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AERATION EFFICIENCY ESTIMATION IN STEPPED CASCADE AERATORS 

USING NEURAL NETWORK APPROACH  
 

ABSTRACT 
The oxygen concentration in surface waters is a prime indicator 

of the water quality for human use as well as for the aquatic biota. 
The physical process of oxygen transfer or oxygen absorption from the 
atmosphere acts to replenish the used oxygen. This process is termed 
re-aeration or aeration. Aeration enhancement by macro-roughness is 
well-known in water treatment, and one form is the aeration cascade. 
The macro-roughness of the steps significantly reduces flow velocities 
and leads to flow aeration along the stepped cascade. This paper seeks 
the performance of artificial neural networks (ANNs) for the 
estimation of aeration efficiency in stepped cascade aerators. 
Consequently, it is demonstrated that an ANN model could be employed 
successfully in modeling aeration efficiency in stepped cascade 
aerators.  
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SİNİR AĞI YAKLAŞIMI KULLANARAK BASAMAKLI KASKAT HAVALANDIRICILARDA 

HAVALANDIRMA VERİMİNİN TAHMİNİ 
 

ÖZET 
Yüzey sularındaki oksijen konsantrasyonu suda yaşayan canlılar 

için olduğu kadar insani kullanım içinde su kalitesinin başlıca 
göstergesidir. Atmosferden oksijen transferi veya oksijen 
absorpsiyonunun fiziksek yöntemi, kullanılmış oksijeni tekrar kazanmak 
için harekete geçmektir. Bu yöntem havalandırma olarak isimlendirilir. 
Makro pürüzlülük yardımıyla havalandırmanın arttırılması, su 
arıtımında iyi bir şekilde bilinir ve bunun bir tipi havalandırma 
kaskatlarıdır. Basamakların makro pürüzlülüğü, akım hızını önemli bir 
derecede azaltır ve basamaklı kaskat boyunca akım havalanmasına yol 
açar. Bu makale, basamaklı kaskat havalandırıcılarda havalandırma 
veriminin tahmini için kullanılabilecek yapay sinir ağlarının 
performansını araştırmaktadır. Sonuç olarak, basamaklı kaskat 
havalandırıcılarda havalandırma veriminin modellenmesinde yapay sinir 
ağı modelinin başarılı bir şekilde kullanılabileceği görülmüştür. 

Anahtar Kelimeler:  Sinir Ağları, Basamaklı Kaskat, 
  Havalandırma Verimi, Oksijen Transferi,  
  Oksijen Konsantrasyonu 
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1. INTRODUCTION (GİRİŞ) 
Stepped cascade flows are characterized by the strong turbulent 

mixing, the large residence time and the substantial air bubble 
entrainment. Air bubble entrainment is caused by turbulence 
fluctuations acting next to the air-water free surface. Through this 
interface, air is continuously tapped and released. Air entrainment 
occurs when the turbulent kinetic energy is large enough to overcome 
both surface tension and gravity effects. The turbulent velocity 
normal to the free surface must overcome the surface tension pressure, 
and be greater than the bubble rise velocity component for the bubbles 
to be carried away (Chanson, 2002). 

Stepped flows can be classified into skimming flow, transition 
flow, and nappe flow. For narrow steps or larger discharges such as the 
design discharge the water skims over the step corners and recirculating 
zones develop in triangular niches formed by the step faces and the 
pseudo-bottom, as shown in Fig. 1a. In skimming flow the water flows as a 
coherent stream over the pseudo-bottom formed by the step corners. For a 
range of intermediate discharges, a transition flow regime takes place. 
The dominant feature is stagnation on the horizontal step face associated 
with significant splashing and a chaotic appearance (Figure 1b). For 
nappe flow the steps act as a series of overfalls with the water plunging 
from one step to another (Figure 1c). Generally speaking nappe flow is 
found for low discharges and wide steps (Chanson, 2002). 

Water can trap a lot of air when passing through steps and then 
increasing oxygen content in water body, so stepped cascades can be 
used as highly effective aerators in streams, rivers, constructed 
channels, fish hatcheries, water treatment plants, etc. Chanson and 
Toombes (2002) conducted gas-liquid interface measurements in stepped 
cascade. Local void fractions, bubble count rates, bubble size 
distributions and gas-liquid interface areas were measured 
simultaneously in the air-water flow region using resistivity probes. 
However, they stated that future work is needed to compare aeration 
efficiencies estimated with detailed interfacial area data and based 
upon dissolved gas measurements. 

 

(a) Skimming flow (b) Transition flow  

h

(c) Nappe flow
α

 
 

Figure 1.  Flow regimes above stepped cascades: 
a) skimming flow, b) transition flow, c) nappe flow 

(Şekil 1. Basamaklı kaskat üzerinde oluşabilecek akım rejimleri 
a) sıçramalı akım, b) geçiş akımı, c) nap akımı 
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Recently, Baylar and Emiroglu (2003, 2004, 2005), Emiroglu and 
Baylar (2003, 2006), Baylar et al. (2006, 2007a-d) and Kisi et al. 
(2007) did some detailed studies on the aeration efficiency of stepped 
cascades. In the present paper, an artificial neural network (ANN) 
model is established for the estimation of aeration efficiency in 
stepped cascade aerators. Among machine learning techniques, ANN is 
the one that is widely used in various areas of water-related research 
(Govindaraju, 2000; Kisi, 2004 a, b). 
 

2. RESEARCH SIGNIFICANCE (ÇALIŞMANIN ÖNEMİ) 
It is important to predict aeration efficiency in stepped 

cascades because they are used in most water treatment applications 
for re-oxygenation. This research will investigate whether artificial 
neural networks (ANNs) can be used to predict aeration efficiency in 
stepped cascades. 
 

3. OXYGEN TRANSFER (OKSİJEN TRANSFERİ) 
The rate of oxygen mass transfer, i.e. from the gas (air 

bubbles) to the liquid phase (water) is governed by the terms 
described below. 

)CC(
V
AK

dt
dC

sL −=          (1) 

where C = Dissolved oxygen (DO) concentration; KL= liquid film 
coefficient for oxygen; A= surface area associated with the volume V, 
over which transfer occurs; Cs = saturation concentration; and t= time. 

The term A/V is often called the specific surface area, a, or 
surface area per unit volume. Equation (1) does not consider sources 
and sinks of oxygen in the water body because their rates are 
relatively slow compared to the oxygen transfer that occurs at most 
hydraulic structures due to the increase in free-surface turbulence 
and the large quantity of air that is normally entrained into the 
flow. 
 The predictive relations assume that Cs is constant and 
determined by the water-atmosphere partitioning. If that assumption is 
made, Cs is constant with respect to time, and the oxygen transfer 
efficiency (aeration efficiency), E may be defined as (Gulliver et al. 
1990): 

r
11

CC
CCE

us

ud
−=

−
−

=                (2) 

where u and d= subscripts indicating upstream and downstream 

locations, respectively; and r= oxygen deficit ratio [ ])C-)/(CC-(C dsus . 
A transfer efficiency value of 1.0 means that the full transfer 

up to the saturation value has occurred at the structure. No transfer 
would correspond to E= 0.0. The saturation concentration in distilled, 
deionized water may be obtained from charts or equations. This is an 
approximation because the saturation DO concentration for natural 
waters is often different from that of distilled, deionized water due 
to the salinity affects.  
 Comparative evaluations of oxygen uptake at hydraulic structures 
require that aeration efficiency is corrected to a reference 
temperature. To provide a uniform basis for comparison of measurement 
results, the aeration efficiency is often normalized to a 20°C 
standard. Gulliver et al. (1990) proposed the following equation to 
describe the influence of temperature 

1 - E20= (1 - E)1/f            (3) 
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where E= transfer efficiency at actual water temperature; E20= transfer 
efficiency for 20°C; and f= exponent described by 

f= 1.0 + 2.1 x 10-2 (T - 20) + 8.26 x 10-5 (T - 20)2   (4) 
where T= water temperature. In this study, the aeration efficiency was 
normalized to 20°C using Eq. (3). 
 

4. EXPERIMENTAL (DENEYSEL) 
4.1. Experimental Arrangement (Deneysel Düzenleme) 
The data used in this study were taken from studies conducted by 

Baylar and Emiroglu (2003) and Baylar et al. (2006) on a large model of a 
stepped cascade. Schematic representation of the experimental setup used 
in these studies is shown on Figure 2. All experiments were conducted in a 
prismatic rectangular channel with 0.30 m wide and 0.50 m deep. The side 
walls were made of transparent methacrylate to follow flow regime. Tap 
water was used throughout the present experiments. The water was changed 
for each experiment. The water in the tank was deoxygenated by sodium 
sulfite method. During the experiments, dissolved oxygen measurements 
upstream and downstream of the stepped cascade were taken using oxygen 
meters at the locations identified in Figure 2. 

All experimental runs were carried out in unit discharges 
ranging between 16.67 and 166.67 L/s.m. The slopes of stepped channel 
were varied as 14.48°, 18.74°, 22.55°, 30.00°, 40.00°, and 50.00°. For 
all slopes tested, steps with equal to 5, 10, and 15 cm were used. For 
all stepped cascades tested, the range of parameters such as channel 
slope (α), step height (h), channel length (L) and total number of 
steps (N) are given Table 1. 
 

Table 1. Geometries of stepped cascades 
(Tablo 1. Basamaklı kaskatların geometrileri) 

α 
(deg.) 

h 
(m) 

L 
(m) N α 

(deg.)
h 
(m) 

L 
(m) N 

14.48 0.05 5.00 25 30.00 0.05 5.00 50 
14.48 0.10 5.00 12 30.00 0.10 5.00 25 
14.48 0.15 5.00 8 30.00 0.15 5.00 16 
18.74 0.05 3.89 25 40.00 0.05 3.89 50 
18.74 0.10 3.89 12 40.00 0.10 3.89 25 
18.74 0.15 3.89 8 40.00 0.15 3.89 16 
22.55 0.05 3.26 25 50.00 0.05 3.26 50 
22.55 0.10 3.26 12 50.00 0.10 3.26 25 
22.55 0.15 3.26 8 50.00 0.15 3.26 16 

Stepped cascade

α

DO

DO
Point 1

Water
intake

Point 2

 
Figure 2. Experimental arrangement for stepped cascade model 
(Şekil 2. Basamaklı kaskat modeli için deneysel düzenleme) 

 
4.2. Experimental Results (Deneysel Sonuçlar) 
The experimental results for aeration efficiency in stepped cascade 

aerators are given in Table 2. 
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Table 2. Data of stepped cascades 

(Tablo 2. Basamaklı kaskatlardan elde edilen deneysel sonuçlar) 
α 

(deg) 
h 

(m) 
q (m2/s x 

10-3) 
E20  
(-) 

Flow 
Regime 

α 
(deg) 

h 
(m) 

q (m2/s x 
10-3) 

E20 
(-) 

Flow 
Regime 

14.48 0.05 16.67 0.60 Nappe 30.00 0.05 16.67 0.81 Nappe 
14.48 0.05 33.33 0.58 Transition 30.00 0.05 33.33 0.82 Skimming 
14.48 0.05 50.00 0.55 Skimming 30.00 0.05 50.00 0.74 Skimming 
14.48 0.05 66.67 0.45 Skimming 30.00 0.05 66.67 0.70 Skimming 
14.48 0.05 100.00 0.30 Skimming 30.00 0.05 100.00 0.62 Skimming 
14.48 0.05 133.33 0.26 Skimming 30.00 0.05 133.33 0.59 Skimming 
14.48 0.05 166.67 0.23 Skimming 30.00 0.05 166.67 0.57 Skimming 
14.48 0.10 16.67 0.55 Nappe 30.00 0.10 16.67 0.80 Nappe 
14.48 0.10 33.33 0.54 Nappe 30.00 0.10 33.33 0.79 Nappe 
14.48 0.10 50.00 0.54 Nappe 30.00 0.10 50.00 0.77 Nappe 
14.48 0.10 66.67 0.52 Transition 30.00 0.10 66.67 0.75 Transition 
14.48 0.10 100.00 0.44 Transition 30.00 0.10 100.00 0.72 Skimming 
14.48 0.10 133.33 0.41 Skimming 30.00 0.10 133.33 0.67 Skimming 
14.48 0.10 166.67 0.34 Skimming 30.00 0.10 166.67 0.60 Skimming 
14.48 0.15 16.67 0.49 Nappe 30.00 0.15 16.67 0.78 Nappe 
14.48 0.15 33.33 0.50 Nappe 30.00 0.15 33.33 0.76 Nappe 
14.48 0.15 50.00 0.48 Nappe 30.00 0.15 50.00 0.75 Nappe 
14.48 0.15 66.67 0.46 Nappe 30.00 0.15 66.67 0.75 Nappe 
14.48 0.15 100.00 0.43 Nappe 30.00 0.15 100.00 0.73 Nappe 
14.48 0.15 133.33 0.40 Transition 30.00 0.15 133.33 0.72 Transition 
14.48 0.15 166.67 0.40 Transition 30.00 0.15 166.67 0.71 Skimming 
18.74 0.05 16.67 0.60 Nappe 40.00 0.05 16.67 0.74 Transition 
18.74 0.05 33.33 0.57 Transition 40.00 0.05 33.33 0.75 Skimming 
18.74 0.05 50.00 0.52 Skimming 40.00 0.05 50.00 0.72 Skimming 
18.74 0.05 66.67 0.44 Skimming 40.00 0.05 66.67 0.70 Skimming 
18.74 0.05 100.00 0.28 Skimming 40.00 0.05 100.00 0.63 Skimming 
18.74 0.05 133.33 0.22 Skimming 40.00 0.05 133.33 0.59 Skimming 
18.74 0.05 166.67 0.16 Skimming 40.00 0.05 166.67 0.56 Skimming 
18.74 0.10 16.67 0.58 Nappe 40.00 0.10 16.67 0.74 Nappe 
18.74 0.10 33.33 0.58 Nappe 40.00 0.10 33.33 0.76 Nappe 
18.74 0.10 50.00 0.55 Nappe 40.00 0.10 50.00 0.77 Transition 
18.74 0.10 66.67 0.55 Transition 40.00 0.10 66.67 0.76 Transition 
18.74 0.10 100.00 0.47 Transition 40.00 0.10 100.00 0.70 Skimming 
18.74 0.10 133.33 0.41 Skimming 40.00 0.10 133.33 0.66 Skimming 
18.74 0.10 166.67 0.37 Skimming 40.00 0.10 166.67 0.63 Skimming 
18.74 0.15 16.67 0.57 Nappe 40.00 0.15 16.67 0.76 Nappe 
18.74 0.15 33.33 0.58 Nappe 40.00 0.15 33.33 0.76 Nappe 
18.74 0.15 50.00 0.53 Nappe 40.00 0.15 50.00 0.77 Nappe 
18.74 0.15 66.67 0.52 Nappe 40.00 0.15 66.67 0.76 Nappe 
18.74 0.15 100.00 0.47 Nappe 40.00 0.15 100.00 0.71 Transition 
18.74 0.15 133.33 0.43 Transition 40.00 0.15 133.33 0.69 Transition 
18.74 0.15 166.67 0.39 Transition 40.00 0.15 166.67 0.68 Skimming 
22.55 0.05 16.67 0.68 Nappe 50.00 0.05 16.67 0.79 Transition 
22.55 0.05 33.33 0.61 Transition 50.00 0.05 33.33 0.77 Skimming 
22.55 0.05 50.00 0.53 Skimming 50.00 0.05 50.00 0.75 Skimming 
22.55 0.05 66.67 0.42 Skimming 50.00 0.05 66.67 0.74 Skimming 
22.55 0.05 100.00 0.32 Skimming 50.00 0.05 100.00 0.72 Skimming 
22.55 0.05 133.33 0.29 Skimming 50.00 0.05 133.33 0.66 Skimming 
22.55 0.05 166.67 0.24 Skimming 50.00 0.05 166.67 0.64 Skimming 
22.55 0.10 16.67 0.62 Nappe 50.00 0.10 16.67 0.77 Nappe 
22.55 0.10 33.33 0.59 Nappe 50.00 0.10 33.33 0.74 Transition 
22.55 0.10 50.00 0.57 Nappe 50.00 0.10 50.00 0.74 Transition 
22.55 0.10 66.67 0.55 Transition 50.00 0.10 66.67 0.73 Transition 
22.55 0.10 100.00 0.46 Skimming 50.00 0.10 100.00 0.71 Skimming 
22.55 0.10 133.33 0.39 Skimming 50.00 0.10 133.33 0.68 Skimming 
22.55 0.10 166.67 0.30 Skimming 50.00 0.10 166.67 0.65 Skimming 
22.55 0.15 16.67 0.56 Nappe 50.00 0.15 16.67 0.77 Nappe 
22.55 0.15 33.33 0.56 Nappe 50.00 0.15 33.33 0.75 Nappe 
22.55 0.15 50.00 0.53 Nappe 50.00 0.15 50.00 0.74 Nappe 
22.55 0.15 66.67 0.52 Nappe 50.00 0.15 66.67 0.74 Transition 
22.55 0.15 100.00 0.51 Nappe 50.00 0.15 100.00 0.72 Transition 
22.55 0.15 133.33 0.47 Transition 50.00 0.15 133.33 0.70 Skimming 
22.55 0.15 166.67 0.41 Transition 50.00 0.15 166.67 0.69 Skimming 
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 5. NEURAL NETWORKS (SİNİR AĞLARI) 
5.1. Neural Networks Modeling (Sinir Ağları Modeli) 
Artificial neural networks (ANNs) are based on the present 

understanding of biological nervous system, though much of the 
biological detail is neglected. ANNs are massively parallel systems 
composed of many processing elements connected by links of variable 
weights. Of the many ANN paradigms, the multi-layer backpropagation 
network (MLP) is by far the most popular (Lippman, 1987). The network 
consists of layers of parallel processing elements, called neurons, 
with each layer being fully connected to the proceeding layer by 
interconnection fully connected to the proceeding layer by 
interconnection strengths, or weights, W. Figure 3 illustrates a 
three-layer neural network consisting of layers i, j, and k, with the 
interconnection weights Wij and Wjk between layers of neurons. Initial 
estimated weight values are progressively corrected during a training 
process that compares predicted outputs to known outputs, and 
backpropagates any errors (from right to left in Figure 3) to 
determine the appropriate weight adjustments necessary to minimize the 
errors. 

The Levenberg-Marquardt (LM) training algorithm was used here 
for adjusting the weights. The adaptive learning rates were used for 
the purpose of faster training speed and solving local minima problem. 
For each epoch, if performance decreases toward the goal, then the 
learning rate is increased by the factor learning increment. If 
performance increases, the learning rate is adjusted by the factor 
learning decrement. The numbers of hidden layer neurons were found 
using simple trial-error method. 

1 1 1

2 2 2

L M N

i j k

Input Output

W ij W jk

..

.

.

.

.

.

.

.

.

.
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. .
.
.
.
.
.

.

 
Figure 3. A three-layer neural network structure 

(Şekil 3. Üç tabakalı sinir ağı yapısı) 
 

 5.2. The Levenberg-Marquardt Algorithm  
      (Levenberg-Marquardt Algoritması) 

While back propagation with gradient descent technique is a 
steepest descent algorithm, the Levenberg-Marquardt algorithm is an 
approximation to Newton’s method (Marquardt, 1963). If we have a 
function V(x) which we want to minimize with respect to the parameter 
vector x, then Newton’s method would be 

∆x = - )x(V)x(V
1

2
−

−

−
∇⎥⎦

⎤
⎢⎣
⎡∇          (5) 

where )x(V2
−

∇ is the Hessian matrix and )x(V
−

∇  is the gradient. If we 

assume that V(x) is a sum of squares function 
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V(x) = ∑
=

N

1i

2
i )x(e         (6) 

then it can be shown that 

  )x(V
−

∇ = JT(x)e(x)         (7) 

)x(V2
−

∇ = JT(x) J(x) + S (x)       (8) 

where J(x) is the Jacobean matrix and  

S(x) = ∑
= −

∇
N

1i
i

2
i )x(ee        (9) 

For the Gauss-Newton method it is assumed that S(x) ≈ 0, and the 
update (4) becomes 

∆x = [JT(x) J(x)]-1 JT(x) e(x)      (10) 
The Marquardt-Levenberg modification to the Gauss-Newton method 

is 
 ∆x = [JT(x) J(x) + μI]-1JT(x)e(x)     (11) 

The parameter μ is multiplied by some factor (β) whenever a step 
would result in an increased V(x). When a step reduces V(x), μ is 
divided by β. When μ is large the algorithm becomes steepest descent 
(with step 1/μ), while for small μ the algorithm becomes Gauss-Newton. 
The Marquardt-Levenberg algorithm can be considered a trust-region 
modification to Gauss-Newton. The key step in this algorithm is the 
computation of the Jacobean matrix. For the neural network-mapping 
problem the terms in the Jacobean matrix can be computed by a simple 
modification to the back propagation algorithm (Hagan and Menhaj, 
1994). 

 
6. APPLICATION AND RESULTS (UYGULAMA VE SONUÇLAR) 

A program code including neural networks toolbox was written in 
MATLAB language for the ANN simulation. Different ANN architectures 
were tried using this code and the appropriate model structure was 
determined. 

A difficult task with ANN involves choosing parameters such as the 
number of hidden nodes, the learning rate, and the initial weights. 
Determining an appropriate architecture of a neural network for a 
particular problem is an important issue, since the network topology 
directly affects its computational complexity and its generalization 
capability. The optimum network geometry is obtained utilizing a trial-
and-error approach in which ANN are trained with one hidden layer. It 
should be noted that one hidden layer could approximate any continuous 
function, provided that sufficient connection weights are used (Hornik et 
al. 1989). Here, the hidden layer node number of ANN model were 
determined after trying various network structures since there is no 
theory yet to tell how many hidden units are needed to approximate any 
given function. In the training stage, the adaptive learning rate and the 
same initial weight were used for each ANN networks. The sigmoid 
activation function was used for the hidden and output nodes. 

The parameters considered in the study are unit discharge (q), 
step height (h), channel slope (α), channel length (L), total number 
of steps (N), flow regime information and aeration efficiency at the 
200C (E20). The parameters, q, h, α, L, N and flow regime information 
were used as inputs to the ANN for the estimation of E20. Of the 126 
experimental data sets, the 106 data were used to train the ANN and 
the remaining data were used for validation. The remaining 20 data 
sets were randomly selected among the whole data. The model results 
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were evaluated using the absolute relative error (ARE) and 
determination coefficient (R2) statistics. 

Before applying the ANN to the data, the training input and 
output values were normalized using the equation 

b
xx

xx
a

minmax

mini +
−

−
        (12) 

where xmin and xmax denote the minimum and maximum of the stage and 
discharge data. Different values can be assigned for the scaling 
factors a and b. There are no fixed rules as to which standardization 
approach should be used in particular circumstances (Dawson and Wilby, 
1998). The a and b were taken as 0.6 and 0.2 herein, respectively. 

The ARE statistics of the ANN model are given in Table 3. In the 
sixth column, the numbers 1, 2 and 3 indicates the flow regimes, 
nappe, transition and skimming, respectively. In the eighth column, 
the ANN (6, 10, 1) denotes an ANN model comprising 6 input, 10 hidden 
and 1 output layer neurons. It can be obviously seen from Table 3 that 
the ANN approximates measured E20 values with a quite high accuracy. 
The mean ARE for the E20 computed values with ANN is as low as 0.6%. 
 

Table 3. The ARE statistics for the computed E20 using ANN model - 
training period 

(Tablo 3. Yapay sinir ağı modeli kullanarak hesaplanılmış E20 için 
mutlak rölatif hata istatistikleri – eğitim periyodu) 

q 
(m2/s x 10-3) 

h 
(m) 

α 
(deg.) 

L 
(m) N 

Flow 
Regime 

Information 

E20 
Measured 

E20 
Computed 

(ANN 
(6,10,1)) 

ARE 
(%) 

16.67 0.05 14.48 5.00 25 1 0.60 0.60 0.13 
33.33 0.05 14.48 5.00 25 2 0.58 0.58 0.36 
50.00 0.05 14.48 5.00 25 3 0.55 0.55 0.00 
66.67 0.05 14.48 5.00 25 3 0.45 0.45 0.22 
133.33 0.05 14.48 5.00 25 3 0.26 0.26 0.81 
166.67 0.05 14.48 5.00 25 3 0.23 0.23 1.13 
16.67 0.05 30.00 5.00 50 1 0.81 0.81 0.06 
33.33 0.05 30.00 5.00 50 3 0.82 0.82 0.18 
50.00 0.05 30.00 5.00 50 3 0.74 0.74 0.15 
100.00 0.05 30.00 5.00 50 3 0.62 0.62 0.21 
133.33 0.05 30.00 5.00 50 3 0.59 0.59 0.12 
166.67 0.05 30.00 5.00 50 3 0.57 0.57 0.23 
16.67 0.05 18.74 3.89 25 1 0.60 0.60 0.15 
33.33 0.05 18.74 3.89 25 2 0.57 0.57 0.53 
50.00 0.05 18.74 3.89 25 3 0.52 0.52 0.92 
100.00 0.05 18.74 3.89 25 3 0.28 0.28 0.32 
133.33 0.05 18.74 3.89 25 3 0.22 0.21 2.41 
166.67 0.05 18.74 3.89 25 3 0.16 0.16 2.31 
16.67 0.05 40.00 3.89 50 2 0.74 0.74 0.30 
33.33 0.05 40.00 3.89 50 3 0.75 0.75 0.56 
50.00 0.05 40.00 3.89 50 3 0.72 0.72 0.08 
66.67 0.05 40.00 3.89 50 3 0.70 0.70 0.46 
133.33 0.05 40.00 3.89 50 3 0.59 0.61 2.59 
166.67 0.05 40.00 3.89 50 3 0.56 0.55 1.80 
16.67 0.05 22.55 3.26 25 1 0.68 0.68 0.34 
33.33 0.05 22.55 3.26 25 2 0.61 0.61 0.02 
50.00 0.05 22.55 3.26 25 3 0.53 0.52 1.62 
66.67 0.05 22.55 3.26 25 3 0.42 0.43 1.67 
100.00 0.05 22.55 3.26 25 3 0.32 0.32 0.50 
166.67 0.05 22.55 3.26 25 3 0.24 0.24 0.17 
16.67 0.05 50.00 3.26 50 2 0.79 0.79 0.46 
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33.33 0.05 50.00 3.26 50 3 0.77 0.77 0.29 
50.00 0.05 50.00 3.26 50 3 0.75 0.76 0.85 
66.67 0.05 50.00 3.26 50 3 0.74 0.74 0.20 
100.00 0.05 50.00 3.26 50 3 0.72 0.71 1.18 
166.67 0.05 50.00 3.26 50 3 0.64 0.64 0.30 
16.67 0.10 14.48 5.00 12 1 0.55 0.55 0.00 
50.00 0.10 14.48 5.00 12 1 0.54 0.54 0.09 
66.67 0.10 14.48 5.00 12 2 0.52 0.52 0.60 
100.00 0.10 14.48 5.00 12 2 0.44 0.44 0.98 
133.33 0.10 14.48 5.00 12 3 0.41 0.41 0.00 
166.67 0.10 14.48 5.00 12 3 0.34 0.34 0.35 
16.67 0.10 30.00 5.00 25 1 0.80 0.80 0.21 
33.33 0.10 30.00 5.00 25 1 0.79 0.79 0.43 
66.67 0.10 30.00 5.00 25 2 0.75 0.75 0.44 
100.00 0.10 30.00 5.00 25 3 0.72 0.72 0.08 
133.33 0.10 30.00 5.00 25 3 0.67 0.67 0.73 
166.67 0.10 30.00 5.00 25 3 0.60 0.60 0.63 
16.67 0.10 18.74 3.89 12 1 0.58 0.59 1.34 
50.00 0.10 18.74 3.89 12 1 0.55 0.55 0.44 
66.67 0.10 18.74 3.89 12 2 0.55 0.55 0.27 
100.00 0.10 18.74 3.89 12 2 0.47 0.46 1.53 
133.33 0.10 18.74 3.89 12 3 0.41 0.41 0.22 
166.67 0.10 18.74 3.89 12 3 0.37 0.37 0.86 
16.67 0.10 40.00 3.89 25 1 0.74 0.74 0.18 
33.33 0.10 40.00 3.89 25 1 0.76 0.76 0.41 
50.00 0.10 40.00 3.89 25 2 0.77 0.77 0.60 
66.67 0.10 40.00 3.89 25 2 0.76 0.76 0.55 
133.33 0.10 40.00 3.89 25 3 0.66 0.66 0.06 
166.67 0.10 40.00 3.89 25 3 0.63 0.63 0.10 
16.67 0.10 22.55 3.26 12 1 0.62 0.61 1.61 
33.33 0.10 22.55 3.26 12 1 0.59 0.60 1.14 
66.67 0.10 22.55 3.26 12 2 0.55 0.55 0.44 
100.00 0.10 22.55 3.26 12 3 0.46 0.46 0.59 
133.33 0.10 22.55 3.26 12 3 0.39 0.38 2.67 
166.67 0.10 22.55 3.26 12 3 0.30 0.31 3.60 
16.67 0.10 50.00 3.26 25 1 0.77 0.77 0.32 
50.00 0.10 50.00 3.26 25 2 0.74 0.74 0.50 
66.67 0.10 50.00 3.26 25 2 0.73 0.73 0.66 
100.00 0.10 50.00 3.26 25 3 0.71 0.71 0.04 
133.33 0.10 50.00 3.26 25 3 0.68 0.68 0.47 
166.67 0.10 50.00 3.26 25 3 0.65 0.65 0.55 
16.67 0.15 14.48 5.00 8 1 0.49 0.50 1.04 
33.33 0.15 14.48 5.00 8 1 0.50 0.49 1.30 
50.00 0.15 14.48 5.00 8 1 0.48 0.48 0.25 
66.67 0.15 14.48 5.00 8 1 0.46 0.46 0.11 
100.00 0.15 14.48 5.00 8 1 0.43 0.43 0.14 
166.67 0.15 14.48 5.00 8 2 0.40 0.40 0.05 
16.67 0.15 30.00 5.00 16 1 0.78 0.78 0.37 
33.33 0.15 30.00 5.00 16 1 0.76 0.76 0.21 
50.00 0.15 30.00 5.00 16 1 0.75 0.75 0.01 
100.00 0.15 30.00 5.00 16 1 0.73 0.73 0.18 
133.33 0.15 30.00 5.00 16 2 0.72 0.72 0.11 
166.67 0.15 30.00 5.00 16 3 0.71 0.71 0.03 
16.67 0.15 18.74 3.89 8 1 0.57 0.56 1.26 
50.00 0.15 18.74 3.89 8 1 0.53 0.54 1.15 
66.67 0.15 18.74 3.89 8 1 0.52 0.51 1.15 
100.00 0.15 18.74 3.89 8 1 0.47 0.47 0.47 
133.33 0.15 18.74 3.89 8 2 0.43 0.43 0.02 
166.67 0.15 18.74 3.89 8 2 0.39 0.39 0.28
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16.67 0.15 40.00 3.89 16 1 0.76 0.76 0.38 
50.00 0.15 40.00 3.89 16 1 0.77 0.77 0.49 
66.67 0.15 40.00 3.89 16 1 0.76 0.76 0.41 
100.00 0.15 40.00 3.89 16 2 0.71 0.71 0.15 
166.67 0.15 40.00 3.89 16 3 0.68 0.68 0.40 
16.67 0.15 22.55 3.26 8 1 0.56 0.56 0.50 
50.00 0.15 22.55 3.26 8 1 0.53 0.53 0.89 
66.67 0.15 22.55 3.26 8 1 0.52 0.52 0.67 
100.00 0.15 22.55 3.26 8 1 0.51 0.51 0.12 
166.67 0.15 22.55 3.26 8 2 0.41 0.41 0.44 
16.67 0.15 50.00 3.26 16 1 0.77 0.77 0.55 
33.33 0.15 50.00 3.26 16 1 0.75 0.75 0.27 
66.67 0.15 50.00 3.26 16 2 0.74 0.74 0.05 
100.00 0.15 50.00 3.26 16 2 0.72 0.72 0.14 
133.33 0.15 50.00 3.26 16 3 0.70 0.70 0.19 
166.67 0.15 50.00 3.26 16 3 0.69 0.69 0.42 

 
The ARE statistics of the ANN model in test period are given in 

Table 4. Here also the ANN estimates are very close to the 
corresponding measured E20 values. The mean ARE for the E20 estimates 
with ANN is as low as 2.3%. The ANN estimates are compared with the 
measured E20 values in Figure 4 in the form of hydrograph and scatter 
plots. As can be seen from these graphs, the ANN estimates catch the 
measured values with a high accuracy. The coefficients of the fit line 
equation, 1.0256 and 0.0179, are quite close to the 1 and 0, 
respectively, with a high R2 value of 0.9912. 
 

Table 4. The ARE statistics for the estimated E20 using ANN model - 
test period 

(Tablo 4. Yapay sinir ağı modeli kullanarak tahmin edilmiş E20 için 
mutlak rölatif hata istatistikleri – test periyodu) 

q 
(m2/s x 10-3) 

h 
(m) 

α 
(deg.) 

L 
(m) N 

Flow 
Regime 

Information 

E20 
Measured 

E20 
Estimated 

(ANN 
(6,10,1)) 

ARE 
(%) 

100.00 0.05 14.48 5.00 25 3 0.30 0.31 3.13 
66.67 0.05 30.00 5.00 50 3 0.70 0.68 2.64 
66.67 0.05 18.74 3.89 25 3 0.44 0.41 6.50 
100.00 0.05 40.00 3.89 50 3 0.63 0.65 3.68 
133.33 0.05 22.55 3.26 25 3 0.29 0.27 6.93 
133.33 0.05 50.00 3.26 50 3 0.66 0.68 2.76 
33.33 0.10 14.48 5.00 12 1 0.54 0.55 1.44 
50.00 0.10 30.00 5.00 25 1 0.77 0.77 0.21 
33.33 0.10 18.74 3.89 12 1 0.58 0.57 0.98 
100.00 0.10 40.00 3.89 25 3 0.70 0.70 0.67 
50.00 0.10 22.55 3.26 12 1 0.57 0.57 0.65 
33.33 0.10 50.00 3.26 25 2 0.74 0.76 2.66 
133.33 0.15 14.48 5.00 8 2 0.40 0.39 1.38 
66.67 0.15 30.00 5.00 16 1 0.75 0.74 1.01 
33.33 0.15 18.74 3.89 8 1 0.58 0.55 4.83 
33.33 0.15 40.00 3.89 16 1 0.76 0.77 0.78 
133.33 0.15 40.00 3.89 16 2 0.69 0.67 2.64 
33.33 0.15 22.55 3.26 8 1 0.56 0.55 1.50 
133.33 0.15 22.55 3.26 8 2 0.47 0.47 0.85 
50.00 0.15 50.00 3.26 16 1 0.74 0.74 0.45 
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Figure 4. The plotting of ANN estimates and measured E20 values in 

test period 
(Şekil 4. Test periyodu için yapay sinir ağı tahminleri ve ölçülmüş 

E20 değerlerinin çizimi) 
 

6. CONCLUSIONS (SONUÇLAR) 
A neural network is a powerful data modeling tool that is able 

to capture and represent complex input/output relationships. Neural 
network is widely used in different fields of science and practice. 
However, its applications to the hydraulic systems are very limited. 
In this study, a three layer neural network approach was used in 
estimation of aeration efficiency of stepped cascade aerators. The 
results indicated that this method provided aeration efficiency 
estimates with a quite high accuracy. Therefore, the neural network 
can be used to estimate aeration efficiency in stepped cascade 
aerators and it can also be recommended to be used in many hydraulic 
and environmental engineering systems. 
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