

Pre m_X Generalized Closed Set and its Application

Sharmistha Bhattacharya (Halder)^{1,a}(halder_731@ rediffmail.com)Gour Pal^b(gourpal74@gmail.com)

^aDepartment of Mathematics, Tripura University, India ^bDepartment of Mathematics, Women's College, Agartala, India

Abstract – In this paper, we Introduce the notions of pre m_X generalized Closed set in the T_{m_X} space generated by m_X structure and investigate some of its properties for such notions. Further we study the new concept of Pre m_X generalized * Closed set.

Keywords - m_X open, pre m_X open, pre m_X - generalized Closed, pre m_X generalized *Closed.

1. Introduction

In 1970, Levine [8] introduced the notion of generalized closed (g-Closed) sets in topological spaces. Among many modifications of g closed sets, the notions of α g-closed [10] (resp. gs-closed [3], gp-closed [13], g-closed [6], gsp-closed [5]) sets are investigated by using α -open (resp.semi-open, preopen, b-open, semi-preopen) sets. Further in 2001, V. Popaand T. Noiri [19] introduce some generalized forms of continuity under minimal structure. The concept of pre m_X -open set has been introduced by the authors in 2011[2].

In section 3, we introduce a new class of $\text{pre}m_X$ generalized closed set in the topological space T_{m_X} generated by m_X structure and investigate some of it's fundamental properties. Major properties of this new concept will be studied as well as relations to the other classes of generalized closed sets will be investigated. Further in section 4 we introduce another new concept of pm_X generalized * Closed set using $\text{pre}m_X$ open set and study of some important property of such notion.

¹Corresponding Author

2. Preliminaries

Let X be a topological space and A \subseteq X. The closure of A and the interior of A are denoted by Cl(A) andInt(A) respectively. A subfamily m_X of the power set P(X) of a nonempty set X is called a minimal structure[19] on X if $\phi \in m_X$ and X $\in m_X$. By (X, m_X) , we denote a nonempty set X with a minimal structure m_X on X. Simply we call (X, m_X) a space with a minimal structure m_X on X. Elements in m_X are called m-open sets. Let (X, m_X) be a space with a minimal structure m_X on X. For a subset A of X, the m-closure of A and the m-interior of Aare defined as the following [16]

 $m_X Int(A) = \bigcup \{U : U \subseteq A; U \in m_X\}$ $m_X Cl(A) = \bigcap \{F : A \subseteq F; X - F \in m_X\}$

Definition 2.1. ([12]) Let (X, m_X) be a space with a minimal structure m_X on X and $A \subseteq X$. Then a set A is called an m_X -preopen set in X if $A \subseteq m_X Int(m_X Cl(A))$. A set A is called an m_X – preclosed set if the complement of A is m_X -preopen.

Definition 2.2. ([12]) Let (X, m_X) be a space with a minimal structure m_X . For $A \subseteq X$, the m-pre-closure and the m-pre-interior of A, denoted by $m_X pCl(A)$ and $m_X pInt(A)$, respectively, are defined as the following

 $m_X pCl(A) = \bigcap \{F \subseteq X : A \subseteq F; F \text{ is } m_X \text{ preclosed in } X\} \\ m_X pInt(A) = \bigcup \{U \subseteq X : U \subseteq A; U \text{ is } m_X \text{ preopen in } X\}$

Definition 2.3 ([2]) Let (X, T_{m_X}) be a space with a minimal structure m_X on X and $A \subseteq X$. Then a subset A of X is said to be a pre- m_X open set on an m_X structure if $A \subseteq Int(m_X ClA)$.

Definition 2.4. ([2]) Let (X, T_{m_X}) be a space with a minimal structure m_X . For A $\subseteq X$, the pre- m_X -closure and the pre- m_X -interior of A, denoted by $pm_X Int(A)$ and $pm_X Cl(A)$, respectively, are defined as the following

 $pm_X Int(A) = \bigcup \{ G \subset Pm_X O(X) : G \subset A \}$ $pm_X Cl(A) = \bigcap \{ F \subset X : F \subset A, F \text{ is } prem_X \text{ closed} \}$

Lemma 2. 5([2])(a) $m_X Int(A) \subseteq Int(A)$ (b) $m_X - Cl(A) \supseteq Cl(A)$

Lemma 2. 6([12]) (a) $m_X Cl(m_X Int(A)) \subseteq m_X Cl(m_X Int(m_X pCl(A))) \subseteq m_X pCl(A)$ (b) $m_X pInt(A) \subseteq m_X Int(m_X Cl(m_X pInt(A))) \subseteq m_X Int(m_X Cl(A)).$

Lemma 2.7 ([13])Let X be a nonempty set and m_X a minimal structure on X satisfying property B. For a subset A of X the following properties hold (i) $A \in m_X iff m_X Int(A) = A$ (ii) $A \in m_X iff m_X Cl(A) = A$ (iii) $m_X Int(A) \in m_X$ and $m_X Cl(A) \in m_X$ **Definition 2.8.** Let (X,τ) be a topological space. A subset A of X is said to be (1) **g-Closed[8]** if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$, (2) **a-g-Closed[10]** if $\alpha Cl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$, (3) gp - closed [15] if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$, (4) b - closed [6] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in \tau$

Definition 2.9 ([12]) A subset A of a space (X, m_X) on m_X -structure is said to be m_X -pre closed if $m_X - Cl(m_X Int(A)) \subseteq A$.

Definition 2.10 ([17]) A subset A of a space (X, m_X) on m_X -structure is said to be m_X -weakly generalized closed (briefly, $m_X wg - closed$) if $m_X Cl(m_X Int(A)) \subseteq U$, whenever $A \subseteq U$ and U is m_X -preopen.

Definition 2.11 ([13]) Let (X, m_X) be a space on m_X -structure. A subset A of X is called m_X g closedif $m_X Cl(A) \subseteq U$, whenever $A \subseteq U$ and U is m_X - open.

Definition 2.12. A function $f : X \rightarrow Y$ is called

(a) pre-continuous [11] if f⁻¹(F) is pre-closed in X for every closed set F of Y;

(b) gp - continuous [7] if f⁻¹(F) is gp - closed in X for every closed set F of Y;

(c) $g - continuous[\mathbf{1}]$ if $f^{-1}(F)$ is g - closed in X for every closed set F of Y.

Definition 2.13 A subset A of a space (X, T_{m_X}) on T_{m_X} generated by $m_X - structure$ is said to be pre $m_X - closed$ if $Cl(m_X Int(A)) \subseteq A$.

Definition 2.14. Let (X, m_X) be a space on m_X -structure. A subset A of X is called (a) $m_X - pre generalized closed(briefly, m_X pg -$

- closed) if $m_X pCl(A) \subseteq U$, whenever $A \subseteq U$ and U is m_X -preopen. (b) **Generalized** $m_X - preclosed(briefly, <math>gm_X p - closed)$ if $m_X pCl(A) \subseteq U$
- (b) Generalized $m_X preclosed$ (briefly, $gm_X p closed$) if $m_X p C l(A) \subseteq U$ whenever $A \subseteq U$ and U is $m_X - open$.
- (c) **Generalized pre** m_x **closed**(briefly, gpm_x closed)if pm_x Cl(A) $\subseteq U$ whenever A $\subseteq U$ and U is m_x -open.

Definition 2.15. Let (X, m_X) be a space on m_X -structure. A subset A of X is called

- (a) **b**- m_X Closed set if $Int(m_X Cl(A)) \cup Cl(m_X Int(A)) \subseteq A$
- (b) **generalized** $b m_X closed$ set (simply; $gbm_X closed$ set) if $bm_X Cl(A) \subseteq U$, whenever $A \subseteq U$ and $U ism_X$ open.

Definition 2.16 ([4]) Let (X,T_{m_X}) be a space with $am_X - structure$. For A $\subseteq X$, the *pre* m_X *closure* and the pre- m_X -Interior of A, denoted by $Pm_XCl(A)$ and $Pm_XInt(A)$ respectively are defined as the following

 $Pm_{X}Cl(A) = \bigcap \{F \subseteq X : A \subseteq F, F \text{ is } Pre \ m_{X} \text{ Closed in } X\}$ $Pm_{X}Int(A) = \bigcup \{U \subseteq X : U \subseteq A, U \text{ is } Prem_{X} \text{ open in } X\}$

Remark 2.17 ([2])Let A be a subset of X on (X,T_{m_X}) . Then

$$m_X Int(A) \subseteq Int(A)$$

 $m_X Cl(A) \supseteq Cl(A)$

Lemma 2.18 ([16])Let (X, m_X) be a space with a minimal structure m_X and $A \subseteq X$. Then $m_X Int(A) \subseteq pm_X Int(A) \subseteq pm_X Cl(A) \subseteq m_X Cl(A)$.

Definition 2.19 ([9])A minimal structure m_X on a non-empty set X is said to have property *B* if the union of any family of subsets belonging to m_X belongs to m_X

Lemma 2.20 ([**21**]) Let (X, m_X) be an m-space and m_X satisfy property*B*. Then for a subset A of X, the following properties hold

(1) $A \in m_X$ if and only if $m_X - Int = A$,

(2) A is m-Closed if and only if m_X –Cl(A)=A,

(3) $m_X - \text{Int}(A) \in m_X$ and $m_X - \text{Cl}(A)$ is m_X -Closed.

3. Pre m_X generalized closed

Definition 3.1 Let (X, T_{m_X}) on T_{m_X} generated by m_X -structure. A subset A of X is called *pre* m_X generalized closed (*briefly*, $pm_Xg - closed$) if $pm_XCl(A) \subseteq U$, whenever $A \subseteq U$ and U is *pre* m_X open.

Example 3.2: Let $X = \{a, b, c\}$. Let $m_X = \{\phi, X, \{a\}, \{a, b\}, \{c\}\}$ and the corresponding topology generated by m_X structure is $T_{m_X} = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$ then pre m_X Closed set $=\{\phi, X, \{b, c\}, \{c\}, \{a, b\}, \{b\}\}$. Let $A = \{a, b\}$ then $A \subseteq \{a, b\}$, X. Here pm_X Cl(A)= $\{a, b\} \subseteq \{a, b\}, X$. So A is a pre m_X generalized Closed.

Theorem 3.3 ϕ is a pre m_X generalized open set but X is not.

Proof: (i) Since $m_X Int(\phi) = \phi$ subset of any pre- m_X open set containing ϕ . So, ϕ is pre m_X generalized open. But X is not contained in any pre m_X generalized closed set, so X is not a pre m_X generalized open set.

Remark 3.4 Finite union of $prem_X$ generalized closed set is not $prem_X$ generalized closed set.

Example 3.5 Let $X = \{a, b, c\}$. Let $m_X = \{\phi, X, \{a\}, \{a,b\}, \{c\}, \{b\}\}\)$ and the corresponding topology generated by m_X structure is $T_{m_X} = \{\phi, X, \{a\}, \{c\}, \{a,c\}, \{a,b\}, \{b,c\}, \{b\}\}\)$ then pre m_X closed set = $\{\phi, X, \{b, c\}, \{a, b\}, \{b\}, \{c\}, \{a\}, \{a, c\}\}$. If $A = \{a, b\}$ then A is a pre m_X generalized closed (Example 3.2), $B = \{a, c\} \subseteq \{a, c\}, X$ and $pm_X Cl(B) = \{a, c\} \subseteq \{a, c\}$, then A and B are pre m_X generalized closed sets in T_{m_X} . But $A \cup B = X$ is not pre m_X generalized closed set.

Remark 3.6 Intersection of two *pre* m_X *generalized* Closed set is not *pre* m_X *generalized* closed set.

Example 3.7 Let $X = \{a, b, c\}, m_X = \{X, \phi, \{b\}, \{a, c\}\{b, c\}\}, T_{m_X} = \{X, \phi, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$. Let $A = \{a, c\}$ and $B = \{b, c\}$, pre m_X Closed set $= \{\phi, X, \{a, c\}, \{a, b\}, \{b\}, \{a\}\}$ then A and B are pre m_X generalizedClosed in T_{m_X} but $A \cap B = \{c\}$ is not pre m_X generalized Closed in T_{m_X} . Since $P m_X Cl(\{c\}) = \{a, c\} \not\subset \{c\}$.

Remark 3.8 The collection of all *pre* m_X *generalized* open set with X forms a m_X^* structure.

Theorem 3.9 If A is $prem_X$ -Closed in X, then it is ap m_X g-Closed.

Proof: Assume A is $prem_X$ -Closed set in X. $\Rightarrow Cl(m_X Int(A)) \subseteq A$ Suppose $A \subseteq U$, U being pre m_X open in X. $\Rightarrow Cl(m_X Int(A)) \subseteq U$. $\Rightarrow pm_X Cl(A) \subseteq U$ [by Lemma 2.5]. $\Rightarrow A$ is $pm_X g$ -Closed.

Theorem 3.10 If A is $pm_X g$ -Closed set in X then it is a $gp m_X$ Closed set.

Proof: Let $A \subseteq U$, U being a m_X open subset of X. Now A being a pm_Xg -closed set $p m_X Cl(A) \subseteq U$, Since every m_X open set is $prem_X$ -open set .So $pm_X Cl(A) \subseteq U$ and any $pre m_X$ opensetUcontaining A. Hence from definition A is a gpm_X closed set.

Example 3.11 Let $X = \{a, b, c\}$. Let $m_X = \{\phi, X, \{a\}, \{a, b\}, \{c\}\}$ and the corresponding topology generated by m_X structure is $T_{m_X} = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$ then pre m_X Closed set $= \{\phi, X, \{b, c\}, \{c\}, \{a, b\}, \{b\}\}$.

Let $A = \{a, b\}$ then $A \subseteq \{a, b\}, X$. Here $p m_X Cl(A) = \{a, b\} \subseteq \{a, b\}, X$. So A is a pre m_X generalized closed. A is also m_X g Closed set.

Example 3.12 Let $X = \{a, b, c, d\}, m_X = \{\phi, X, \{d\}, \{a, b\}, \{b, c\}\}$ the corresponding $T_{m_X} = \{\phi, X, \{d\}, \{a, b\}, \{b, c\}, \{b\}, \{a, b, d\}, \{b, c, d\}, \{a, b, c\}\}, m_X$ closed set $= \{\phi, X, \{a, b, c\}, \{c, d\}, \{a, d\}\}$, pre m_X Closed set $= \{\phi, X, \{a, b, c\}, \{c, d\}, \{a, c, d\}, \{c\}, \{a\}, \{d\}\}$. Let $A = \{b, d\} \subseteq X$ then m_X Cl(A) = $X \subseteq X$. Then A is $m_X g$ closedbut in T_{m_X} space $A = \{b, d\} \subseteq \{a, b, d\}, \{b, c, d\}, X$ and $Pm_XCl(A) = X \not\subset a, b, d\}, \{b, c, d\}$. Thus A is $m_X g$ closedbut not $pm_X g - closed$.

Example 3.13 Example (3.11) also shows that every $pm_X g$ closed set is gpm_X closed set but example (b) show the converse is not true.

Example 3. 14 Let $X = \{a, b, c\}$. Let $m_X = \{\phi, X, \{a\}, \{a, b\}, \{c\}\}$ and the corresponding topology generated by m_X structure is $T_{m_X} = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}\}$ then pre m_X closed set = $\{\phi, X, \{b, c\}, \{c\}, \{a, b\}, \{b\}$. Let $A = \{b, c\}, m_X Int(A) = \{c\}$ implies

 $Cl(m_X Int(A)) = Cl(\{c\}) = \{c\} \subseteq A$ i.e. A is pre m_X closed set, again $A \subseteq X$. Here $pm_X Cl(A) = \{b, c\} \subseteq X$. So A is a pre m_X generalized closed.

Example 3. 15 X ={a, b, c, d}.Let $m_X = \{\phi, X, \{a\}, \{b, d\}, \{a, c, d\}\}$ then $T_{m_X} = \{\phi, X, \{a\}, \{d\}, \{a, b, d\}, \{b, d\}, \{a, c, d\}\}$ and pre m_X -Closed set = $\{\phi, X, \{b, c, d\}, \{a, b, c\}, \{c\}, \{a, c\}, \{b\}\}$.Let $A = \{a, c, d\}m_X$ Int (A) = A implies $Cl(m_X Int (A) = X \not\subset A$ therefore A is not pre m_X Closed but $A \subseteq X$ and $pm_X Cl(A) = X \subseteq X$ then A is pre m_X generalized Closed.

Lemma 3. 16:For subsets A,B of X, the following properties hold (i) If A is m_X -Closed then A is pm_Xg -Closed. (ii) If m_X has property B and A is $pm_Xg - Closed$ and m_X -open then A is m_X Closed. (iii) If A is pm_Xg -Closed and $A \subseteq B \subseteq p m_X Cl$ (A))then B is pm_Xg -Closed.

Proof: To prove (i) Let A be a m_X -Closed set in (X, m_X) . To prove A is pm_Xg -Closed set, Let $A \subseteq U$, U being a pre m_X -open set. To prove $pm_XCl(A)\subseteq U$. $pm_XCl(A))\subseteq m_X^- Cl(A) \subseteq U$ [since A is $m_XClosed$] $pm_XCl(A))\subseteq U$. A is pm_Xg -Closed.

(ii) To prove A is m_X -Closed i.e. To prove $m_X - Cl(A) = A$ [Reference 17] It is obvious that A $\subseteq m_X$ - Cl(A).To prove $m_X - Cl(A) \subseteq A$: A $\subseteq A$ and A is pm_Xg -Closed and m_X -open. $\Rightarrow pm_XCl((A)) \subseteq A \Rightarrow m_X$ - $Cl(A) \subseteq A$ [since A is m_X -open, we have $m_Xint(A) = A$] m_X - Cl(A) = A and hence A is m_X -Closed.

(iii) To prove $m_X Cl(B) - B \subseteq [pm_X Cl(A)] - A$. since $pm_X Cl(A) - A$ contains no nonempty pm_X g-closed set neither does $pm_X Cl(B) - B$. Therefore B is pm_X g-closed.

Lemma 3.17: A subset A of X is pm_Xg -open if and only if $F \subseteq pm_XCl(A)$ whenever $F \subseteq A$ and F is m_X -Closed.

Proof : Assume that A is $pm_Xg - open$ set in X. Then A^c is pm_Xg -Closed set in X. Let F be *is* $pm_Xg - Closed$ and $F \subseteq A$. Then F^c is pm_Xg -open and $A^c \subseteq F^c$. So $[m_X Cl(A^c)] \subseteq F^c \Rightarrow [m_X Cl(A)]^c \subseteq F^c$. Thus $F \subseteq pm_X Cl$ (A) Conversely assume that $F \subseteq pm_X Cl$ (A)whenever F is pm_Xg -Closed and $F \subseteq A$. To prove that A^c is pm_Xg -Closed. Let G be a p m_Xg - open set and $A^c \subseteq G$. Now G^c is pm_Xg -Closed. $G^c \subseteq (A^c)^c = A$ By hypothesis $G \subseteq [Pm_XInt(A)]^c$

Implies G \supseteq [Pm_XCl(A)]^c and hence A^c is pm_Xg -closed. Thus A is pm_Xg -open.

Corollary 3.18 For subsets A, B of X the following properties hold: (i) If A is m_X -open then A is pm_Xg -open. (ii) If m_X has property B and A is pm_Xg -open and m_X -Closed then A is m_X open. (iii) If A is pm_Xg -open and $pm_XCl(A) \subseteq B \subseteq A$ then B is pm_Xg -open.

Theorem 3.19 For a subset A of X the following properties are equivalent. (1) A is $pm_X g$ -Closed; (2) $m_X Cl(A) - A$ does not contain any non empty m_X -Closed set; (3) $m_X - Cl(A) - A$ is $pm_X g$ -open.

$Proof: (1) \Rightarrow (2)$

Suppose that F is non-empty pm_Xg -Closed subset of $pm_X Cl(A) - A$.Now $F \subseteq pm_XCl(A) - A$.Then $F \subseteq pm_XCl(A) \cap A^c$ [since $pm_XCl(A) - A = pm_XCl(A) \cap A^c$], $F \subseteq pm_XCl(A)$ and $F \subseteq A^c$.Since F^c is pm_Xg -open set.

A is pm_Xg -closed $pm_XCl(A) \subseteq F^c$. $F \subseteq [pm_XCl(A)]^c$

Hence $F \subseteq [pm_X Cl(A)] \cap [pm_X Cl(A)]^c = \phi$.

 $F = \phi$. Thus $pm_X Cl(A) - A$ contains no nonempty $pm_X g$ -closed set.

Conversely assume that $pm_X Cl(A)$ –A contains no nonempty m_X -closed set.

Let $A \subseteq G$, G is pm_Xg -open. Suppose that $pm_XCl(A)$ is not contained in G. Then $[pm_XCl(A)] \cap G^c$ is a non-empty $pm_XgClosed$ set of $pm_XCl(A)$ -A which is contradiction. A is pm_Xg -Closed.

(2) \Rightarrow (3) Assume that $pm_X Cl(A)$ -A contains no nonempty $pm_X g$ -Closed set. Let $A \subseteq G$ is $pm_X g$ -open. Suppose that $pm_X Cl(A)$ is contained in G.Then $pm_X Cl(A) \cap G^c$ is empty. It is m_X Closed set i.e. $pm_X Cl(A)$ - A is pre m_X open.

Theorem 3.20 A subset A of X is pm_Xg -Closed iff $[pm_XCl(A)] \cap F = \phi$ whenever $A \cap F = \phi$ and F is m_X -Closed.

Proof :Assume that A is pm_Xg -Closed. By definition $pm_XCl(A) \subseteq U$ and also $F \subseteq U$ i.e. $[pm_XCl(A)] - F = \phi ispm_Xg$ -Closed. \therefore F is m_X -Closed. Conversely assume that $pm_XCl(A) - A$ is m_X closed. By the above hearem $pm_XCl(A) - A$ contains no nonempty Closed set i.e. $pm_XCl(A) - A = \phi$.

 \therefore A is pm_Xg -Closed.

Definition 3.21 Let (X, T_{m_X}) on T_{m_X} space generated by m_X -structure. A subset A of X is called pre m_X generalized Closed set relative to B if there exist a m_X open set U where A \subseteq U such that B \cap P m_X Cl(A) \subseteq B \cap U.

Theorem 3.22Suppose that $B \subseteq A$, B is a pm_Xg -Closed set relative to A and that A is a pm_Xg -Closed subset of X. Then B is pm_Xg -Closed relative to X.

Proof. Let $B \subseteq U$ and suppose that U is m_X open set in X. Then $B \subseteq A \cap U$ and hence $Pm_XCl(B) \subseteq A \cap U$. It follows that $A \cap Pm_XCl(B) \subseteq A \cap U$ and $A \subseteq U \cup (X - Pm_XCl(B).$ Since A is $prem_Xg$ -Closed in X, we have $Pm_XCl(A) \subseteq U \cup (X - Pm_XClB)$. $\therefore Pm_XCl(B) \subseteq Pm_XCl(A) \subseteq U \cup (X - Pm_XCl(B))$

Corollary 3.23 Let A be a pm_Xg -Closed set and suppose that F is a pm_X Closed set. Then $A \cap F$ is a pm_Xg -Closed set.

Proof: A \cap F is p m_X Closed in A and hence p m_X g-Closed in A applying theorem 3.20.

Theorem 3.24 Let $A \subseteq Y \subseteq X$ and suppose that A is pm_Xg -Closed in X. Then A is pm_Xg -Closed relative to Y.

Proof: Let $A \subseteq Y \cap U$ and suppose that U is m_X open in X. Then $A \subseteq U$ and hence $Pm_X Cl(A) \subseteq U$. It follows that $Y \cap Pm_X Cl(A) \subseteq Y \cap U$.

Theorem 3.25 Let (X, T_{m_X}) be a compact topological space and suppose that A is a pm_Xg -Closed subset of X. Then A is compact.

Proof: Let S be an open cover of A. Then $m_X Cl(A) \subseteq \bigcup S$ since A is $pm_X g$ -Closed. But $m_X Cl(A)$ is compact and it follows that $A \subseteq m_X Cl(A) \subseteq U_1 \cup \dots \cup U_n$ for some $U_i \in S$.

Theorem 3.26 Let (X, T_{m_X}) be a normal space and suppose that Y is a Pm_X g-closed subset of X. Then $(Y, Y \cap T_{m_X})$ is normal.

Proof: Let E and F be m_X Closed in X and suppose that $(Y \cap E) \cap (Y \cap F) = \phi$. Then $Y \subseteq X - (E \cap F) \in T_{m_X}$ and hence $m_X Cl(Y) \subseteq X - (E \cap F)$. Thus $(m_X Cl(Y) \cap E) \cap (m_X Cl(Y) \cap F) = \phi$. Since (X, T_{m_X}) is normal, there exist m_X open disjoint sets U_1 and U_2 such that $m_X Cl(Y) \cap E \subseteq U_1$ and $m_X Cl(Y) \cap F \subseteq U_2$. It follows that $Y \cap E \subseteq U_1 \cap Y$ and $Y \cap F \subseteq U_2 \cap Y$.

Theorem 3.27. If (X, T_{m_X}) is pre m_X regular and if A is compact, then A is pm_X g-Closed.

Proof: Suppose that $A \subseteq U \in T_{m_X}$. Then there exists an $V \in T_{m_X}$ such that $A \subseteq V \subseteq m_X Cl(V) \subseteq U$ and it follows that $Pm_X Cl(A) \subseteq U$.

Theorem 3.28 If (X, T_{m_X}) is pre m_X regular and locally compact and if A is a pm_X g-Closed subset of X, then A is locally m_X compact in the relative topology.

Proof: Let $x \in A$. Then $x \in V \subseteq X$ where V is a m_X compact neighborhood of x.Since (X, T_{m_X}) is pre m_X regular, there exists an $U \in T_{m_X}$ such that $x \in U \subseteq m_X Cl(U) \subseteq V$.Now $A \cap m_X Cl(U)$ is a neighborhood of x in A and is pm_X g-Closed in X by corollary 3.23.By theorem 3.24, A $\cap m_X Cl(U)$ is pm_X g-Closed in V and therefore m_X compact by theorem 3.25.

Theorem 3.29 If (X, T_{m_X}) is normal and $F \cap A = \phi$ where F is pm_X Closed and A is pm_X g-Closed, then there exist disjoint m_X open sets U_1 and U_2 such that $F \subseteq U_1$ and $A \subseteq U_2$.

Proof: $A \subseteq X - F \in T_{m_X}$ and hence $Pm_X Cl(A) \subseteq X - F$. Thus $Pm_X Cl(A) \cap F = \phi$. Now apply theorem 3.26.

4. Pre m_X generalized * closed set

Definition 4.1 Let (X, T_{m_X}) on T_{m_X} space generated by m_X -structure. A subset A of X is called Pre m_X generalized * Closed set (briefly, $pm_X g^*$ -Closed) if $pm_X Cl(A) \supseteq U$, whenever $A \subseteq U$ and U is pre m_X open set.

Example4.2Let $X = \{a, b, c, d\}$. Let $m_X = \{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$ and the corresponding topology generated by m_X structure is $T_{m_X} = \{\phi, X, \{a\}, \{c\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$. Let $A = \{a\}$ be any sub set of X and U= $\{a, b\}$ pre m_X open set i.e. A \subseteq U then Clearly $Pm_XCl(A) = \{a, b, d\} \supseteq U$. So A is a Pre m_X generalized* Closed set.

Theorem 4.3 A Subset A of X is a Pre m_X generalized * Closed set $iffpm_XCl(A) = X$

Proof: Let $U \in m_X P$ be a pre m_X open set .Since A is pre m_X generalized* Closed set then $A \subseteq U$ whenever $pm_X Cl(A) \supseteq U$.Again $X \in m_X P$ then $pm_X Cl(A) \supseteq X$ but $pm_X Cl(A) \subseteq X$ which implies $pm_X Cl(A) = X$.

By definition converse part is obvious.

Theorem 4.4. Every m_X closed and m_X dense set is pre m_X generalized * closed set.

Proof: Let A is m_X dense in X then $m_X Cl(A) = X$. Also A is m_X Closed then A= $m_X Cl(A)$ implies $pm_X Cl(A) = pm_X Cl(m_X Cl(A)) = pm_X Cl(X) = X$. By **Theorem 4.3** A is Pre m_X generalized * Closed set.

Theorem 4.5.

(i) X is a pre m_X generalized * Closed set but ϕ is not

- (ii) Arbitrary union of pre m_X generalized * Closed set is a pre m_X generalized * Closed set if it is contained in any pre m_X open set.
- (iii) Finite union of $\text{pre}m_X$ generalized * Closed set is a pre m_X generalized * Closed set if it is contained in any pre m_X open set.
- (iv) Arbitrary Intersection of pre m_X generalized * Closed set is a pre m_X generalized * Closed set .

Proof: (i) Since $pm_X Cl(X) = X$ subset of any pre m_X open set containing X. So,X is a pre m_X generalized * Closed set. But ϕ is not contained in any pre m_X open set, so ϕ is not a pre m_X generalized * Closed set.

(ii) Let if possible $\{A_i : i \in I\}$ be an arbitrary collection of p m_X generalized* Closed sets. Let $A_i \subseteq \bigcup \{A_i : i \in I\} \subseteq U$, a pre m_X open subset of X. Since $\{A_i : i \in I\}$ is an arbitrary collection of pm_X generalized* Closed $\{Pm_{X}Cl(A_{i}): i \in I\} \subset U$ set so, • i.e. $\{Pm_{X}Cl(\cup A_{i}): i \in I\} \supseteq \cup \{Pm_{X}Cl(A_{i}): i \in I\} \supseteq U$ [1] i.e. arbitrary union of pm_X generalized* Closed set is a pm_X generalized* Closed set if it is contained in any pre m_X open set.

(iii) Let if possible $\{A_i: i = 1, 2, .., n\}$ be a finite collection of $\operatorname{pre} m_X$ generalized * Closed sets. Let $A_i \subseteq \bigcup \{A_i: i = 1, 2, .., n\} \subseteq \bigcup$, a pre m_X open subset of X. Since $\{A_i: i = 1, 2, .., n\}$ is a finite collection of pre m_X generalized * Closed set, so, $\{Pm_XCl(A_i): i = 1, 2, .., n\} \supseteq \bigcup$. i.e. $\bigcup \{Pm_XCl(A_i): i = 1, 2, .., n\} = \{Pm_XCl(\bigcup A_i : i = 1, 2, .., n)\} \supseteq \bigcup$ i.e. finite union of pre m_X generalized * Closed set is a pre m_X generalized * Closed set if it is contained in any Pre m_X open set.

(iv) Let if possible $\{A_i: i \in I\}$ be an arbitrary collection of pre m_X generalized * Closed sets. Let $A = \bigcap \{A_i: i \in I\} \subseteq U$ a pre m_X open set. If all $\{A_i: i \in I\} \subseteq U_i$, some independent pre m_X open set then $\cap \{A_i: i \in I\} = \phi$, a pre m_X generalized * Closed set. Now let if possible $\cap \{A_i: i \in I\} = \phi$, then $\cap \{A_i: i \in I\} \subseteq U$ implies $\{A_i: i \in I\} \subseteq U$. Since $\{A_i: i \in I\}$ is an arbitrary collection of pre m_X generalized * Closed sets, $Pm_X Cl\{A_i: i \in I\} \supseteq U$. Now $\cap \{A_i: i \in I\} \subseteq \{A_i: i \in I\}$. So, $Pm_X Cl\{\cap\{A_i: i \in I\}\} = \cap Pm_X Cl\{A_i: i \in I\} \supseteq U$. So, arbitrary intersection of pre m_X generalized * Closed set is a pre m_X generalized * Closed set.

Remark 4.6. The collection of pre m_X generalized * Closed set with ϕ forms a Alekxendroff space.

Example 4.7. Let $X = \{a, b, c, d\}$. Let $m_X = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}\}$ and the corresponding topology generated by m_X structure is $T_{m_X} = \{\phi, X, \{a\}, \{a, c\}, \{a, b\}, \{a, b, c\}\}$ and pre m_X Closed set = $\{X, \phi, \{b, c, d\}, \{b, d\}, \{c, d\}, \{d\}\}$. Let $A = \{a, b\}$ and $B = \{a, c\}$ be any sub set of X and $U = \{a, b, c\}$ pre m_X open set i.e. A \subseteq U and B \subseteq U then Clearly $Pm_XCl(A) = X \supseteq U$ and $Pm_XCl(B) = X \supseteq U$. Then $A \cup B = \{a, b, c\} \subseteq U$ then $pm_XCl(A \cup B) = X \supseteq U$. So $A \cup B$ is a Pre m_X generalized* Closed set. Again $A \cap B = \{a\} \subset U$ and $Pm_XCl(A \cap B) = X = Pm_XCl(A) \cap Pm_XCl(B) = X \cap X = X \supseteq U$. Hence $A \cap B$ is Pre m_X generalized* Closed.

Theorem 4.8 The intersection of two Pm_Xg^* -Closed set is Pm_Xg^* -Closed set in (X, T_{m_X}).

Proof: Let A and B be any two Pm_Xg^* --Closed sets in (X, T_{m_X}) . To prove $A \cap B$ is Pm_Xg^* -Closed set. Let G be Pre m_X -open set such that $A \cap B \subseteq G \Rightarrow A \subseteq G$ and $B \subseteq G$. Since A and B are Pm_Xg^* -Closed sets, $Pm_XCl(A) \supseteq G$ and $m_XCl(B) \supseteq G$, $Pm_XCl(A) \cap Pm_XCl(B) \supseteq G$. Hence $Pm_XCl(A \cap B) \supseteq G$.

Remark 4.9 Union of two non Pm_X g*-Closed set may be Pm_X g*-Closed.

Example 4.10 Let $X = \{a, b, c\}$.Let $m_X = \{\phi, X, \{a\}, \{b\}, \{a, c\}\}$ then $T_{m_X=}\{\phi, X, \{a\}, \{b\}, \{a, c\}, \{a, b\}\}$, Pre m_X Closed set $= \{\phi, X, \{b, c\}, \{a, c\}, \{b\}, \{c\}\}$.Let $A = \{a\} \subseteq \{a\}, \{a, c\}, \{a, b\}, X$. $Pm_XCl(A) = \{a, c\} \supseteq \{a, b\}, X$ and $B = \{b\} \supseteq \{b\}, \{a, b\}, X$ then $Pm_XCl(B) = \{b\} \supseteq \{a, b\}, X$. But $A \cup B = \{a, b\} \supseteq \{a, b\}, X$, p m_X Cl($A \cup B$) = X $\supseteq \{a, b\}, X$.Here A and B are not Pm_Xg^* -Closed set but their union is Pm_Xg^* -Closed set.

Theorem 4.11 Every Pre_X generalized * Closed set is m_X generalized * Closed set.

Proof: Follows from definition 4.1 and Lemma 2.18[15].

References

- [1] K. Balachandran, P. Sundaram, H. Maki, On generalized continuous functions in topological spaces, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 12(1991), 5-13
- [2] SharmisthaBhattacharya(Halder),Gour pal, Study on Prem_X-open Set, International Mathematical forum, Vol. 6, 2011, no. 45, 2231 -2237.
- [3] P. Bhattacharyya, B. K. Lahiri, Semi-generalized closed sets in topology, Indian Journal of Mathematics, 29(1987) pp. 375–382.
- [4] SharmisthaBhattacharya(Halder),Gour pal, a study on $pre-m_X$ Continuous function, Communicated .
- [5] J. Dontchev, On generalizing semi-preopen sets, Memoirs of Faculty of Science Kochi

University, Series A, Mathematics, 16(1995), pp. 35-48,

- [6] T. Fukutake, A. Nasef, A.I. El-Maghrabi. Some topological concepts via γ-generalized closed sets, Bulletin of Fukuoka University, Ed. III , 52(2003) pp. 1–9.
- [7] Y. Gnanambal, On generalized pre-regular closed sets in topological spaces, Indian J. pure. Appl.Math., 28(3)(1997), 351-360.
- [8] N. Levine, Generalized closed sets in topology, Rendiconti del CircoloMatematico di Palermo (2), 19(1970), p.p. 89–96.
- [9] H. Maki, K.C. Rao, A. NagoorGani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci. 49(1999), 17–29.
- [10] H. Maki, R Devi, K. Balachandran, Associated topologies of generalized α -closed sets and α generalized closed sets, Memoirs of Faculty of Science Kochi University, Series A, Mathematics, 15(1994) pp. 51–63.
- [11] A. S. Mashhour, M. E. Abd El-Monsef, S. N. El-Deeb, Onpre continuous and weak pre continuous mappings, Proc. Math. Phys. Soc. Egypt, 53(1982),47-53.
- [12] W. K. Min and Y. K. Kim, m-Preopen Sets and M-Precontinuity On Spaces With Minimal Structures, Advances in Fuzzy Sets and Systems 4 (2009), no.3, 237-245.
- [13] T. Noiri, 11th meetings on topological spaces and its applications, Fukuoka University Seminar House, 2006, 1-9.
- [14] T. Noiri, A unified theory for certain modifications of generalized closed sets, Rendiconti del Circolomatematico di palermo, serie II, tomo LVI(2007), pp. 171-184.
- [15] T. Noiri, H. Maki ,J. Umehara, Generalized preclosed functions, Memoirs of Faculty of Science Kochi University, Series A, Mathematics, 19(1998), pp. 13–20,
- [16]T. Noiri, V. Popa, A generalization of some forms of g-irresolute functions, European journal of pure and applied mathematics, Vol.2, No. 4(2009), 473-493.
- [17] R. Parimelazhagan, K. Balachandran, N. Nagaveni, Weakly generalized closed sets in minimal structure, Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 27, 1335 – 1343.
- [18] V. Popa. And T. Noiri, On M-continuous functions, Anal. Univ. "Dunarea de Jos" Galati. Ser. Mat. Fiz. Mec. Teor. (2), 18(23) (2000), 31 41.
- [19] V.Popa, Noiri T, On the definitions of some generalized forms of continuity under minimal conditions, memoirs of Faculty of Science Kochi University, Series A, Mathematics, 22(2001), pp.31–41.
- [20] V. Popa and T. Noiri.On m-continuous functions.Anal.Uni'Dunarea De, jos'Galati, Ser. Mat.,Fiz., 18(23)(2000)31-41.
- [21] V. Popa, T. Noiri, A unified theory of weak continuity for functions, Rend.Circ. Mat.
 - Palermo51(2002), 439–464.
- [22] A. Pushpalatha and E. Subha, Strongly generalized closed sets in minimal structures. Int. J. of Math. Anal., 3(26)(2009),1259-1263.
- [23] O. Ravi, S. Jeyashri, K. Vijayalakshmi and J. Antony Rex Rodrigo, On Strongly Minimal g-continuous functions in minimal structures, Journal of Advanced Studies in Topology ISSN: 2090-388X online Vol. 1, No. 2, 2010, 29-36.