Araştırma Makalesi
BibTex RIS Kaynak Göster

Computational Investigations on IR, UV-VIS and NMR Spectra of Copper(II) Phenanthroline Complexes with DFT Method

Yıl 2017, Cilt: 38 Sayı: 4, 661 - 673, 08.12.2017
https://doi.org/10.17776/csj.349259

Öz

Computational investigations were done on two Cu(II) complexes. There is
no any data or spectral results of them in literature. In this paper, B3LYP one
of the hybrid DFT functions was selected for mentioned complexes. Optimized
structures, IR, UV-VIS and NMR spectrum of studied complexes were calculated
and were calculated and examined in detail. Additionally, molecular electrostatic
potential (MEP) maps, MEP contours and single occupied molecular orbitals
(SOMO) were analyzed. Interaction energies between ligands and the metal atom,
formation enthalpies and formation Gibbs free energies were investigated.
Geometric structure and structural parameters were determined by computational
techniques and the structures were supported by spectral analyses. The most
reactive regions of mentioned complexes were determined by MEP maps and MEP
contours.

Kaynakça

  • [1] Zhang Y.Y., Ren N., Xu S.L., Zhang J.J., Zhang D.H., A series of binuclear lanthanide (III) complexes: crystallography, antimicrobial activity and thermochemistry properties studies Journal of Molecular Structure 2015; 1081: 413-25.
  • [2] Protogeraki C., Andreadou E.G., Perdih F., Turel I., Pantazaki A.A., Psomas G., Cobalt(II) complexes with the antimicrobial drug enrofloxacin: Structure, antimicrobial activity, DNA- and albumin-binding European Journal of Medicinal Chemistry 2014; 86: 189-201.
  • [3] Zamani F., Zendehdel M., Mobinikhaledi A., Azarkish M., Complexes of N,N-bis (salicylidene) 4,5-dimethyl-1,2-phenylenediamine immobilized on porous nanomaterials: Synthesis, characterization and study of their antimicrobial activity Microporous and Mesoporous Materials 2015; 212: 18-27.
  • [4] Babahan I., Emirdağ-Öztürk S, Poyrazoğlu-Çoban E, Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone–oxime ligand derived from egonol Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 141: 300-6.
  • [5] Vural H., Uçar I., A combined theoretical and experimental study of chelidamate cadmium (II) complex, [Cd2(dpa)2(chel)2]⋅2[Cd(dpa)(chel)]⋅ 6H2O Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 1298-307.
  • [6] Demirbaş U, Bayrak R, Piskin M, Akçay H.T., Durmus M, Kantekini H., Synthesis, photophysical and photochemical properties of novel tetra substituted metal free and metallophthalocyanines bearing triazine units Journal of Organometallic Chemistry 2013; 724: 225-34.
  • [7] Kumar V, Ahamad T, Nishat N, Some O,O′,O″,O‴-di/tetra aryldithioimidophonate transition metal complexes derived from catechol and bisphenol-A as antibacterial and antifungal agents European Journal of Medicinal Chemistry 2009; 44: 785-93.
  • [8] Raman N., Mahalakshmi R., Bio active mixed ligand complexes of Cu(II), Ni(II) and Zn(II): Synthesis, spectral, XRD, DNA binding and cleavage properties Inorganic Chemistry Communications 2014; 40: 157-63.
  • [9] Sayin K., Karakas D., Karakus N., Alagöz Sayin T., Zaim Z., Erkan Kariper S., Spectroscopic investigation, FMOs and NLO analyses of Zn(II) and Ni(II) phenanthroline complexes: A DFT approach Polyhedron 2015; 90: 139-46.
  • [10] Üngördü A., Tezer N., Effect on frontier molecular orbitals of substituents in 5-position of uracil base pairs in vacuum and water, Journal of Theoretical and Computational Chemistry 2017; 16: 1750066.
  • [11] Ozbakir Isın D., Karakuş N., Quantum chemical study on the inhibition efficiencies of some sym-triazines as inhibitors for mild steel in acidic medium, Journal of the Taiwan Institute of Chemical Engineers 2015; 50: 306-13.
  • [12] Sun J., ding J., Liu N., Yang G., Li J., Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018; 191: 532-38.
  • [13] Üngördü A., Tezer N., DFT study on metal-mediated uracil base pair complexes, Journal of Saudi Chemical Society 2017; 21: 837-44.
  • [14] Zhu Q., Wen K., Feng S., Guo X., Zhang J., Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018; 192: 297-303.
  • [15] GaussView 5.0, Gaussian Inc., Wallingford, CT, USA, 2009.
  • [16] Gaussian 09, rev. C.01, Gaussian Inc., Wallingford, CT, USA, 2010.
  • [17] PerkinElmer, 2012. ChemBioDraw Ultra Version (13.0.0.3015), CambridgeSoft Waltham, MA, USA.
  • [18] Rappe A.K., Casewit C.J., Colwell K.S., Goddard III W.A., Skiff W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations Journal of the American Chemical Society 1992; 114: 10024-35.
  • [19] Becke A.D., Density‐functional thermochemistry. III. The role of exact Exchange The Journal of Chemical Physics 1993, 98, 5648-5652.
  • [20] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Physical Review B 1988; 37: 785-9.
  • [21] Jr. Dunning T.H., Hay. P. J., Schaefer III H.F., (Eds). in Modern Theoretical Chemistry, Vol. 3, Plenum, New York, 1977.
  • [22] Hay P. J., Wadt W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg The Journal of Chemical Physics 1985; 82: 270-83.
  • [23] Wadt W.R., Hay P. J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi The Journal of Chemical Physics 1985; 82: 284-298.
  • [24] Sayin K., Karakaş D., Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug Journal of New Results in Science 2015; 8: 1-12.
  • [25] Sayin K., Erkan Kariper S., Alagöz Sayin T., Karakas D., Theoretical spectroscopic study of seven zinc(II) complex with macrocyclic Schiff-base ligand Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 133: 348-56.
  • [26] Sayin K., Karakaş D., Determination of structural and electronic properties of [Ni(NQSC)2] and [Ni(NQTS)2] complexes with DFT method Journal of New Results in Science 2013; 2: 47-53.
  • [27] Sayin K., Karakaş D., Quantum Chemical Studies on [Co(ntb)(pic)]+ Complex Ion Journal of New Results in Science 2013; 2: 54-9.
  • [28] Güveli Ş., Özdemir N., Bal-Demirci T., Ülküseven B., Dinçer M., Quantum-chemical, spectroscopic and X-ray diffraction studies on nickel complex of 2-hydroxyaceto phenone thiosemi carbazone with triphenylphospine Polyhedron 2010; 29: 2393-403.
  • [29] Erdik E., Organik Kimyada Spektroskopik Yöntemler, 2nd Edition, Gazi Kitaβevi: Ankara, Turkey, 1998.

DFT Yöntemi ile Bakır(II) Fenantrolin Komplekslerinin IR, UV-VIS ve NMR Spektrumları Üzerine Hesaplamalı Araştırmalar

Yıl 2017, Cilt: 38 Sayı: 4, 661 - 673, 08.12.2017
https://doi.org/10.17776/csj.349259

Öz

İki Cu(II) kompleksleri üzerine hesapsal
araştırmalar yapıldı. Literatürde, bu kompleksler hakkında herhangi bir bilgi
yada spektral sonuçlar yoktur. Bu çalışmada, hibrit DFT fonksiyonellerinden
biri olan B3LYP söz konusu komplekslerin hesaplarında kullanıldı. Söz konusu
komplekslerin optimize yapıları hesaplandı ve IR, UV-VIS ve NMR spektrumları
hesaplandı ve detaylı bir şekilde incelendi. İlaveten, doğrusal olmayan optik
özellikler, moleküler elektrostatik potansiyel (MEP) haritaları, MEP konturları
ve tek dolu moleküler orbitalleri analiz edildi. Ligand ve metal atom
arasındaki etkileşim enerjileri, oluşum entalpileri ve Gibbs serbest enerjisi
araştırıldı. Geometrik yapı ve yapısal parametreler hesapsal tekniklerle
belirlendi ve komplekslerin yapıları spektral analizler ile desteklendi. Söz
konusu komplekslerin en aktif bölgeleri MEP haritaları ve MEP kontorları ile
belirlendi.

Kaynakça

  • [1] Zhang Y.Y., Ren N., Xu S.L., Zhang J.J., Zhang D.H., A series of binuclear lanthanide (III) complexes: crystallography, antimicrobial activity and thermochemistry properties studies Journal of Molecular Structure 2015; 1081: 413-25.
  • [2] Protogeraki C., Andreadou E.G., Perdih F., Turel I., Pantazaki A.A., Psomas G., Cobalt(II) complexes with the antimicrobial drug enrofloxacin: Structure, antimicrobial activity, DNA- and albumin-binding European Journal of Medicinal Chemistry 2014; 86: 189-201.
  • [3] Zamani F., Zendehdel M., Mobinikhaledi A., Azarkish M., Complexes of N,N-bis (salicylidene) 4,5-dimethyl-1,2-phenylenediamine immobilized on porous nanomaterials: Synthesis, characterization and study of their antimicrobial activity Microporous and Mesoporous Materials 2015; 212: 18-27.
  • [4] Babahan I., Emirdağ-Öztürk S, Poyrazoğlu-Çoban E, Spectroscopic and biological studies of new mononuclear metal complexes of a bidentate NN and NO hydrazone–oxime ligand derived from egonol Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015; 141: 300-6.
  • [5] Vural H., Uçar I., A combined theoretical and experimental study of chelidamate cadmium (II) complex, [Cd2(dpa)2(chel)2]⋅2[Cd(dpa)(chel)]⋅ 6H2O Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2015, 136, 1298-307.
  • [6] Demirbaş U, Bayrak R, Piskin M, Akçay H.T., Durmus M, Kantekini H., Synthesis, photophysical and photochemical properties of novel tetra substituted metal free and metallophthalocyanines bearing triazine units Journal of Organometallic Chemistry 2013; 724: 225-34.
  • [7] Kumar V, Ahamad T, Nishat N, Some O,O′,O″,O‴-di/tetra aryldithioimidophonate transition metal complexes derived from catechol and bisphenol-A as antibacterial and antifungal agents European Journal of Medicinal Chemistry 2009; 44: 785-93.
  • [8] Raman N., Mahalakshmi R., Bio active mixed ligand complexes of Cu(II), Ni(II) and Zn(II): Synthesis, spectral, XRD, DNA binding and cleavage properties Inorganic Chemistry Communications 2014; 40: 157-63.
  • [9] Sayin K., Karakas D., Karakus N., Alagöz Sayin T., Zaim Z., Erkan Kariper S., Spectroscopic investigation, FMOs and NLO analyses of Zn(II) and Ni(II) phenanthroline complexes: A DFT approach Polyhedron 2015; 90: 139-46.
  • [10] Üngördü A., Tezer N., Effect on frontier molecular orbitals of substituents in 5-position of uracil base pairs in vacuum and water, Journal of Theoretical and Computational Chemistry 2017; 16: 1750066.
  • [11] Ozbakir Isın D., Karakuş N., Quantum chemical study on the inhibition efficiencies of some sym-triazines as inhibitors for mild steel in acidic medium, Journal of the Taiwan Institute of Chemical Engineers 2015; 50: 306-13.
  • [12] Sun J., ding J., Liu N., Yang G., Li J., Detection of multiple chemicals based on external cavity quantum cascade laser spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2018; 191: 532-38.
  • [13] Üngördü A., Tezer N., DFT study on metal-mediated uracil base pair complexes, Journal of Saudi Chemical Society 2017; 21: 837-44.
  • [14] Zhu Q., Wen K., Feng S., Guo X., Zhang J., Benzimidazobenzothiazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes: A quantum-chemical TD-DFT study, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2018; 192: 297-303.
  • [15] GaussView 5.0, Gaussian Inc., Wallingford, CT, USA, 2009.
  • [16] Gaussian 09, rev. C.01, Gaussian Inc., Wallingford, CT, USA, 2010.
  • [17] PerkinElmer, 2012. ChemBioDraw Ultra Version (13.0.0.3015), CambridgeSoft Waltham, MA, USA.
  • [18] Rappe A.K., Casewit C.J., Colwell K.S., Goddard III W.A., Skiff W.M., UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations Journal of the American Chemical Society 1992; 114: 10024-35.
  • [19] Becke A.D., Density‐functional thermochemistry. III. The role of exact Exchange The Journal of Chemical Physics 1993, 98, 5648-5652.
  • [20] Lee C., Yang W., Parr R.G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Physical Review B 1988; 37: 785-9.
  • [21] Jr. Dunning T.H., Hay. P. J., Schaefer III H.F., (Eds). in Modern Theoretical Chemistry, Vol. 3, Plenum, New York, 1977.
  • [22] Hay P. J., Wadt W.R., Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg The Journal of Chemical Physics 1985; 82: 270-83.
  • [23] Wadt W.R., Hay P. J., Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi The Journal of Chemical Physics 1985; 82: 284-298.
  • [24] Sayin K., Karakaş D., Method/Basis Set Investigation and Spectral Studies for Oximato-Bridged trans-Platinum(II) Dimer Used as Anticancer Drug Journal of New Results in Science 2015; 8: 1-12.
  • [25] Sayin K., Erkan Kariper S., Alagöz Sayin T., Karakas D., Theoretical spectroscopic study of seven zinc(II) complex with macrocyclic Schiff-base ligand Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2014; 133: 348-56.
  • [26] Sayin K., Karakaş D., Determination of structural and electronic properties of [Ni(NQSC)2] and [Ni(NQTS)2] complexes with DFT method Journal of New Results in Science 2013; 2: 47-53.
  • [27] Sayin K., Karakaş D., Quantum Chemical Studies on [Co(ntb)(pic)]+ Complex Ion Journal of New Results in Science 2013; 2: 54-9.
  • [28] Güveli Ş., Özdemir N., Bal-Demirci T., Ülküseven B., Dinçer M., Quantum-chemical, spectroscopic and X-ray diffraction studies on nickel complex of 2-hydroxyaceto phenone thiosemi carbazone with triphenylphospine Polyhedron 2010; 29: 2393-403.
  • [29] Erdik E., Organik Kimyada Spektroskopik Yöntemler, 2nd Edition, Gazi Kitaβevi: Ankara, Turkey, 1998.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Bölüm Natural Sciences
Yazarlar

Koray Sayın

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 4 Mayıs 2017
Kabul Tarihi 16 Ağustos 2017
Yayımlandığı Sayı Yıl 2017Cilt: 38 Sayı: 4

Kaynak Göster

APA Sayın, K. (2017). Computational Investigations on IR, UV-VIS and NMR Spectra of Copper(II) Phenanthroline Complexes with DFT Method. Cumhuriyet Science Journal, 38(4), 661-673. https://doi.org/10.17776/csj.349259