Araştırma Makalesi
BibTex RIS Kaynak Göster

PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI

Yıl 2019, Cilt: 44 Sayı: 4, 618 - 628, 01.08.2019
https://doi.org/10.15237/gida.GD19083

Öz

Bu çalışmada faz dönüşümü yöntemi kullanılarak üretilen
PSF/PEI (%20/2, w/w) membranlar, farklı konsantrasyonlarda SiO
2
nanopartikülü (%0,01; 0.03; 0.05) kullanılarak modifiye edilmiş ve üretilen
nanokompozit membranların bulanık elma suyunun berraklaştırılmasında
performansları değerlendirilmiştir. Membran deneyleri sonlu filtrasyon sistemi
kullanılarak gerçekleştirilmiştir. Üretilen yeni nesil nanokompozit membranlar
saf su akı değerleri, SEM ve yüzey temas açı değerleri açısından karakterize
edilmiştir. Aynı zamanda, üretilen PSF/PEI/SiO
2 yeni nesil
nanokompozit membrandan elde edilen berrak elma suyu örnekleri renk (Pt-Co),
bulanıklık(NTU) ve toplam suda çözünür kuru madde bakımından karakterize
edilmiştir ve Döhler Gıda San. A.Ş.’den temin edilen berrak elma suyu örnekleri
(Brix) ile bu parametreler açısından karşılaştırılmıştır. Elde edilen sonuçlara
göre %0,01 oranında SiO
2 ilave edilerek üretilen PSF/PEI/SiO2 membranın
en yüksek saf su akısına ve en yüksek hidrofilikliğe sahip olduğu
belirlenmiştir. Aynı zamanda bu membrandan elde edilen berrak meyve suyu örneği
en yüksek renk ve toplam suda çözünür kuru madde sahipken aynı zamanda en düşük
bulanıklık değeri ile elma suyu berraklaştırma deneylerinde de en iyi
performansı sergilemiştir. 

Destekleyen Kurum

Abdullah Gül Üniversitesi Bilimsel Araştırma Birimi

Proje Numarası

FCD-2017-92

Teşekkür

Bu çalışma Abdullah Gül Üniversitesi Bilimsel Araştırma Birimi tarafından FCD-2017-92 No’lu proje ile desteklenmiştir. Bu çalışmadaki meyve suyu örneklerinin teminindeki desteğinden ötürü Döhler Gıda San. ve Tic. Ltd. Şti.’ye teşekkür ederiz

Kaynakça

  • Albrecht, W., Seifert, B., Weigel, T., Schossig, M. (2003). Amination of poly(ether imide) membranes using di- and multivalent amines. Macromolecular Chemistry and Physics, 204(3), 510–521.
  • ASTM D1209-05(2019). Standard Test Method for Color of Clear Liquids (Platinum-Cobalt Scale). ASTM International, West Conshohocken, PA, 2019, www.astm.orgBa, C., Langer, J., Economy, J. (2009). Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. Journal of Membrane Science, 327(1–2), 49–58.
  • Baghbanzadeh, M., Rana, D., Lan, C. Q., Matsuura, T. (2016). Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment. Separation & Purification Reviews, 45(2), 141–167.
  • Bagheri, H., Baktash, M. Y., Jahandar, K. (2016). Electrospun superhydrophobic polystyrene hollow fiber as a probe for liquid–liquid microextraction with gas chromatography-mass spectrometry". Journal of Separation Science, 39(19), 3782–3788.
  • Cassano, A., Conidi, C., Drioli, E. (2011). Clarification and concentration of pomegranate juice ( Punica granatum L.) using membrane processes. Journal of Food Engineering, 107(3–4), 366–373.
  • Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., da Jornada, J. A. H. (1999). Study of Nanocrystalline γ-Al2O3 Produced by High-Pressure Compaction. The Journal of Physical Chemistry B, 103(21), 4278–4284.
  • De Bruijn, J. P. F., Venegas, A., Martínez, J. A., Bórquez, R. (2003). Ultrafiltration performance of Carbosep membranes for the clarification of apple juice. LWT - Food Science and Technology, 36(4), 397–406.
  • Fenu, A., Guglielmi, G., Jimenez, J., Spérandio, M., Saroj, D., Lesjean, B., … Nopens, I. (2010). Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water research (C. 44).
  • Hong, T., Ngo, A., The, D., Dinh, K., Thi, T., Nguyen, M. (2016). Advanced Materials and Devices Surface modification of polyamide thin fi lm composite membrane by coating of titanium dioxide nanoparticles. Journal of Science: Advanced Materials and Devices, 1(4), 468–475.
  • Hosseini, S. A., Vossoughi, M., Mahmoodi, N. M., Sadrzadeh, M. (2018). Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. Journal of Cleaner Production, 183, 1197–1206.
  • Hui, Y. H., Barta, J., Cano, M. P., Gusek, T. W., Sidhu, J. S., Sinha, N. (2008). Handbook of Fruits and Fruit Processing. https://books.google.com.tr/books?id=Vu8gsgLeW-YC
  • Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., Ahmed, A. Al. (2013). Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316, 76–84.
  • Lipnizki, F. (2010). Cross-Flow Membrane Applications in the Food Industry. In: Membrane Technology: Volume 3: Membranes for Food Applications. Wiley.Ma, Y., Shi, F., Ma, J., Wu, M., Zhang, J., Gao, C. (2011). Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination, 272(1), 51–58.
  • Mohammad, A. W., Ng, C. Y., Lim, Y. P., Ng, G. H. (2012). Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food and Bioprocess Technology, 5(4), 1143–1156.
  • Nighojkar, A., Patidar, M. K., Nighojkar, S. (2019). 8-Pectinases: Production and Applications for Fruit Juice Beverages. A. M. Grumezescu & A. M. B. T.-P. and S. of B. Holban (Ed.) (ss. 235–273). Woodhead Publishing.
  • Park, S.-J., Cheedrala, R. K., Diallo, M. S., Kim, C., Kim, I. S., Goddard, W. A. (2012). Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. Journal of Nanoparticle Research, 14(7), 884.
  • Saki, S., Uzal, N. (2018). Preparation and characterization of PSF/PEI/CaCO3 nanocomposite membranes for oil / water separation, 25315–25326.Saleh, T. A., Gupta, V. K. (2012). Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Separation and Purification Technology, 89, 245–251.
  • Sinha, M. K., Purkait, M. K. (2013). Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether. Journal of Membrane Science, 437, 7–16.
  • Sun, J., Bi, H., Su, S., Jia, H., Xie, X., Sun, L. (2018). One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. Journal of Membrane Science, 553, 131–138.
  • Sun, S. P., Hatton, T. A., Chung, T. S. (2011). Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Environmental Science and Technology, 45(9), 4003–4009.
  • Trimpert, C., Boese, G., Albrecht, W., Richau, K., Weigel, T. (2006). Poly(ether imide) membranes modified with poly(ethylene imine) as potential carriers for epidermal substitutes, Macromolecular Bioscience, 6(4), 274–284.
  • Uzal, N., Ates, N., Saki, S., Bulbul, Y. E., Chen, Y. (2017). Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al2O3 nanoparticles. Separation and Purification Technology, 187, 118–126.
  • Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M. (2001). Strategy for economical optimization of the clarification of pulpy fruit juices using crossflow microfiltration. Journal of Food Engineering, 48(1), 83–90.
  • van Reis, R., Zydney, A. (2007). Bioprocess membrane technology. Journal of Membrane Science, 297(1), 16–50.
  • Vanneste, J., Sotto, A., Courtin, C. M., Van Craeyveld, V., Bernaerts, K., Van Impe, J. (2011). Application of tailor-made membranes in a multi-stage process for the purification of sweeteners from Stevia rebaudiana Journal of Food Engineering, 103(3), 285–293.
  • Vasanth, D., Pugazhenthi, G., Uppaluri, R. (2013). Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination, 320, 86–95.Wu, D., Huang, Y., Yu, S., Lawless, D., Feng, X. (2014). Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. Journal of Membrane Science, 472, 141–153.

FABRICATION OF PSF/SiO2 NANOCOMPOSITE MEMBRANE AND APPLICATION IN APPLE JUICE CLARIFICATION PROCESS

Yıl 2019, Cilt: 44 Sayı: 4, 618 - 628, 01.08.2019
https://doi.org/10.15237/gida.GD19083

Öz

In this study,
PSF/PEI (20/2% w/w) membranes which were fabricated by using phase inversion
method were modified with using SiO2 nanoparticles at different
concentrations (0.01, 0.03, 0.05% w/w) and performance of fabricated
nanocomposite membranes were evaluated in clarification of turbid apple juice.
Membrane experiments were conducted using dead-end filtration process.
Fabricated new generation nanocomposite membranes were characterized in terms
of pure water flux, SEM and water contact angle. Moreover, clarified apple
juice samples obtained from fabricated PSF/PEI/SiO2 new generation
nanocomposite membranes were characterized in terms of color (Pt-Co), turbidity
(NTU) and total soluble solid content (Brix) and these samples were compared to
clarified apple juice samples  supplied
from Döhler Inc. in terms of these parameters. According to the obtained
results, the membrane produced by adding 0.01% SiO2 was determined
as the membrane having the highest pure water flux and highest hydrophilicity.
At the same time, this membrane showed the best performance in apple juice
clarification experiments by producing apple juice which had the highest color
and total solid matter content and lowest turbidity value.

Proje Numarası

FCD-2017-92

Kaynakça

  • Albrecht, W., Seifert, B., Weigel, T., Schossig, M. (2003). Amination of poly(ether imide) membranes using di- and multivalent amines. Macromolecular Chemistry and Physics, 204(3), 510–521.
  • ASTM D1209-05(2019). Standard Test Method for Color of Clear Liquids (Platinum-Cobalt Scale). ASTM International, West Conshohocken, PA, 2019, www.astm.orgBa, C., Langer, J., Economy, J. (2009). Chemical modification of P84 copolyimide membranes by polyethylenimine for nanofiltration. Journal of Membrane Science, 327(1–2), 49–58.
  • Baghbanzadeh, M., Rana, D., Lan, C. Q., Matsuura, T. (2016). Effects of Inorganic Nano-Additives on Properties and Performance of Polymeric Membranes in Water Treatment. Separation & Purification Reviews, 45(2), 141–167.
  • Bagheri, H., Baktash, M. Y., Jahandar, K. (2016). Electrospun superhydrophobic polystyrene hollow fiber as a probe for liquid–liquid microextraction with gas chromatography-mass spectrometry". Journal of Separation Science, 39(19), 3782–3788.
  • Cassano, A., Conidi, C., Drioli, E. (2011). Clarification and concentration of pomegranate juice ( Punica granatum L.) using membrane processes. Journal of Food Engineering, 107(3–4), 366–373.
  • Costa, T. M. H., Gallas, M. R., Benvenutti, E. V., da Jornada, J. A. H. (1999). Study of Nanocrystalline γ-Al2O3 Produced by High-Pressure Compaction. The Journal of Physical Chemistry B, 103(21), 4278–4284.
  • De Bruijn, J. P. F., Venegas, A., Martínez, J. A., Bórquez, R. (2003). Ultrafiltration performance of Carbosep membranes for the clarification of apple juice. LWT - Food Science and Technology, 36(4), 397–406.
  • Fenu, A., Guglielmi, G., Jimenez, J., Spérandio, M., Saroj, D., Lesjean, B., … Nopens, I. (2010). Activated sludge model (ASM) based modelling of membrane bioreactor (MBR) processes: A critical review with special regard to MBR specificities. Water research (C. 44).
  • Hong, T., Ngo, A., The, D., Dinh, K., Thi, T., Nguyen, M. (2016). Advanced Materials and Devices Surface modification of polyamide thin fi lm composite membrane by coating of titanium dioxide nanoparticles. Journal of Science: Advanced Materials and Devices, 1(4), 468–475.
  • Hosseini, S. A., Vossoughi, M., Mahmoodi, N. M., Sadrzadeh, M. (2018). Efficient dye removal from aqueous solution by high-performance electrospun nanofibrous membranes through incorporation of SiO2 nanoparticles. Journal of Cleaner Production, 183, 1197–1206.
  • Hui, Y. H., Barta, J., Cano, M. P., Gusek, T. W., Sidhu, J. S., Sinha, N. (2008). Handbook of Fruits and Fruit Processing. https://books.google.com.tr/books?id=Vu8gsgLeW-YC
  • Kumar, R., Isloor, A. M., Ismail, A. F., Rashid, S. A., Ahmed, A. Al. (2013). Permeation, antifouling and desalination performance of TiO2 nanotube incorporated PSf/CS blend membranes. Desalination, 316, 76–84.
  • Lipnizki, F. (2010). Cross-Flow Membrane Applications in the Food Industry. In: Membrane Technology: Volume 3: Membranes for Food Applications. Wiley.Ma, Y., Shi, F., Ma, J., Wu, M., Zhang, J., Gao, C. (2011). Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes. Desalination, 272(1), 51–58.
  • Mohammad, A. W., Ng, C. Y., Lim, Y. P., Ng, G. H. (2012). Ultrafiltration in Food Processing Industry: Review on Application, Membrane Fouling, and Fouling Control. Food and Bioprocess Technology, 5(4), 1143–1156.
  • Nighojkar, A., Patidar, M. K., Nighojkar, S. (2019). 8-Pectinases: Production and Applications for Fruit Juice Beverages. A. M. Grumezescu & A. M. B. T.-P. and S. of B. Holban (Ed.) (ss. 235–273). Woodhead Publishing.
  • Park, S.-J., Cheedrala, R. K., Diallo, M. S., Kim, C., Kim, I. S., Goddard, W. A. (2012). Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks. Journal of Nanoparticle Research, 14(7), 884.
  • Saki, S., Uzal, N. (2018). Preparation and characterization of PSF/PEI/CaCO3 nanocomposite membranes for oil / water separation, 25315–25326.Saleh, T. A., Gupta, V. K. (2012). Synthesis and characterization of alumina nano-particles polyamide membrane with enhanced flux rejection performance. Separation and Purification Technology, 89, 245–251.
  • Sinha, M. K., Purkait, M. K. (2013). Increase in hydrophilicity of polysulfone membrane using polyethylene glycol methyl ether. Journal of Membrane Science, 437, 7–16.
  • Sun, J., Bi, H., Su, S., Jia, H., Xie, X., Sun, L. (2018). One-step preparation of GO/SiO2 membrane for highly efficient separation of oil-in-water emulsion. Journal of Membrane Science, 553, 131–138.
  • Sun, S. P., Hatton, T. A., Chung, T. S. (2011). Hyperbranched polyethyleneimine induced cross-linking of polyamide-imide nanofiltration hollow fiber membranes for effective removal of ciprofloxacin. Environmental Science and Technology, 45(9), 4003–4009.
  • Trimpert, C., Boese, G., Albrecht, W., Richau, K., Weigel, T. (2006). Poly(ether imide) membranes modified with poly(ethylene imine) as potential carriers for epidermal substitutes, Macromolecular Bioscience, 6(4), 274–284.
  • Uzal, N., Ates, N., Saki, S., Bulbul, Y. E., Chen, Y. (2017). Enhanced hydrophilicity and mechanical robustness of polysulfone nanofiber membranes by addition of polyethyleneimine and Al2O3 nanoparticles. Separation and Purification Technology, 187, 118–126.
  • Vaillant, F., Millan, A., Dornier, M., Decloux, M., Reynes, M. (2001). Strategy for economical optimization of the clarification of pulpy fruit juices using crossflow microfiltration. Journal of Food Engineering, 48(1), 83–90.
  • van Reis, R., Zydney, A. (2007). Bioprocess membrane technology. Journal of Membrane Science, 297(1), 16–50.
  • Vanneste, J., Sotto, A., Courtin, C. M., Van Craeyveld, V., Bernaerts, K., Van Impe, J. (2011). Application of tailor-made membranes in a multi-stage process for the purification of sweeteners from Stevia rebaudiana Journal of Food Engineering, 103(3), 285–293.
  • Vasanth, D., Pugazhenthi, G., Uppaluri, R. (2013). Cross-flow microfiltration of oil-in-water emulsions using low cost ceramic membranes. Desalination, 320, 86–95.Wu, D., Huang, Y., Yu, S., Lawless, D., Feng, X. (2014). Thin film composite nanofiltration membranes assembled layer-by-layer via interfacial polymerization from polyethylenimine and trimesoyl chloride. Journal of Membrane Science, 472, 141–153.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Makaleler
Yazarlar

Solmaz Şebnem Severcan Bu kişi benim

Niğmet Uzal

Kevser Kahraman

Proje Numarası FCD-2017-92
Yayımlanma Tarihi 1 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 44 Sayı: 4

Kaynak Göster

APA Severcan, S. Ş., Uzal, N., & Kahraman, K. (2019). PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI. Gıda, 44(4), 618-628. https://doi.org/10.15237/gida.GD19083
AMA Severcan SŞ, Uzal N, Kahraman K. PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI. GIDA. Ağustos 2019;44(4):618-628. doi:10.15237/gida.GD19083
Chicago Severcan, Solmaz Şebnem, Niğmet Uzal, ve Kevser Kahraman. “PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI”. Gıda 44, sy. 4 (Ağustos 2019): 618-28. https://doi.org/10.15237/gida.GD19083.
EndNote Severcan SŞ, Uzal N, Kahraman K (01 Ağustos 2019) PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI. Gıda 44 4 618–628.
IEEE S. Ş. Severcan, N. Uzal, ve K. Kahraman, “PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI”, GIDA, c. 44, sy. 4, ss. 618–628, 2019, doi: 10.15237/gida.GD19083.
ISNAD Severcan, Solmaz Şebnem vd. “PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI”. Gıda 44/4 (Ağustos 2019), 618-628. https://doi.org/10.15237/gida.GD19083.
JAMA Severcan SŞ, Uzal N, Kahraman K. PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI. GIDA. 2019;44:618–628.
MLA Severcan, Solmaz Şebnem vd. “PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI”. Gıda, c. 44, sy. 4, 2019, ss. 618-2, doi:10.15237/gida.GD19083.
Vancouver Severcan SŞ, Uzal N, Kahraman K. PSF/SiO2 NANOKOMPOZİT MEMBRAN ÜRETİMİ VE ELMA SUYU BERRAKLAŞTIRMA PROSESİNDE KULLANIMI. GIDA. 2019;44(4):618-2.

Cited By

Gıda ve içecek endüstrisinde membran teknolojileri
Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi
https://doi.org/10.17341/gazimmfd.881087

by-nc.png

GIDA Dergisi Creative Commons Atıf-Gayri Ticari 4.0 (CC BY-NC 4.0) Uluslararası Lisansı ile lisanslanmıştır. 

GIDA / The Journal of FOOD is licensed under a Creative Commons Attribution-Non Commercial 4.0 International (CC BY-NC 4.0).

https://creativecommons.org/licenses/by-nc/4.0/