Araştırma Makalesi
BibTex RIS Kaynak Göster

Karşıt Akışlı Ranque-Hilsch Vorteks Tüplerde Farklı Uzunluk Çapa Oranındaki Soğutma-Isıtma Sıcaklık Performanslarının Deneysel Olarak İncelenmesi

Yıl 2017, Cilt: 38 Sayı: 4, 813 - 821, 08.12.2017
https://doi.org/10.17776/csj.349343

Öz

Bu
çalışmada, 6 nozullu karşıt akışlı Ranque-Hilsch Vorteks Tüpü deneysel olarak
incelenmiştir.  Uzunluğunun çapa oranı
(L/D) 10 ve 12.5 olan karşıt akışlı Ranque-Hilsch Vorteks Tüpünde 200 kPa’ dan 600
kPa basınç değerine kadar 50 kPa aralıklarla basınçlı akışkan olarak hava
kullanılmıştır. L/D 10 ve 12.5 oranlarında oluşan enerji ayrışma olayı deneysel
olarak incelenmiştir. Deneysel sonuçları grafiklerle değerlendirilerek
performanslarının arttırılmasına yönelik önerilerde bulunulmuştur. 

Kaynakça

  • [1]. Cebeci İ., Kırmacı V., Topcuoglu U., The Effects of Orifice Nozzle Number and Nozzle Made of Polyamide Plastic and Aluminum with Different Inlet Pressures on Heating and Cooling Performance of Counter Flow Ranque–Hilsch Vortex Tubes: An Experimental Investigation, International Journal of Refrigeration 2016; 72: 140-146.
  • [2]. Hamdy A.K., Seif T.A., Computational Investigation of Different Effects on The Performance of The Ranquee–Hilsch Vortex Tube, Energy 2015; 84: 207-218.
  • [3]. Pınar A.M., Uluer O., Kırmacı V., Optimization of Counter Flow Ranque–Hilsch Vortex Tube Performance Using Taguchi Method, International Journal of Refrigeration 2009; 32: 1487-1494.
  • [4]. Han X., Li N., Wu K., Wang Z., Tang L., Chen G., The Influence of Working Gas Characteristics on Energy Separation of Vortex Tube, Applied Thermal Engineering 2013; 61: 171-177.
  • [5]. Balmer R., Pressure Driven Ranque-Hilsch Temperature Seperation İn Liquids, Journal of Fluids Engineering- Transactions of Asme 1998; 110 (2): 161-164.
  • [6]. Liu X., Liu Z., Investigation of The Energy Separation Effect and Flow Mechanism Inside a Vortex Tube, Applied Thermal Engineering 2014; 67: 494-506.
  • [7]. Cockerill T., The Ranque-Hilsch vortex Tube. Ph. D. Thesis, Cambridge University Engineering Department, Susderland, 1995; pp. 243.
  • [8]. Fröhlıngsdorf W., Unger H., Numerical Investigations of Compressible Flow and The Eneryg Seperation in The Ranque-Hilsch Vortex Tube, International Journal of Heat and Mass Transfer 1999; 42: 415-422.
  • [9]. Saidi M.H., Yazdi M.R., Exergy Model of a Vortex Tube System With Experimental Result, Exergy 1999; 24: 625-632.
  • [10]. Dincer K., Başkaya Ş., Ekserji Analiz Metoduyla Karşıt Akışlı Ranque Hilsch Vorteks Tüpün Tapa Açısının Ekserji Verimliliğine Etkisinin Değerlendirilmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2009; 24: 533-538.
  • [11]. Kırmacı V., Exergy Analysis and Performance of Counter Flow Vortex Tube, International Journal of Refrigeration 2009; 32: 1626-1633.
  • [12]. Kırmacı V., Uluer O., An Experimental Investigation of The Cold Mass Fraction, Nozzle Number and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube, Journal of Heat Transfer-Transactions of The Asme 2009; 8: 081701-081709.
  • [13]. Kırmacı V., Uluer O., Dincer K., Exerg Analysis and Performance of a Counter Flow Vortex Tube: An Experimental Investigation with Various Nozzle Numbers at Different Inlet Pressures of Air, Oxygen, Nitrogen and Argon, Journal of Heat Transfer-Transactions of The Asme 2010; 12: 121701-121701.
  • [14]. Hajdık B., Lorey M., Steınle J., Thomas K., Vortex Tube can Increase Liquid Hydrocarbon Recovery at Plant Inlet, Oil-Journal 1997; 76-83.
  • [15]. Kırmacı V., Uluer O., The Effects Of Orifice Nozzle Number On Heating And Cooling Performance Of Vortex Tubes: An Experimental Study, Instrumentation Science And Technology 2008; 36 (5): 493-502.
  • [16]. Markal B., Ranque-Hılsch Vorteks Tüpünde Enerji Ayrışmasının Deneysel ve Termodinamik İncelenmesi, Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, 2010; 274 s.
  • [17]. Azeez N.T., Al-Barwari R.R., Talabani Z.J., An Experimental Investigation of The Geometric Parameters on The Performance for The Counter-Flow Vortex Tubes, International Conference on Mechanical and Electrical Technology 2010; 467- 470.
  • [18]. Aydın O., Markal B., Avcı M., A new vortex generator geometry for a counter-flow Ranque–Hilsch Vortex Tube, Applied Thermal Engineering 2010; 30: 2505-2511.

Experimental Investigation of Cooling - Heating Performance of Counter Flow Ranque-Hilsch Vortex Tubes Having Different Length Diameter Ratio

Yıl 2017, Cilt: 38 Sayı: 4, 813 - 821, 08.12.2017
https://doi.org/10.17776/csj.349343

Öz

In this study, a counter flow Ranque-Hilsch
Vortex Tube having 6 nozzles was experimentally investigated. The vortex tube’s
Length – diameter (L/D) ratios were 10 and 12.5 and compressed air was used as
working fluid and the pressure values have been arranged from 200 kPa to 600
kPa with 50 kPa increment. Energy separation fact was experimentally
investigated at L/D=10 and L/D=12.5. Suggestions about enhancement of vortex
tube performance were indicated by evaluating experimental results using
graphs.

Kaynakça

  • [1]. Cebeci İ., Kırmacı V., Topcuoglu U., The Effects of Orifice Nozzle Number and Nozzle Made of Polyamide Plastic and Aluminum with Different Inlet Pressures on Heating and Cooling Performance of Counter Flow Ranque–Hilsch Vortex Tubes: An Experimental Investigation, International Journal of Refrigeration 2016; 72: 140-146.
  • [2]. Hamdy A.K., Seif T.A., Computational Investigation of Different Effects on The Performance of The Ranquee–Hilsch Vortex Tube, Energy 2015; 84: 207-218.
  • [3]. Pınar A.M., Uluer O., Kırmacı V., Optimization of Counter Flow Ranque–Hilsch Vortex Tube Performance Using Taguchi Method, International Journal of Refrigeration 2009; 32: 1487-1494.
  • [4]. Han X., Li N., Wu K., Wang Z., Tang L., Chen G., The Influence of Working Gas Characteristics on Energy Separation of Vortex Tube, Applied Thermal Engineering 2013; 61: 171-177.
  • [5]. Balmer R., Pressure Driven Ranque-Hilsch Temperature Seperation İn Liquids, Journal of Fluids Engineering- Transactions of Asme 1998; 110 (2): 161-164.
  • [6]. Liu X., Liu Z., Investigation of The Energy Separation Effect and Flow Mechanism Inside a Vortex Tube, Applied Thermal Engineering 2014; 67: 494-506.
  • [7]. Cockerill T., The Ranque-Hilsch vortex Tube. Ph. D. Thesis, Cambridge University Engineering Department, Susderland, 1995; pp. 243.
  • [8]. Fröhlıngsdorf W., Unger H., Numerical Investigations of Compressible Flow and The Eneryg Seperation in The Ranque-Hilsch Vortex Tube, International Journal of Heat and Mass Transfer 1999; 42: 415-422.
  • [9]. Saidi M.H., Yazdi M.R., Exergy Model of a Vortex Tube System With Experimental Result, Exergy 1999; 24: 625-632.
  • [10]. Dincer K., Başkaya Ş., Ekserji Analiz Metoduyla Karşıt Akışlı Ranque Hilsch Vorteks Tüpün Tapa Açısının Ekserji Verimliliğine Etkisinin Değerlendirilmesi, Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 2009; 24: 533-538.
  • [11]. Kırmacı V., Exergy Analysis and Performance of Counter Flow Vortex Tube, International Journal of Refrigeration 2009; 32: 1626-1633.
  • [12]. Kırmacı V., Uluer O., An Experimental Investigation of The Cold Mass Fraction, Nozzle Number and Inlet Pressure Effects on Performance of Counter Flow Vortex Tube, Journal of Heat Transfer-Transactions of The Asme 2009; 8: 081701-081709.
  • [13]. Kırmacı V., Uluer O., Dincer K., Exerg Analysis and Performance of a Counter Flow Vortex Tube: An Experimental Investigation with Various Nozzle Numbers at Different Inlet Pressures of Air, Oxygen, Nitrogen and Argon, Journal of Heat Transfer-Transactions of The Asme 2010; 12: 121701-121701.
  • [14]. Hajdık B., Lorey M., Steınle J., Thomas K., Vortex Tube can Increase Liquid Hydrocarbon Recovery at Plant Inlet, Oil-Journal 1997; 76-83.
  • [15]. Kırmacı V., Uluer O., The Effects Of Orifice Nozzle Number On Heating And Cooling Performance Of Vortex Tubes: An Experimental Study, Instrumentation Science And Technology 2008; 36 (5): 493-502.
  • [16]. Markal B., Ranque-Hılsch Vorteks Tüpünde Enerji Ayrışmasının Deneysel ve Termodinamik İncelenmesi, Yüksek Lisans Tezi, KTÜ Fen Bilimleri Enstitüsü, 2010; 274 s.
  • [17]. Azeez N.T., Al-Barwari R.R., Talabani Z.J., An Experimental Investigation of The Geometric Parameters on The Performance for The Counter-Flow Vortex Tubes, International Conference on Mechanical and Electrical Technology 2010; 467- 470.
  • [18]. Aydın O., Markal B., Avcı M., A new vortex generator geometry for a counter-flow Ranque–Hilsch Vortex Tube, Applied Thermal Engineering 2010; 30: 2505-2511.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Bölüm Engineering Sciences
Yazarlar

Volkan Kırmacı

Yayımlanma Tarihi 8 Aralık 2017
Gönderilme Tarihi 7 Nisan 2017
Kabul Tarihi 30 Ekim 2017
Yayımlandığı Sayı Yıl 2017Cilt: 38 Sayı: 4

Kaynak Göster

APA Kırmacı, V. (2017). Experimental Investigation of Cooling - Heating Performance of Counter Flow Ranque-Hilsch Vortex Tubes Having Different Length Diameter Ratio. Cumhuriyet Science Journal, 38(4), 813-821. https://doi.org/10.17776/csj.349343