Araştırma Makalesi
BibTex RIS Kaynak Göster

Hegzagonal WO3 nano parçacılarının PEG Destekli Hidrotermal Sentezi

Yıl 2019, Sayı: 16, 969 - 976, 31.08.2019
https://doi.org/10.31590/ejosat.605611

Öz

Üstün
yarı iletken özellikler gösteren tungsten oksit (WO3) elektrokromik
cihazlarda, gaz sensörlerinde ve fotokatalitik uygulamarda ile dikkat
çekmektedir. Gelecekteki uygulamaları için kontrollü morfoloji ve kristal
yapıya sahip parçacık, levha, tel, çubuk, tüp ve küre olmak üzere WO3
nano yapısının hazırlanması önemlidir. Kristal yapısı ve boyutunun, spesifik
gözenek alanı ve gözenek hacmi ve parçacık boyut dağılımı WO3’ün
kimyasal aktivitesi üzerine sahip olduğu bilinmektedir. Sonuç olarak, iyi
kontrol edilmiş bir morfolojide ve kristal yapıda sentezlenebilmesi için üretim
koşullarının etkilerinin sistematik olarak araştırılması gerekmektedir. Bu
çalışmada, hegzagonal WO3 nano boyutlu parçacıklar substrat
içeriğinin ağırlık oranı ve poli etilen glikol (MA:1500, PEG-1500) yüzey aktif
kimyasalının eklenmesi ile kontrol edilen bir hidrotermal yöntem ile
sentezlenmiştir. N2 sorpsiyon, partikül morfolojisi ve kristal yapı
özellikleri ile tanımlanan WO3 örneklerinin karakteristiği; hacimsel
yüzey analizi, taramalı elektron mikroskobu (SEM) ve X-ışını kırınımı (XRD) ile
incelenmiştir. WO3 örnekleri iyi kontrol edilen koşullar altında 200° C ve 24 saat boyunca hidrotermal yöntem ile PEG-1500’ün
ajan olarak eklenmesi veya eklenmemesi koşullarında üretildiği gösterilmiştir.
Tungsten oksit nano yapılarının 63.02 nm Kristal boyutu ile (002) ekseni
boyunca büyüme gerçekleştiği belirlenmiştir. SEM analizi sonuçlarına göre çubuk
yapısı yerine hegzagonal ve mezopor WO3 nano partikülllerinin
oluştuğu tespit edilmiştir. Bununla beraber son ürün WO3 nano partiküllerini
hidrojen gazı altındaki en etkili indirgenme sıcaklıkları sıcaklık programlı
indirme (TPR) analizi ile incelenmiştir. İndirgenme sonrası elde edilen nano
boyutlu metalik tungsten (W) özellikleri ise XRD ve SEM teknikleri ile
araştırılmıştır. 

Kaynakça

  • Abe, R., Takami, H., Murakami, N., & Ohtani, B. (2008). Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. Journal of the American Chemical Society, 130(25), 7780-7781.
  • Ahmadi, M., Younesi, R., & Guinel, M. J. (2014). Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. Journal of Materials Research, 29(13), 1424-1430.
  • Boudiba, A., Zhang, C., Umek, P., Bittencourt, C., Snyders, R., Olivier, M. G., & Debliquy, M. (2013). Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies. International journal of hydrogen energy, 38(5), 2565-2577.
  • Chen, Z., & Gao, L. (2007). Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Materials Science and Engineering: B, 141(1-2), 82-86.
  • Díaz, M. A., Pinzón, C. V., & Méndez, I. R. (2009). WO3 thin films by sol–gel: structural and morphological properties. Engineering, 13(3), 29-38.
  • Ghoreishi, K. B., Yarmo, M. A., Nordin, N. M., & Samsudin, M. W. (2013). Enhanced Catalyst Activity of Using Polypyrrole as Support for Acidic Esterification of Glycerol with Acetic Acid. Journal of Chemistry, 2013.
  • Hernandez-Uresti, D. B., Sánchez-Martínez, D., Martínez-De La Cruz, A., Sepúlveda-Guzmán, S., & Torres-Martínez, L. M. (2014). Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceramics International, 40(3), 4767-4775.
  • Huirache-Acuña, R., Paraguay-Delgado, F., Albiter, M. A., Lara-Romero, J., & Martínez-Sánchez, R. (2009). Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method. Materials characterization, 60(9), 932-937.
  • Keyson, D., Volanti, D. P., Cavalcante, L. S., Simões, A. Z., Varela, J. A., & Longo, E. (2008). CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Materials Research Bulletin, 43(3), 771-775.
  • Li, X., Cao, X., Wang, W., Yang, Y., & Rao, G. (2006). Preparation and characterization of WO3 from ammonium paratungstate via hydrothermal method. Frontiers of Chemistry in China, 1(4), 389-392.
  • Li, Y. B., Bando, Y., Golberg, D., & Kurashima, K. (2003). WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chemical Physics Letters, 367(1-2), 214-218.
  • Lu, C. H., Hon, M. H., Kuan, C. Y., & Leu, C. (2014). Preparation of WO3 nanorods by a hydrothermal method for electrochromic device. Japanese Journal of Applied Physics, 53(6S), 06JG08.
  • Lu, X., Liu, X., Zhang, W., Wang, C., & Wei, Y. (2006). Large-scale synthesis of tungsten oxide nanofibers by electrospinning. Journal of colloid and interface science, 298(2), 996-999.
  • Martínez, D. S., Martínez-De La Cruz, A., & Cuéllar, E. L. (2011). Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Applied Catalysis A: General, 398(1-2), 179-186.
  • Meda, L., Breitkopf, R. C., Haas, T. E., & Kirss, R. U. (2002). Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films, 402(1-2), 126-130.
  • Mwakikunga, B. W., Sideras‐Haddad, E., Forbes, A., & Arendse, C. (2008). Raman spectroscopy of WO3 nano‐wires and thermo‐chromism study of VO2 belts produced by ultrasonic spray and laser pyrolysis techniques. physica status solidi (a), 205(1), 150-154.
  • Nogueira, H. I., Cavaleiro, A. M., Rocha, J., Trindade, T., & de Jesus, J. D. P. (2004). Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Materials Research Bulletin, 39(4-5), 683-693.
  • Peng, T., Ke, D., Xiao, J., Wang, L., Hu, J., & Zan, L. (2012). Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. Journal of Solid State Chemistry, 194, 250-256.
  • Sánchez-Martínez, D., Martínez-De La Cruz, A., & López-Cuéllar, E. (2013). Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Materials Research Bulletin, 48(2), 691-697.
  • Su, X., Xiao, F., Li, Y., Jian, J., Sun, Q., & Wang, J. (2010). Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Materials Letters, 64(10), 1232-1234.
  • Therese, H. A., Li, J., Kolb, U., & Tremel, W. (2005). Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route. Solid State Sciences, 7(1), 67-72.
  • Zhang, J., Wang, X. L., Xia, X. H., Gu, C. D., & Tu, J. P. (2011). Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells, 95(8), 2107-2112.
  • Zheng, F., Zhang, M., & Guo, M. (2013). Controllable preparation of WO3 nanorod arrays by hydrothermal method. Thin Solid Films, 534, 45-53.
  • Qu, W., & Wlodarski, W. (2000). A thin-film sensing element for ozone, humidity and temperature. Sensors and Actuators B: Chemical, 64(1-3), 42-48.
  • Wu, X., Wang, W., Li, F., Khaimanov, S., Tsidaeva, N., & Lahoubi, M. (2016). PEG-assisted hydrothermal synthesis of CoFe2O4 nanoparticles with enhanced selective adsorption properties for different dyes. Applied Surface Science, 389, 1003-1011.

PEG Assisted Hydrothermal Synthesis of Hexagonal WO3 Nanoparticles

Yıl 2019, Sayı: 16, 969 - 976, 31.08.2019
https://doi.org/10.31590/ejosat.605611

Öz

Tungsten oxide (WO3) displays superior semiconductor properties which renders it attractive for utilization in the electrochromic devices, gas sensors and photocatalytic applications. Preparation of WO3 nanostructures including particles, plates, wires, rods, tube and spheres with controlled morphology and crystal structure for the future application is gaining attention. It has been known that crystal structure and size, specific surface area, pore volume and particle size distribution of WO3 have a significant effect on chemical activity. As a result, it is necessary to investigate systematically the effects of preparing conditions in synthesis of well-controlled morphology and crystal structure. In the present study, hexagonal WO3 nano sized powders have been synthesized via hydrothermal method by controlling the weight ratio of substrate and additing of poly ethylene glycol (MW: 1500, PEG-1500) as surfactant agent. The characterization of WO3 samples is complemented with N2 sorption, particle morphology and crystalline properties are investigated by volumetric surface analysis, scanning electron microscopy (SEM) and X-ray diffraction (XRD). It has been shown that WO3 samples can be achieved by adding or not PEG-1500 as the agent in hydrothermal process at 200 °C for 24 h under well controlled conditions. The growth direction of the tungsten oxide nanostructures is determined along (002) axis with 63.02 nm crystal size. SEM analyses results indicate that by addition of PEG-1500, hexagonal and mesoporous nanoparticles of WO3 are formed instead of rods. Moreover, most effective reduction temperatures of the final WO3 nano particles under hydrogen gas have been studied by using temperature programmed reduction (TPR). Characteristics of nano-sized metallic tungsten (W) obtained after the reduction process are investigated by XRD and SEM techniques. 

Kaynakça

  • Abe, R., Takami, H., Murakami, N., & Ohtani, B. (2008). Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. Journal of the American Chemical Society, 130(25), 7780-7781.
  • Ahmadi, M., Younesi, R., & Guinel, M. J. (2014). Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure. Journal of Materials Research, 29(13), 1424-1430.
  • Boudiba, A., Zhang, C., Umek, P., Bittencourt, C., Snyders, R., Olivier, M. G., & Debliquy, M. (2013). Sensitive and rapid hydrogen sensors based on Pd–WO3 thick films with different morphologies. International journal of hydrogen energy, 38(5), 2565-2577.
  • Chen, Z., & Gao, L. (2007). Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Materials Science and Engineering: B, 141(1-2), 82-86.
  • Díaz, M. A., Pinzón, C. V., & Méndez, I. R. (2009). WO3 thin films by sol–gel: structural and morphological properties. Engineering, 13(3), 29-38.
  • Ghoreishi, K. B., Yarmo, M. A., Nordin, N. M., & Samsudin, M. W. (2013). Enhanced Catalyst Activity of Using Polypyrrole as Support for Acidic Esterification of Glycerol with Acetic Acid. Journal of Chemistry, 2013.
  • Hernandez-Uresti, D. B., Sánchez-Martínez, D., Martínez-De La Cruz, A., Sepúlveda-Guzmán, S., & Torres-Martínez, L. M. (2014). Characterization and photocatalytic properties of hexagonal and monoclinic WO3 prepared via microwave-assisted hydrothermal synthesis. Ceramics International, 40(3), 4767-4775.
  • Huirache-Acuña, R., Paraguay-Delgado, F., Albiter, M. A., Lara-Romero, J., & Martínez-Sánchez, R. (2009). Synthesis and characterization of WO3 nanostructures prepared by an aged-hydrothermal method. Materials characterization, 60(9), 932-937.
  • Keyson, D., Volanti, D. P., Cavalcante, L. S., Simões, A. Z., Varela, J. A., & Longo, E. (2008). CuO urchin-nanostructures synthesized from a domestic hydrothermal microwave method. Materials Research Bulletin, 43(3), 771-775.
  • Li, X., Cao, X., Wang, W., Yang, Y., & Rao, G. (2006). Preparation and characterization of WO3 from ammonium paratungstate via hydrothermal method. Frontiers of Chemistry in China, 1(4), 389-392.
  • Li, Y. B., Bando, Y., Golberg, D., & Kurashima, K. (2003). WO3 nanorods/nanobelts synthesized via physical vapor deposition process. Chemical Physics Letters, 367(1-2), 214-218.
  • Lu, C. H., Hon, M. H., Kuan, C. Y., & Leu, C. (2014). Preparation of WO3 nanorods by a hydrothermal method for electrochromic device. Japanese Journal of Applied Physics, 53(6S), 06JG08.
  • Lu, X., Liu, X., Zhang, W., Wang, C., & Wei, Y. (2006). Large-scale synthesis of tungsten oxide nanofibers by electrospinning. Journal of colloid and interface science, 298(2), 996-999.
  • Martínez, D. S., Martínez-De La Cruz, A., & Cuéllar, E. L. (2011). Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Applied Catalysis A: General, 398(1-2), 179-186.
  • Meda, L., Breitkopf, R. C., Haas, T. E., & Kirss, R. U. (2002). Investigation of electrochromic properties of nanocrystalline tungsten oxide thin film. Thin Solid Films, 402(1-2), 126-130.
  • Mwakikunga, B. W., Sideras‐Haddad, E., Forbes, A., & Arendse, C. (2008). Raman spectroscopy of WO3 nano‐wires and thermo‐chromism study of VO2 belts produced by ultrasonic spray and laser pyrolysis techniques. physica status solidi (a), 205(1), 150-154.
  • Nogueira, H. I., Cavaleiro, A. M., Rocha, J., Trindade, T., & de Jesus, J. D. P. (2004). Synthesis and characterization of tungsten trioxide powders prepared from tungstic acids. Materials Research Bulletin, 39(4-5), 683-693.
  • Peng, T., Ke, D., Xiao, J., Wang, L., Hu, J., & Zan, L. (2012). Hexagonal phase WO3 nanorods: Hydrothermal preparation, formation mechanism and its photocatalytic O2 production under visible-light irradiation. Journal of Solid State Chemistry, 194, 250-256.
  • Sánchez-Martínez, D., Martínez-De La Cruz, A., & López-Cuéllar, E. (2013). Synthesis of WO3 nanoparticles by citric acid-assisted precipitation and evaluation of their photocatalytic properties. Materials Research Bulletin, 48(2), 691-697.
  • Su, X., Xiao, F., Li, Y., Jian, J., Sun, Q., & Wang, J. (2010). Synthesis of uniform WO3 square nanoplates via an organic acid-assisted hydrothermal process. Materials Letters, 64(10), 1232-1234.
  • Therese, H. A., Li, J., Kolb, U., & Tremel, W. (2005). Facile large scale synthesis of WS2 nanotubes from WO3 nanorods prepared by a hydrothermal route. Solid State Sciences, 7(1), 67-72.
  • Zhang, J., Wang, X. L., Xia, X. H., Gu, C. D., & Tu, J. P. (2011). Electrochromic behavior of WO3 nanotree films prepared by hydrothermal oxidation. Solar Energy Materials and Solar Cells, 95(8), 2107-2112.
  • Zheng, F., Zhang, M., & Guo, M. (2013). Controllable preparation of WO3 nanorod arrays by hydrothermal method. Thin Solid Films, 534, 45-53.
  • Qu, W., & Wlodarski, W. (2000). A thin-film sensing element for ozone, humidity and temperature. Sensors and Actuators B: Chemical, 64(1-3), 42-48.
  • Wu, X., Wang, W., Li, F., Khaimanov, S., Tsidaeva, N., & Lahoubi, M. (2016). PEG-assisted hydrothermal synthesis of CoFe2O4 nanoparticles with enhanced selective adsorption properties for different dyes. Applied Surface Science, 389, 1003-1011.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Halit Eren Figen 0000-0003-1330-2852

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 16

Kaynak Göster

APA Figen, H. E. (2019). PEG Assisted Hydrothermal Synthesis of Hexagonal WO3 Nanoparticles. Avrupa Bilim Ve Teknoloji Dergisi(16), 969-976. https://doi.org/10.31590/ejosat.605611