elektron optiğinin öğretiminde ilgiyi ve verimliliği sağlaması amacıyla
ışık ve elektron optiği arasında zenginleştirilmiş analoji inşa edilmiştir. Bu eşleşmede benzer kısımların
yanı sıra ortak olmayan ayrıştıkları noktalar da belirtilerek analoji zenginleştirilmiştir. Ek olarak, elektron
optiğinin öğretiminde bilgisayar simülasyon uygulamalarının (ray-tracing yöntemi) kullanımı ve bunların
anlamaya destekleri tartışılmıştır.

Kaynakça

  • Antchev, G., Aspell, P., Atanassov, I., Avati, V., Baechler, J., Berardi, V., ... & Oljemark, F. (2011). First measurement of the total proton-proton cross-section at the LHC energy of chem { sqrt {s}= 7, TeV}. EPL (Europhysics Letters) , 96 (2) , 21002.
  • Arnaud, J. A. (1976). Analogy between optical rays and nonrelativistic particle trajectories: a comment. American Journal of Physics, 44 (11) , 1067-1069.
  • Bhiday, M. R., Gaud, S. W., & Kanitkar, P. L. (1977). Versatile optical bench for teaching, development, and testing of electron and ion optical systems. American Journal of Physics, 45 (4) , 382-383.
  • Chiu, M. H., & Lin, J. W. (2005). Promoting fourth graders' conceptual change of their understanding of electric current via multiple analogies. Journal of Research in Science Teaching, 42 (4) , 429-464.
  • Coll, R. K., France, B., & Taylor, I. (2005). The role of models/and analogies in science education: implications from research. International Journal of Science Education, 27 (2) , 183-198.
  • Cosgrove, M. (1995). A study of science‐in‐the‐making as students generate an analogy for electricity. International Journal of Science Education, 17 (3) , 295-310.
  • CPO programı, ücretsiz sürümü www.electronoptics.com adresinde mevcuttur.
  • Dagher, Z. R. (1995). Review of studies on the effectiveness of instructional analogies in science education. Science education, 79 (3) , 295-312.
  • Duit, R. (1991). On the role of analogies and metaphors in learning science. Science education, 75 (6) , 649-672.
  • El-Kareh A. B. & El-Kareh J. C. J. (1970). Electron Beams, Lenses and Optics (London: Academic)
  • Geissler, P., & Zadunaisky, J. (2005). Electron optics for biologists: physical origins of spherical aberrations. American Journal of Physics, 42 (11) , 1002-1005.
  • Gentner, D. (1989). The mechanisms of analogical learning. Similarity and analogical reasoning, 199, 241.
  • Gentner, D., Holyoak, K. J., & Kokinov, B. N. (Eds.). (2001). The analogical mind: Perspectives from cognitive science. MIT press.
  • Gil, S., Saleta, M. E., & Tobia, D. (2002). Experimental study of the Neumann and Dirichlet boundary conditions in two-dimensional electrostatic problems. American Journal of Physics, 70 (12) , 1208-1213.
  • Glynn, S. (2007). The teaching-with-analogies model. Science and Children, 44 (8) , 52-55.
  • Glynn, S. M. (1991). Explaining science concepts: A teaching-with-analogies model. The psychology of learning science, 219-240.
  • Griffiths, D. J., & Reed College. (1999). Introduction to electrodynamics (Vol. 3). Upper Saddle River, NJ: prentice Hall.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22 (9) , 1011-1026.
  • Harrison, A. G., & Treagust, D. F. (2006). Teaching and learning with analogies. In Metaphor and analogy in science education (pp. 11-24). Springer Netherlands.
  • Harting, E., Read, F. H., & Brunt, J. N. H. (1976). Electrostatic lenses. Elsevier Scientific Publishing Company.
  • Hawkes, P. W., & Kasper, E. Principles of Electron Optics, 1989. See in particular Chapters, 24.
  • Heddle, D. W. (2010). Electrostatic lens systems (Vol. 1). CRC Press.
  • Hulshof, H., & Verloop, N. (2002). The use of analogies in language teaching: Representing the content of teachers' practical knowledge. Journal of Curriculum Studies, 34 (1) , 77-90.
  • Iding, M. K. (1997). How analogies foster learning from science texts. Instructional Science, 25 (4) , 233-253.
  • Jack. R Fraenkel, & Wallen, N. E. (2000). How to design and evaluate research in education. McGraw-Hill.
  • Jackson, J. D. (1998). Classical electrodynamics. Classical Electrodynamics, 3rd Edition, by John David Jackson, pp. 832. ISBN 0-471-30932-X. Wiley-VCH, July 1998., 1.
  • King, G. C. (1995). Electron and ion optics. Experimental Methods in the Physical Sciences Vol 29A (New York: Academic)
  • Liu, G., Wang, G., Zhu, Y., Zhang, H., Zhang, G., Wang, X., ... & Zhou, X. J. (2008). Development of a vacuum ultraviolet laser-based angle-resolved photoemission system with a superhigh energy resolution better than 1meV. Review of Scientific Instruments, 79 (2) , 023105.
  • McBride, J. R.; Kippeny, T. C.; Pennycook, S. J.; Rosenthal, S. J. (2004). Aberration-Corrected Z-contrast Scanning Transmission Electron Microscopy of CdSe Nanocrystals. Nano letters. 4, 1279-1283
  • Moore, J. H., Davis, C. C., & Coplan, M. A. (1983). Building Scientific Apparatus, Addison-Wesley. Reading, MA, 168.
  • Mulligan, F. J. (1992). An illustration of method of finite differences in the solution of Laplace's equation. European journal of physics, 13 (2) , 57.
  • Richland, L. E., Holyoak, K. J., & Stigler, J. W. (2004). Analogy use in eighth-grade mathematics classrooms. Cognition and Instruction, 22 (1) , 37-60.
  • Romagnoli, R. J. (1972). Electron optics: a topic of a computer applications course. American Journal of Physics, 40 (3) , 401-403.
  • Sherzer, O. (1936). On Some Defects of Electron Lenses. Zeitschrifl fiir Physik, 101, 593.
  • SIMION 3D v8.0, Scientific Instrument Services Inc. www.simion.com
  • Şişe, O., Manura, D. J., & Dogan, M. (2008). Exploring focal and aberration properties of electrostatic lenses through computer simulation. European Journal of Physics, 29 (6) , 1165.
  • Şişe, O., Okumus, N., Ulu, M., & Dogan, M. (2009). Computer simulation of electrostatic aperture lens systems for electron spectroscopy. Journal of Electron Spectroscopy and Related Phenomena, 175 (1) , 76-86.
  • Şişe, O., Ulu, M., & Dogan, M. (2005). Multi-element cylindrical electrostatic lens systems for focusing and controlling charged particles. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 554 (1) , 114-131.
  • Şişe, O., Ulu, M., & Dogan, M. (2007). Aberration coefficients of multi-element cylindrical electrostatic lens systems for charged particle beam applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 573 (3) , 329-339.
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34 (9) , 1337-1370.
  • Snir, J., Smith, C., & Grosslight, L. (1993). Conceptually enhanced simulations: A computer tool for science teaching. Journal of Science Education and Technology, 2 (2) , 373-388.
  • Stollak, M. A., & Alexander, L. (1998). The Use of Analogy in the Rehearsal. Music Educators Journal, 84 (6) , 17-21.
  • Trundle, K. C., & Bell, R. L. (2010). The use of a computer simulation to promote conceptual change: A quasi-experimental study. Computers & Education, 54 (4) , 1078-1088.
  • van der Merwe, J. P. (1980). Electron optics cannot be taught through computation?. American Journal of Physics, 48 (7) , 569-576.
  • Windschitl, M., & Andre, T. (1998). Using computer simulations to enhance conceptual change: The roles of constructivist instruction and student epistemological beliefs. Journal of research in science teaching, 35 (2) , 145-160.
  • Yavor, M. (2009). Optics of charged particle analyzers. Academic Press.
  • Zietsman, A. I., & Hewson, P. W. (1986). Effect of instruction using microcomputer simulations and conceptual change strategies on science learning. Journal of Research in Science Teaching, 23 (1) , 27-39.
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Süleyman Akçay

Ömer Şişe

Yayımlanma Tarihi 15 Temmuz 2014
Yayımlandığı Sayı Yıl 2014 Cilt: 3 Sayı: 2

Kaynak Göster

APA Akçay, S., & Şişe, Ö. (2014). Elektron Optiğinin Öğretilmesinde Işık Optiği ile Zenginleştirilmiş Analoji Kurulumu. Bartın University Journal of Faculty of Education, 3(2), 273-292.
All the articles published in the journal are open access and distributed under the conditions of CommonsAttribution-NonCommercial 4.0 International License
 88x31.png