Örgülü Cam Elyaf Takviyeli Polimer Kompozitlerin Tabaka Diziliminin ve Genişliklerinin SERR Üzerindeki Etkileri
Yıl 2019,
Cilt: 21 Sayı: 62, 369 - 378, 21.05.2019
M.evren Toygar
,
Farshid Khosravi Maleki
Öz
Bu
çalışmada, Mod I çatlak ilerlemesi altında örgülü cam elyaf takviyeli polimer
(GFRP) kompozitlerinin kırılma davranışı deneysel olarak araştırılmış ve tabaka
diziliminin ve numune genişliklerinin delaminasyon direncine olan etkilerini
belirlemek için sayısal olarak modellenmiştir. Açığa çıkan şekil değiştirme
enerjisinin (SERR) hesaplanması için farklı yöntemler kullanılmıştır: deneysel çözüm için, deneysel uyum kalibrasyon yöntemi (CCM), modifiye
edilmiş kiriş teorisi (MBT), modifiye uyum kalibrasyon yöntemi (MCC)
kullanılmıştır ve sayısal çözüm için sanal çatlak kapatma tekniği (VCCT)
kullanılmıştır. DCB test numuneleri, SERR değerlerini elde etmek için kullanılmıştır.
Delaminasyon, çatlak analizi ve Mod I SERR değerilerinin VCCT tarafından
hesaplanması için üç boyutlu sonlu eleman modeli kullanılmıştır. Deneysel ve
sayısal sonuçların birbiriyle uyumlu
olduğu ve böylece bir örgülü cam elyaf takviyeli polimer kompozitlerin SERR
değerini analiz etmek için VCCT metodunun uygun bir yöntem olduğu görülmüştür.
Kaynakça
-
[1] Hyer M.W.: Stress analysis of fiber-reinforced composite materials. McGraw-Hill, Massachusetts, (1998).
-
[2] Broek D.: Elementary Engineering Fracture Mechanics. Kluwer Academic Publishers, Boston, Massachusetts, (1996).
-
[3] O'Brien T.K.: Fracture Mechanics of Composite Delamination. Composites: ASM International, 21, 241-245 (2001).
-
[4] O'Brien, T. K.: Characterization of delamination onset and growth in a composite laminate. Damage in composite materials, ASTM STP 775/2, 140-167 (1982).
-
[5] Tay T. E.: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001, Applied Mechanics Reviews 56/1, 1-32 (2003). DOI:10.1115/1.1504848
-
[6] De Morais A.B., De Moura M.F., Marques A.T., De Castro P.T.: Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology, 62/5, 679-686 (2002). DOI:10.1016/S0266-3538(01)00223-8
-
[7] Toygar M.E., Toparli M., Uyulgan B.: An investigation of fracture toughness of carbon/epoxy composites. Journal of reinforced plastics and composites, 25.18, 1887-1895 (2006). DOI: 10.1177/0731684406069916
-
[8] Aliyu A.A., Daniel I.M.: Effects of strain rate on delamination fracture toughness of graphite/epoxy. Delamination and debonding of materials, ASTM STP, 876, 336-348 (1985).
-
[9] Davidson B.D., Krüger R., König M.: Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens. Engineering Fracture Mechanics, 55/4, 557-569 (1996). DOI:10.1016/S0013-7944(96)00037-9
-
[10] ASTM D 5528-01.: Standard test method for mod 1 interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM Annual Book of Standards, West Conshohocken, PA, USA, 2007.
-
[11] ASTM D3039/3039M-08.: Standard test method for tensile properties of polymer matrix composite materials. ASTM Annual Book of Standards, West Conshohocken, PA, USA, 2003.
-
[12] ASTM D3518-D3518M-13.: Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45 degree Laminate. ASTM Annual Book of Standards, West Conshohocken, PA, USA, 2001.
-
[13] Rybicki E.F., Kanninen M.F.: Finite element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics. 9, 931–938 (1977). DOI:10.1016/0013-7944(77)90013-3
-
[14] Shen F., Lee K.H., Tay, T.E.: Modeling delamination growth in laminated composites. Composites Science and Technology, 61(9), 1239-1251 (2001). DOI:10.1016/S0266-3538(01)00023-9
-
[15] Krueger R.: Virtual crack closure technique: history, approach and applications. Applied Mechanics Reviews, 57 (2), 109–143 (2004). DOI:10.1115/1.1595677
-
[16] Research, A.A.: Release 15.0, Help System. In. ANSYS Structural Analysis Guide. ANSYS, Inc, (2015)
Effects Of Lay-Up Sequence and Widths on The SERR of Woven Glass Fiber Reinforced Polymer Composites
Yıl 2019,
Cilt: 21 Sayı: 62, 369 - 378, 21.05.2019
M.evren Toygar
,
Farshid Khosravi Maleki
Öz
In this paper, fracture
behavior of woven Glass Fiber Reinforced Polymer (GFRP) composites under Mode I
crack growth was experimentally investigated and numerically modelled, to
determine the effects of lay-up sequence and widths on delamination resistance.
Different methods are used for calculation of strain energy release rate
(SERR): for experimental solution, experimental compliance calibration method
(CCM), modified beam theory (MBT), modified compliance calibration (MCC) are
used and virtual crack closure technique (VCCT) are used for numerical solution.
To achieve this aim DCB (double cantilever beam) test specimens are used to
evaluate the SERR values. Three dimensional finite element model is used to
perform the delamination, crack analysis, and Mode I SERR value is calculated
by the VCCT. It is seen that there is an agreement between experimental and
numerical results so that VCCT method is to be an appropriate method for
analyzing a SERR value of woven glass fiber reinforced polimer composites.
Kaynakça
-
[1] Hyer M.W.: Stress analysis of fiber-reinforced composite materials. McGraw-Hill, Massachusetts, (1998).
-
[2] Broek D.: Elementary Engineering Fracture Mechanics. Kluwer Academic Publishers, Boston, Massachusetts, (1996).
-
[3] O'Brien T.K.: Fracture Mechanics of Composite Delamination. Composites: ASM International, 21, 241-245 (2001).
-
[4] O'Brien, T. K.: Characterization of delamination onset and growth in a composite laminate. Damage in composite materials, ASTM STP 775/2, 140-167 (1982).
-
[5] Tay T. E.: Characterization and analysis of delamination fracture in composites: an overview of developments from 1990 to 2001, Applied Mechanics Reviews 56/1, 1-32 (2003). DOI:10.1115/1.1504848
-
[6] De Morais A.B., De Moura M.F., Marques A.T., De Castro P.T.: Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology, 62/5, 679-686 (2002). DOI:10.1016/S0266-3538(01)00223-8
-
[7] Toygar M.E., Toparli M., Uyulgan B.: An investigation of fracture toughness of carbon/epoxy composites. Journal of reinforced plastics and composites, 25.18, 1887-1895 (2006). DOI: 10.1177/0731684406069916
-
[8] Aliyu A.A., Daniel I.M.: Effects of strain rate on delamination fracture toughness of graphite/epoxy. Delamination and debonding of materials, ASTM STP, 876, 336-348 (1985).
-
[9] Davidson B.D., Krüger R., König M.: Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens. Engineering Fracture Mechanics, 55/4, 557-569 (1996). DOI:10.1016/S0013-7944(96)00037-9
-
[10] ASTM D 5528-01.: Standard test method for mod 1 interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM Annual Book of Standards, West Conshohocken, PA, USA, 2007.
-
[11] ASTM D3039/3039M-08.: Standard test method for tensile properties of polymer matrix composite materials. ASTM Annual Book of Standards, West Conshohocken, PA, USA, 2003.
-
[12] ASTM D3518-D3518M-13.: Standard test method for in-plane shear response of polymer matrix composite materials by tensile test of a ±45 degree Laminate. ASTM Annual Book of Standards, West Conshohocken, PA, USA, 2001.
-
[13] Rybicki E.F., Kanninen M.F.: Finite element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics. 9, 931–938 (1977). DOI:10.1016/0013-7944(77)90013-3
-
[14] Shen F., Lee K.H., Tay, T.E.: Modeling delamination growth in laminated composites. Composites Science and Technology, 61(9), 1239-1251 (2001). DOI:10.1016/S0266-3538(01)00023-9
-
[15] Krueger R.: Virtual crack closure technique: history, approach and applications. Applied Mechanics Reviews, 57 (2), 109–143 (2004). DOI:10.1115/1.1595677
-
[16] Research, A.A.: Release 15.0, Help System. In. ANSYS Structural Analysis Guide. ANSYS, Inc, (2015)