Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen Nanopul Takviyeli Çapraz Katlı E-cam lifi/Epoksi Tabakalı Kompozit Malzemelerin Eğilme Davranışı

Yıl 2018, Cilt: 39 Sayı: 2, 531 - 542, 29.06.2018
https://doi.org/10.17776/csj.373725

Öz

Bu çalışmada grafen nanopul takviyesinin E-cam
lifi/epoksi tabakalı kompozit malzemenin esneklik mukavemeti üzerine etkisi
deneysel olarak araştırılmıştır. Grafen
nanopul takviyeli ve takviyesiz, [0o/90o]3S fiber oryantasyonuna sahip
kompozit malzemeler el yatırma ve vakum torbalama yöntemiyle imal edilmiştir.
Epoksi içerisine ağırlıkça üç farklı oranda (% 0.25, 0.5 ve 1) grafen nanopul
eklenmiştir. Üretimi yapılan plakalar su jeti kesme makinasıyla kesilerek üç
nokta eğme test numuneleri elde edilmiştir. Daha sonra ASTM D790 standardına
göre üç nokta eğme testleri yapılmıştır. Destek silindirlerinin merkezleri
arasındaki mesafe/kompozit numune kalınlığı oranı (s/t) tüm testlerde 16 olarak
seçilmiştir. Elde edilen sonuçlara göre epoksi matris içerisine grafen nanopul
eklenmesi, tabakalı kompozit malzemenin esneklik mukavemetini artırmıştır. Epoksi matris
içerisine ağırlıkça % 0.25, 0.5 ve 1 oranlarında grafen nanopul katıldığında
esneklik mukavemetinde sırasıyla % 4.32, 12.88 ve 7.03’lük bir artış olmuştur.

Kaynakça

  • [1]. Taraghi I., Fereidoon A., Zamani M.M. and Mohyeddin A., Mechanical, Thermal and Viscoelastic Properties of Polypropylene/Glass Hybrid Composites Reinforced with Multiwalled Carbon Nanotubes, Journal of Composite Materials, 49-28 (2015) 3557-3566.
  • [2]. Ulus H., Sahin O.S. and Avcı A., Enhancement of Flexural and Shear Properties of Carbon Fiber/Epoxy Hybrid Nanocomposites by Boron Nitride Nano Particles and Carbon Nano Tube Modification, Fibers and Polymers, 16-12 (2015) 2627-2635.
  • [3]. Rahman M.M., Zainuddin S., Hosur M.V., Robertson C.J., Kumar A., Trovillion J. and Jeelani S., Effect of NH2-MWCNTs on Crosslink Density of Epoxy Matrix and ILSS Properties of E-Glass/Epoxy Composites, Composite Structures, 95 (2013) 213-221.
  • [4]. Chen W., Shen H., Auad M.L., Huang C. and Nutt S., Basalt Fiber-Epoxy Laminates with Functionalized Multi-walled Carbon Nanotubes, Composites: Part A, 40 (2009) 1082-1089.
  • [5]. Ashrafi B., Diez-Pascual A.M., Johnson L., Genest M., Hind S., Martinez-Rubi Y., González-Dominguez J.M., Martinez M.T., Simard B., Gómez-Fatou M.A. and Johnston A., Processing and Properties of PEEK/Glass Fiber Laminates: Effect of Addition of Single-walled Carbon Nanotubes, Composites: Part A, 43 (2012) 1267-1279.
  • [6]. Zhou Y., Hosur M., Jeelani S. and Mallick P.K., Fabrication and Characterization of Carbon Fiber Reinforced Clay/Epoxy Composite, Journal of Materials Science, 47 (2012) 5002-5012.
  • [7]. Kanny K. and Mohan T.P., Resin Infusion Analysis of Nanoclay Filled Glass Fiber Laminates, Composites: Part B, 58 (2014) 328-334.
  • [8]. Chatterjee S., Nafezarefi F., Tai N.H., Schlagenhauf L., Nüesch F.A. and Chu B.T.T., Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites, Carbon, 50 (2012) 5380-5386.
  • [9]. Li W., Dichiara A. and Bai J., Carbon Nanotube-Graphene Nanoplatelet Hybrids as High-Performance Multifunctional Reinforcements in Epoxy Composites, Composites Science and Technology, 74 (2013) 221-227.
  • [10]. Wang F., Drzal L.T., Qin Y. and Huang Z., Mechanical Properties and Thermal Conductivity of Graphene Nanoplatelet/Epoxy Composites, Journal of Materials Science, 50 (2015) 1082-1093.
  • [11]. Le M.T. and Huang S.C., Effect of Nano-Fillers on the Strength Reinforcement of Novel Hybrid Polymer Nanocomposites, Materials and Manufacturing Processes, 31 (2016) 1066-1072.
  • [12]. Kandare E., Khatibi A.A., Yoo S., Wang R., Ma J., Olivier P., Gleizes N. and Wang C.H., Improving the Through-Thickness Thermal and Electrical Conductivity of Carbon Fibre/Epoxy Laminates by Exploiting Synergy between Graphene and Silver Nano-Inclusions, Composites: Part A, 69 (2015) 72-82.
  • [13]. Kamar N.T., Hossain M.M., Khomenko A., Haq M., Drzal L.T. and Loos A., Interlaminar Reinforcement of Glass Fiber/Epoxy Composites with Graphene Nanoplatelets, Composites: Part A, 70 (2015) 82-92.
  • [14]. Moriche R., Sanchez M., Jimenez-Suarez A., Prolongo S.G. and Urena A., Electrically Conductive Functionalized-GNP/Epoxy Based Composites: From Nanocomposite to Multiscale Glass Fibre Composite Material, Composites: Part B, 98 (2016) 49-55.
  • [15]. Seretis G.V., Kouzilos G., Manolakos D.E. and Provatidis C.G., On the Graphene Nanoplatelets Reinforcement of Hand Lay-Up Glass Fabric/Epoxy Laminated Composites, DOI:10.1016/j.compositesb.2017.03.015.
  • [16]. Shen M.Y., Chang T.Y., Hsieh T.H., Li Y.L., Chiang C.L., Yang H. and Yip M.C., Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites, Journal of Nanomaterials, DOI:10.1155/2013/565401.
  • [17]. Wang P.N., Hsieh T.H., Chiang C.L. and Shen M.Y., Synergetic Effects of Mechanical Properties on Graphene Nanoplatelet and Multiwalled Carbon Nanotube Hybrids Reinforced Epoxy/Carbon Fiber Composites, Journal of Nanomaterials, 50 (2015) 1082-1093.
  • [18]. Hossain M.K., Chowdhury M.R. and Bolden N.W., Optimized Mechanical Performance of Carbon Fiber-Epoxy Composite Using Amino Functionalized Graphene Nanoplatelets, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2015.
  • [19]. ASTM D790-15, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, American Society for Testing and Material, Philadelphia, 2015.

Flexural Behavior of Graphene Nanoplatelets Reinforced Cross-Ply E-glass/epoxy Laminated Composite Materials

Yıl 2018, Cilt: 39 Sayı: 2, 531 - 542, 29.06.2018
https://doi.org/10.17776/csj.373725

Öz

In this study, the
effect of graphene nanoplatelets reinforcement on the flexural strength of E
-glass/epoxy laminated composite material
was investigated experimentally. [0
/90]3S oriented
composite
materials with and without graphene nanoplatelets reinforcement were
manufactured by using hand lay-up and vacuum bagging method.
Graphene nanoplatelets at three different ratios
(0.25, 0.5 and 1 wt.%) were added to the epoxy.
The produced plates were cut
with a water jet cutting machine to obtain three
-point
bending specimens. Then, three
-point bending tests were performed according to the
ASTM D790 standard. The span between the centers of support cylinders/composite
specimen thickness ratio (s/t) was selected as 16 in all the tests. Results
indicate that the addition of graphene nanoplatelets to the epoxy matrix
increased the flexural strength of the laminated composite material. When the graphene nanoplatelets at ratios of 0.25,
0.5 and 1 wt.% were added to the epoxy
matrix, the flexural strengths increased by 4.32%, 12.88% and 7.03% respectively.

Kaynakça

  • [1]. Taraghi I., Fereidoon A., Zamani M.M. and Mohyeddin A., Mechanical, Thermal and Viscoelastic Properties of Polypropylene/Glass Hybrid Composites Reinforced with Multiwalled Carbon Nanotubes, Journal of Composite Materials, 49-28 (2015) 3557-3566.
  • [2]. Ulus H., Sahin O.S. and Avcı A., Enhancement of Flexural and Shear Properties of Carbon Fiber/Epoxy Hybrid Nanocomposites by Boron Nitride Nano Particles and Carbon Nano Tube Modification, Fibers and Polymers, 16-12 (2015) 2627-2635.
  • [3]. Rahman M.M., Zainuddin S., Hosur M.V., Robertson C.J., Kumar A., Trovillion J. and Jeelani S., Effect of NH2-MWCNTs on Crosslink Density of Epoxy Matrix and ILSS Properties of E-Glass/Epoxy Composites, Composite Structures, 95 (2013) 213-221.
  • [4]. Chen W., Shen H., Auad M.L., Huang C. and Nutt S., Basalt Fiber-Epoxy Laminates with Functionalized Multi-walled Carbon Nanotubes, Composites: Part A, 40 (2009) 1082-1089.
  • [5]. Ashrafi B., Diez-Pascual A.M., Johnson L., Genest M., Hind S., Martinez-Rubi Y., González-Dominguez J.M., Martinez M.T., Simard B., Gómez-Fatou M.A. and Johnston A., Processing and Properties of PEEK/Glass Fiber Laminates: Effect of Addition of Single-walled Carbon Nanotubes, Composites: Part A, 43 (2012) 1267-1279.
  • [6]. Zhou Y., Hosur M., Jeelani S. and Mallick P.K., Fabrication and Characterization of Carbon Fiber Reinforced Clay/Epoxy Composite, Journal of Materials Science, 47 (2012) 5002-5012.
  • [7]. Kanny K. and Mohan T.P., Resin Infusion Analysis of Nanoclay Filled Glass Fiber Laminates, Composites: Part B, 58 (2014) 328-334.
  • [8]. Chatterjee S., Nafezarefi F., Tai N.H., Schlagenhauf L., Nüesch F.A. and Chu B.T.T., Size and Synergy Effects of Nanofiller Hybrids Including Graphene Nanoplatelets and Carbon Nanotubes in Mechanical Properties of Epoxy Composites, Carbon, 50 (2012) 5380-5386.
  • [9]. Li W., Dichiara A. and Bai J., Carbon Nanotube-Graphene Nanoplatelet Hybrids as High-Performance Multifunctional Reinforcements in Epoxy Composites, Composites Science and Technology, 74 (2013) 221-227.
  • [10]. Wang F., Drzal L.T., Qin Y. and Huang Z., Mechanical Properties and Thermal Conductivity of Graphene Nanoplatelet/Epoxy Composites, Journal of Materials Science, 50 (2015) 1082-1093.
  • [11]. Le M.T. and Huang S.C., Effect of Nano-Fillers on the Strength Reinforcement of Novel Hybrid Polymer Nanocomposites, Materials and Manufacturing Processes, 31 (2016) 1066-1072.
  • [12]. Kandare E., Khatibi A.A., Yoo S., Wang R., Ma J., Olivier P., Gleizes N. and Wang C.H., Improving the Through-Thickness Thermal and Electrical Conductivity of Carbon Fibre/Epoxy Laminates by Exploiting Synergy between Graphene and Silver Nano-Inclusions, Composites: Part A, 69 (2015) 72-82.
  • [13]. Kamar N.T., Hossain M.M., Khomenko A., Haq M., Drzal L.T. and Loos A., Interlaminar Reinforcement of Glass Fiber/Epoxy Composites with Graphene Nanoplatelets, Composites: Part A, 70 (2015) 82-92.
  • [14]. Moriche R., Sanchez M., Jimenez-Suarez A., Prolongo S.G. and Urena A., Electrically Conductive Functionalized-GNP/Epoxy Based Composites: From Nanocomposite to Multiscale Glass Fibre Composite Material, Composites: Part B, 98 (2016) 49-55.
  • [15]. Seretis G.V., Kouzilos G., Manolakos D.E. and Provatidis C.G., On the Graphene Nanoplatelets Reinforcement of Hand Lay-Up Glass Fabric/Epoxy Laminated Composites, DOI:10.1016/j.compositesb.2017.03.015.
  • [16]. Shen M.Y., Chang T.Y., Hsieh T.H., Li Y.L., Chiang C.L., Yang H. and Yip M.C., Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites, Journal of Nanomaterials, DOI:10.1155/2013/565401.
  • [17]. Wang P.N., Hsieh T.H., Chiang C.L. and Shen M.Y., Synergetic Effects of Mechanical Properties on Graphene Nanoplatelet and Multiwalled Carbon Nanotube Hybrids Reinforced Epoxy/Carbon Fiber Composites, Journal of Nanomaterials, 50 (2015) 1082-1093.
  • [18]. Hossain M.K., Chowdhury M.R. and Bolden N.W., Optimized Mechanical Performance of Carbon Fiber-Epoxy Composite Using Amino Functionalized Graphene Nanoplatelets, Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 2015.
  • [19]. ASTM D790-15, Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials, American Society for Testing and Material, Philadelphia, 2015.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Engineering Sciences
Yazarlar

Sakine Kıratlı

Züleyha Aslan

Yayımlanma Tarihi 29 Haziran 2018
Gönderilme Tarihi 2 Ocak 2018
Kabul Tarihi 17 Mayıs 2018
Yayımlandığı Sayı Yıl 2018Cilt: 39 Sayı: 2

Kaynak Göster

APA Kıratlı, S., & Aslan, Z. (2018). Flexural Behavior of Graphene Nanoplatelets Reinforced Cross-Ply E-glass/epoxy Laminated Composite Materials. Cumhuriyet Science Journal, 39(2), 531-542. https://doi.org/10.17776/csj.373725