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Abstract 

In this work, the main philosophy behind the object-oriented programming (OOP) of meshfree methods is discussed for 
solution of elastostatic problems. Objects and classes are constructed with respect to the structure of meshfree methods. 
Local radial point interpolation method (LRPIM) and meshless local Petrov-Galerkin (MLPG) method are used in local 
weak form in the program. Basic object oriented programming operators; encapsulation, inheritance and polymorphism 
are used for increasing modularity. Seven main classes and their subclasses are constructed for decreasing complexity. 
Additional storage modules and solver functions are implemented. As a result of this, new techniques on interpolations 
and integrations can be easily adapted to construction of shape functions in meshfree program structure. Objects are 
defined and implemented for solution of 2D elastostatic problems in MATLAB. Two elestostatic problems are solved in 
MATLAB OOP and their results are compared with results of a procedural program that is written in FORTRAN. Class 
designs and their hierarchy are discussed in details. 

Keywords: Object-oriented programming (OOP), meshfree methods, MATLAB, 2D elastostatic problems. 

1. Introduction 

The usage and implementation of numerical methods on computer programs are also important, as 
well as their developments. Computer coding of numerical methods is a very different kind of study 
and applicability of numerical methods depends on the coding performance. A well designed 
program contains less error and is easily handled. There are lots of codes which have different kinds 
of structures, even if they have small sizes. Procedural programming is commonly used in coding of 
these programs, which includes less procedure. But addition of more codes, new functions, elements 
and items causes increasing conflicts, even if subroutines or other auxiliary modules are used. One of 
the programming techniques, object-oriented programming (OOP) is used for preventing complexity, 
which has capable of key-lock property and can group similar structures. This key-lock property 
supports to avoid unnecessary usages of programs. Hence OOP can be capable to use in 
programming of numerical methods. Developments in numerical methods provide different solution 
techniques like FDM (finite difference method), BEM (boundary element method), FEM (finite 
element method) and so on. The usage of FEM is widely known, especially in the solutions of solid 
mechanics problems. FEM defines the analysed numerical model with small elements, which are 
called finite elements and all solutions are accomplished with them. Solution procedure includes 
some structures (interpolations, transformations, construction of shape functions and application of 
essential and natural boundary conditions) which work in harmony together. Any conflicts may 
cause wrong results. Hence object-oriented programming techniques are widely used in finite and 
boundary element in literature. Further developments or extension sections of numerical methods can 
be easily applied with OOP. This structure is well used in FEM with defining classes and their 
methods. This method [1-3] provides to better code writing with addition of modularity in FEM. 
OOP methodology is used for increasing readability, modularity and reusability. C++ PL in OOP is 
widely used and most of the OO FEA codes are written with this language. When model or any 
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analysed condition is changed, only changing related object can satisfy the new changes without 
changing the whole model. The applications of OO FEA with C++ programming are available in the 
studies [4-21] for different analyses in literature. Duplications in the programs decrease with OOP 
techniques. Inheritance and polymorphism are mainly used for providing a main framework to 
programs. Combining different methods can be easily prepared with OOP, like both usage of FEM 
and FVM (finite volume method) [22-23], FEM and BEM (boundary element method) [24]… the 
usage of OOP only in BEM [25-26] are available. Programming languages are also important cases. 
Dubois-Pelerin and Zimmermann [27] transfer the developed OO FEM structure [2-3] from 
Smalltalk to OO C++ for increasing efficiency. The efficiency is also discussed [28-30] between 
different programming languages for OOP. It is detected in some cases that OO programs are slower 
than procedural programs. The slowness is caused from young age of OO programs, absence of a fast 
numerical library and polymorphism, which requires dynamic binding. 

Some studies focus on application of OOP to meshfree methods in literature. Krysl and Belytschko 
[31] design a library for EFG (element-free Galerkin) shape functions with both OO and procedural 
programming. The complexity of EFG shape functions is generally greater than FEM shape 
functions and encapsulation property of OOP can decrease this complexity. Different studies [32-35] 
are available about OO programming of meshfree methods. However, meshfree techniques are not 
fully developed and they are the main interest of many researches in literature. Hence their 
programming techniques must also be considered, when new meshfree methods have been 
developed. This method mainly focuses on how to prevent predefined model construction for 
interpolation and integration in numerical analyses. There are different kinds of studies about 
prevention of predefined elements modelling for construction of shape functions, like SPH [36] 
(smoothed particle hydrodynamics), DEM [37] (diffuse element method), EFG [38] (element-free 
Galerkin method), MLPG [39] (meshless local Petrov-Galerkin), PIM [40] (point interpolation 
method) and RPIM [41] (radial point interpolation method), which are widely used in meshfree 
analysis. Further stages of these methods have been developed. More extended studies on PIM and 
RPIM can also be available in literature and researchers are trying to adapt them in meshfree 
analysis. LC-PIM [42] (linearly conforming point interpolation method) is developed for increasing 
efficiency, which includes PIM. NI-RPIM [43] (nodal integration radial point interpolation method) 
is developed by addition of Taylor series expansion in nodal integration. CS-RPIM [44] (cell-based 
smoothed radial point interpolation method) is developed for solutions of statics and vibration 
analysis of solids, which contains RPIM. Some of the developments in numerical methods include 
most of previous literature studies. Hence, OOP of meshfree methods can be a main body for further 
adaptations of new meshfree techniques. Different integration techniques for construction of shape 
functions are easily implemented and can provide to work in harmony. 

In this work, an object oriented meshfree program is constructed with respect to the meshfree 
program of the study [45]. Two different meshfree techniques: Local radial basis point interpolation 
method (LRPIM) and meshless local Petrov-Galerkin (MLPG) method [38-40,45-48] are used in 
local weak forms. Objects are defined for these methods and implemented for the solution of 2D 
elastostatic problems in MATLAB. Two case studies are examined. The results are compared with 
analytical and FEM solutions.  

2. Object-oriented Programming (OOP) and MATLAB 

OOP is an appropriate programming technique for large codes and based on a hierarchy of classes, 
which cooperate their objects. It mainly includes three major components; encapsulation, inheritance 
and polymorphism. Encapsulation hides implementation details of the objects. Input and output 
processes are mainly concerned at the outside of the class. Inheritance is the methodology to form 
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new classes in terms of old classes. Polymorphism is the ability to use an operator or method in 
different ways.  

MATLAB is a programming environment for algorithm development, data analysis, visualization, 
numerical computation and widely used in scientific and engineering applications. It also supports 
OOP technique with various class operators. There are two different ways to define classes in 
MATLAB. The first way is using value class and the second is using handle class. A value 
class constructor returns an instance that is associated with the variable, which it assigned. A 
handle class constructor returns a handle object that is a reference to the object created. In this 
work, handle class is used as a base class of all developed classes in this study. This class also 
controls hierarchy of its subclasses. 

3. Meshfree Classes and Their Implementations in a MATLAB Program 

3.1. Classes and their hierarchy 

In this work, seven different classes are mainly used. However, three of them are especially related 
with meshfree techniques; inte, sdo and sf classes. They have their own sub-classes. Some sub-
classes have further sub-classes. In the subsections of this chapter, they are discussed in detail. Basic 
and special class properties are explained. Classes and its properties mainly manage objects and 
programming schemes. Defined properties in the class will be assigned to objects. Hence required 
and related properties must be determined for setting efficient object management. Thus the 
programmed method and its logic must be well known. 

The basic concept of elastostatic problems is the solution of equilibrium equations with respect to 
applied natural and essential boundary conditions. Their equations are given in Eq. 1, 2 and 3, 
respectively, which are mainly concerned in the application of object-oriented meshfree program for 
solution of elastostatic problems. 

  in    0  bTL  (1) 

 ton             tn  (2) 

 uon              uu  (3) 

There are several methods are available for solution of these equations. Strong and weak form 
formulations are defined for solution of partial differential equations (PDEs). LRPIM and MLPG 
methods can handle weak form PDEs. Hence, the equilibrium equation [45] in Eq. 1 can be written 
in weak form with respect to weighted residual methods for LRPIM as 

 

   0  bˆ
i, 



dW jijI

q

  (4) 

where IŴ is the weight function at related node. The application of natural and essential boundary 
conditions on weak form of equilibrium equation for local quadrature domain of a related node is 
given in Eq. 5. This local quadrature domain can intersect with natural and essential boundaries, 
which need a special formulation on construction of stiffness matrix that related locations. Three 
boundary locations are determined with respect to natural and essential boundary conditions. qi  
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represents not intersection locations of local quadrature domain with global boundary, qt  represents 
intersection locations with natural boundary and qu  represents intersection locations of essential 
boundary locations. More detail information can be achieved in the study of [45]. 
 

   0ˆˆˆˆˆ ,  


dbWWdnWdnWdnW
qqtquqi

iIijjIijjIijjIijjI   (5) 

Eq. 5 can be written with application of stresses. Application of tractions at inside of natural 
boundary conditions is given in Eq. 6. 
 

  


dbWdtWdtWdtWdW
qqtquqiq

iIiIiIiIijjI
ˆˆˆˆˆ ,     (6) 

Similar equilibrium equation is valid for MLPG method and its local weak formulation is given in 
Eq. 7. Same applications of natural and essential boundary conditions are valid as LRPIM method. In 
addition, equilibrium equation of MLPG method includes a curve integral for application of essential 
boundary conditions where local quadrature domain intersects with essential boundary qu . But, on 
the contrary, to use RPIM shape functions, MPLG method uses MLS shape functions, which do not 
support Kronecker delta function property. Hence essential boundary conditions are enforced with 
penalty method. A penalty method with factor ( ) is included, which is used as 108. 

 
     0ˆˆ  



duuWdbW
quq

iiIiijI   (7) 

The solution of these equations includes various components, which are classified for decreasing 
complexity in classes of OOP. 

3.1.1 mc (model constructor) class 

mc (model constructor) class is mainly used for construction of basic numerical model, has two main 
properties: young and anu. They represent Young’s modulus and Poisson’s ratio, respectively. It 
does not include any methods. Its properties are transferred to classes of material and nodes. 
Material properties must be known for calculation of strain and stresses with respect to Hooke’s law, 
which is given in Eq. 8. 

 
    D  (8) 

material class is defined for materials of the model and has two own properties: you and dmat. 
dmat includes material matrix for isotropic materials in its property with respect to plane stress and 
strain, which are given in Eq. 9 and 10, respectively. In addition to them, different material models 
can be easily added with dmat property. 
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The class of nodes is used to read all data, which are related geometrical and meshfree parameter 
properties for the model and has three different sub-classes: xlsinputnodes, 
textinputnodes and randtextinputnodes. xlsinputnodes class is used to read all its 
data from Excel files. If data is given in a text file, they can be read from textinputnodes class. 
Node coordinate can be obtained randomly by using MATLAB statements in the class of 
randtextinputnodes. 

3.1.2 inte (integration cell) class 

Integration is one of the basic procedures in meshfree methods. Different integration methods are 
available and integration domains can be variable. Therefore, inte class is defined for local and 
global quadrature domains. The properties are inherited to the qdomain, gausscoefficient, 
domaingausspoints, localquadraturedomain and globalquadraturedomain 
classes. The size of quadrature domain is calculated in qdomain class and recorded in ds property. 
The weights are calculated with respect to the number of sampling points in gausscoefficient 
class and recorded in gauss property. A local quadrature domain is determined for a sampling point 
in localquadraturedomain class. The determined local quadrature domain is further 
subdivided in subdivisionlqdomain class. In domaingausspoints class, gauss points are 
calculated for a divided quadrature domain and recorded in gss property. Global quadrature domain 
can be used directly with globalquadraturedomain class. 

3.1.3 sdo (support domain) class 

The number of nodes in a support domain and their coordinates are determined in sdo class. It has a 
single basic property, gpos. It is inherited to its sub-classes of supportdomain and testfunc. 
supportdomain class determines the number of nodes and their labels in a support domain. In 
this process, three different support domain geometries can be used. They are given in 
rectangularsdomain, triangularsdomain and circularsdomain classes. In Eq. 11, 
size of support domain is given with circular distance (  sd ) for a circular support domain. cd  is 
usually selected as average nodal spacing and s  is a constant and used as [45,48] between 2.00 and 
3.00 generally.  

 
 css dd       (11) 

The number of nodes and their labels in support domain for integration are stored in ndex and nv 
properties. testfunc class computes the weights and stores them in w property. Different weight 
functions [45] are available like the cubic spline function (W1), quartic spline weight function (W2) 
and other weight functions. W1 and W2 are given in Eq. 12 and 13, respectively. Both LRPIM and 
MPLG methods can use these weight functions in the solution of equilibrium equation. 
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Matrices of weight functions (Ŵ ) and their derivatives ( tV̂ ) of related point are given in Eq.14 and 
15. 
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3.1.4 sf (shape function) class 

Most meshfree methods are classified according to shape function construction. Therefore, sf class 
is defined for RPIM and MLS shape functions. It has seven properties: ndex, mbasis, gpos, x, 
nv, phi and numnode. In rpim class, shape functions and their derivatives are obtained by 
computeradialbasis class. computeradialbasis includes basis functions and polynomial 
terms with their derivatives in rk property. Polynomial terms are given in Eq. 16, which are mainly 
derived from binomial expansion.  

 
    ,...,,,,,1  22 yxyxyxxpT   (16) 

Radial basis functions are calculated [45] using one of its sub-classes of mq (multi-quadrics), exp 
(Gaussian) or tsp (thin plate spline). multi-quadrics (MQ), the Gaussian (Exp), the thin plate spline 
(TSP) function are given in Eq. 17, 18 and 19, respectively. 

  





















2

exp  ,
c

i
ci d

ryxR   (17) 

   n
ii ryxR  ,  (18) 

   i
n

ii rryxR log ,   (19) 

cd  is the average nodal spacing near the point of interest at x ; c  and n  are two arbitrary real 
numbers of dimensionless parameters, which are called shape parameters. It is [45,48] recommended 
to use q  as 1.03 and c  as 3.00 for MQ basis function. The radial distance is given in Eq. 20 for 2D.  
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      22         iii yyxxxr   (20) 

Shape functions can be constructed by using a field function,  xu  which includes polynomial and 
basis functions and is given in Eq 21. 

 
           bxPaxRbxPaxRxu TTm

j jj

n

i ii                 
11

  
 (21) 

 xRi  and  xPj  represent radial basis and polynomial basis functions, respectively. ia  and jb  are 
related constants, n  is the number of field nodes in the local support domain and m  is the number of 
polynomial terms. Interpolations between nodes are mainly accomplished within the local support 
domain for each node or point of interests. 

The matrix form of the above equation can be expressed in Eq. 22. eU  is the vector of function 
values at nodes in the local support domain. qR  is the moment matrix and mP  is the polynomial 
moment matrix [45], which are given in Eq. 23 and 24, respectively. 

 
  T
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a  is the vector of unknown coefficients for RBF and b  is the vector of unknown coefficients for 
polynomial basis functions. They are given in Eq. 25 and 26. 

 
  n

T aaaa ...    21  (25) 

  n
T bbbb ...    21  (26) 

For solution of field function, unknown parameter a  in Eq. 21 must satisfy in polynomial function, 
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Combination of Eq. 21 and Eq. 22 supports the Eq. 28. 
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where 
 

  T
n

e
e aaa

U
U 0... 0 0 ...    

0
  ~

21







  (29) 

Unique solution is obtained if inverse of matrix G  exists: 
 

 eUG
b
a

a ~      1
0 









   (30) 

Substituting Eq. 30 into Eq. 21, interpolation with respect to field function can be expressed as, 
 

          ee
TT UxUGxPxRxu ~ ~~        1     (31) 

Finally [45], RPIM shape functions for the corresponding n  field nodes can be obtained as 
 

         xxxx n
T   ..  .21  (32) 

The approximation function can be written as 
 

     



n

i
iie

T uUxxu
1

          (33) 

The derivatives of  xu  can be easily obtained as 

     e
T
kki Uxxu     ,,   (34) 

where k  denotes the coordinates and partial differentials are taken with respect to that defined 
coordinated by k .  

In mls class, the mls shape functions and their derivatives are obtained by using compute_basis 
and compute_ab sub-classes. compute_basis class computes base functions and their 
derivatives. compute_ab class computes the weights by using weight_w1 and weight_w2 and 
finally computes shape functions and their derivatives. When MLS shape functions are constructed, 
the field function   xu can be written with approximate formation of MLS in Eq. 35.   xa is 
unknown coefficients and they are shown in Eq. 36. These coefficients are included to 2L norm for 
finding their values in Eq. 37. When minimizing 2L with applying 0J/   , a linear equation can 
be achieved in Eq. 38. 
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       sUxBxaxA   (38) 

As same as right hand side of Eq. 22, field functions can be expressed as; 
 

  T
ns uuuU   ...    21  (39) 

In Eq. 38,  xA ,  xB  and  xa  can be expressed as in Eq. 40, 41. and 42, respectively;   
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2211  (41) 

       sUxBxAxa 1  (42) 

Also  xa  can supply field function and the field function can be written with respect to shape 
functions as; 
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  (43) 

 x is represents the constructed shape functions. When they are regulated, they can be written as; 
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All calculated shape functions and their derivatives are stored in the property of phi. Strain matrix is 
constructed with RPIM or MLS shape functions and it is given in Eq. 45. 
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Further step will be construction of stiffness and force matrices with respect to constructed shape 
functions. Stiffness formulation of LRPIM is given in Eq. 46 and it is regulated with Gauss 
quadrature in Eq. 47 for integration. qiJ  and quJ  are Jacobean matrices at curve boundary locations. 

 
  



nDBdWnDBdWDBdVK
quqiq

T
I

T
I

T
II

ˆˆˆ  (46) 
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Applied traction and body forces are integrated in Eq. 48 and it is regulated with Gauss quadrature 
for integration in Eq. 49. 

  


bdWdtWf
qqt

T
I

T
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ˆˆ  (48) 
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ˆˆˆˆ  (49) 

Similar stiffness and force matrices can be integrated in MLS shape functions, which are given in Eq. 
50 and 51. 

  


dWnDBdWnDBdWDBdVK
ququqiq

T
I

T
I

T
I

T
II

ˆˆˆˆ   (50) 

  


duWbdWdtWf
quqqt

T
I

T
I

T
II

ˆˆˆ   (51) 

3.1.5 bc (boundary condition) class 

bc is defined for the essential and natural boundary conditions. It has a single property of x. It 
inherits this property to integration_bcqt, integration_bcquqi and essentialbc 
classes. integration_bcquqi is mainly used integration of Eq. 52, which is inside of stiffness 
matrix terms in Eq. 46 and 50. 

     


nDBdWnDBdW
quqi

T
I

T
I

ˆˆ    (52) 

integration_bcqt class is used integration of Eq. 53, which represents integration of traction at 
the inside of  Eq. 48 and 51. 

    


dtW
qt

T
I

ˆ    (53) 

In integration_bcqt class, applied traction is transferred to the nodes and stored as nodal 
values in f property. Then, f is used to calculate force vector. integration_bcquqi class is 
used in the calculation boundary integrals in a local quadrature domain. Essential boundary 
conditions are handled by using essentialbc class and all calculated values are recorded into ak 
property.  

3.1.6 solv (solution) class 

The target in developing solv class is encapsulation of all classes that are related with solutions. 
Therefore, it has no property and it is the base class of dobmaxcalculator, solverband, 
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sparsestorage and getinverse.  gausseqsolver and bandsolver are subclasses of 
solverband. All these classes are generally used in the basic matrix operations and transfer their 
results to the class properties where they are called. bandsolver class is used solution of banded 
matrices and gausseqsolver class is used as alternatively usage of bandsolver for standard 
gauss elimination. matlabsolver class includes direct and different iterative methods for solution 
of linear equations (A*x=b), which are available in MATLAB library. Some iterative solvers are 
directly imported as class functions and ready for calling, which are Biconjugate gradients method 
(bicg), Biconjugate gradients stabilized method (bicgstab), Biconjugate gradients stabilized (l) 
method (bicgstabl), Conjugate gradients squared method (cgs), Generalized minimum residual 
method (gmres), LSQR method (lsqr), Minimum residual method (minres), Preconditioned conjugate 
gradients method (pcg), Quasi-minimal residual method (qmr), Symmetric LQ method (symmlq) and 
Transpose-free quasi-minimal residual method (tfqmr). These method are used for solution of linear 
equations (A*x=b) with iterations. Dimensions of matrices must be square (nxn) and symetric for 
term of A in minres, pcg and symmlq solvers. Other methods can be used with asymmetric matrices. 
Only lsqr method can be capable to solve mxn matrix dimensions of A. It is pointed [45] that 
stiffness matrices are generally sparse, banded and asymmetric. Hence all iterative solvers can be 
used compatible without minres, pcg and symmlq solvers. 

Solution of complex geometries mostly causes to increase number of nodes in the solution. This 
phenomena cause to increase size of global stiffness matrix in meshfree methods. In most of the 
cases, global stiffness matrix holds zero values and its storage decrease computational effort. 
sparsestorage class is used for construction of sparse matrices, if it includes lots of zero terms. 
Sparse ratio function can calculate sparsity, which is the ratio of number of zero terms to all terms. 
Sparse matrices are also constructed with sparse function in MATLAB alternatively. If only a linear 
equation is solved with small sizes, sparse function can be used without sparsestorage class.  

3.1.7 post (results) class 

All methods, which are related with results of solution, are encapsulated in a single class; post. It 
has three basic properties, x, numnode, u2. It inherits its properties to getdisplacement, 
getnodestress, output and getengerror classes. Displacements and stresses are calculated 
with respect to Eq. 54 and 55. 

 
         122313   nn uB    (54) 

               122333133313   nn uBDD     (55) 

getdisplacement class computes the nodal displacement under action of given loading 
condition and records them in u2 and disp properties. The nodal stresses are computed in 
getnodestress class and recorded in stress property. In the output class, calculated 
displacements and stresses are written in a text file using its methods. The class also inherits all its 
properties and methods to getengerror that computes the energy error in the solution together 
with totalgausspoints.  

4 Example solution and discussions 

A cantilever beam with an end load (case I) and an axial loaded bar (case II) are solved using RPIM 
and MLPG methods in developed program. In these solutions, rectangular support domains and local 
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rectangular integration cells are used. The constructed model has a length of 48 cm and a height of 
12 cm. Unit thickness is used in the analyses. The used material properties have Young modulus of 
30.106 N/cm2 and Poison's ratio of 0.0. Regularly distributed nodes have a nodal spacing of 4.8 cm in 
x (horizontal) direction and 3.00 cm in y (vertical) directions. Number of sub-division of quadrature 
domains is equal to 2 for both x and y directions. Number of gauss points is equal to 4 for each 
domain. 40 integration cells are used. Influence domain constant is selected as 3.00. Radial basis 
function parameters are selected as nrbf of 1.00, alfc of 1.00, dc of 3.00 and q of 1.03. The used 
number of basis functions is equal to 3. In both cases, the force (P) is taken as 1000 N as shown in 
Fig. 1. The shape parameters are taken from the compared study [45] for getting same solution 
procedure. The number of regular distributed nodes is equal to 55 in all solutions. 

.  

 

 

Figure 1: Engineering (a), meshfree (b) and FEM (c) models of axial loaded and cantilever beam 
problems and their boundary conditions 

4.1 Key Design Principles and Solution Procedure 

A main framework is constructed to manage all objects and all base classes use the MATLAB 
handle class. The overall scheme and interaction of classes can be seen in Fig. 2. nodes and 
material objects are used almost everywhere in the program. Therefore, they are created at the 
beginning of the solution.  Construction of other classes is realized in sequence after these classes. 
All other classes are created by sending required data to their constructor functions. All computations 
are carried out inside of member functions and results are stored in objects as class properties. If 
local variables are not defined as a property of that class, they are cleared at the end of the class 
function operations. Hence, it prevents unnecessary memory usage. Only related and re-used from 
outside of class operators are assigned as class property.  

Node coordinates, geometry and boundary conditions, meshfree parameters and other properties are 
read from files with mc class and stored in nodes object. Then material object is created for 
construction of material matrix with respect to plane stress or plane strain. When model operations in 
the classes are finished, calculation of quadrature domain of nodes begins with inte class. 
qdomain object stores the quadrature domain size and gausscoefficient object stores the 
gauss weights. In the solutions, local quadrature domain integrations are used. Therefore, 
localquadraturedomain object stores the quadrature domain boundaries and it is divided to 
subdomains. nodes object is called inside of this class and node coordinates are directly used 
without any conflicts. It is commonly used in procedural programming that transferring parameters 
with assigning new parameter names between programs and subroutines which causes to conflicts, 
especially in much sizes of codes. However, parameters are stored as properties of class objects and 
re-assignment is not required. subdivisionlqdomain object stores the divided local quadrature 
domain and gauss node positions are stored in domaingausspoints object. The type of support 
domain geometry is selected as rectangular. The number of nodes and node numbers in a support 
domain of a gauss point are stored in supportdomain object. Cubic spline test functions are used 
and their weights are stored inside of testfunc object.  

(c) 

(b) 12 cm P (case II) 

48 cm 

P (case I) 

x 

y 

(a) 
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Figure 2: Overall flow and communications of classes during the solution for local quadrature 
domain 

Next step is the calculation of shape functions. They are calculated and stored in rpim object. 
computeradialbasis class includes the derivatives of radial basis functions and it is used by 
rpim object. 3 different basis function classes are available; mq, exp and tsp. mq class is used in 
this analysis. It can be also calculated by using mls object using MLPG method. If mls method is 
used, the calculated shape functions are stored in mls object. Inheritance property has large benefits 
on the developments of meshfree methods, especially similar structures and their sub-links are 
available, if object oriented programming technique is used. Superclass properties are directly 
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transferred as properties of subclasses. Redefining of properties of subclasses is not required. Besides 
of that subclass includes its own special properties. Including new methods in shape function class 
can be easily handled by OOP, which can be defined as a subclass. Main properties like shape 
functions and their derivative values property phi directly assigns that new method. 

OOP can be able to provide to work RPIM and MLS shape functions together for construction of 
shape functions. Both methods have their own benefits and accuracy in the calculations. One of them 
can be used in determined locations and the other can be used in other locations. This procedure can 
more easily accomplished by OOP. A switch is used to select the method for the construction of 
shape functions. dobmaxcalculator object is used for arrangements and calculations of shape 
functions. integration_bcqt object stores the applied force at related nodes. Also 
integration_bcquqi object stores the calculations of boundary integrals. All the calculations 
are repeated for each node and stored in the related class object. When the calculations finish, 
essential boundary conditions are applied and they are stored in essentialbc object.  

Stiffness and force matrix includes lots of zero terms with respect to interpolation. 
sparsestorage class can be used for construction of sparse stiffness and force matrices. Also 
sparse function in MATLAB can be directly used without using sparsestorage class. However, 
either using sparse function or using sparsestorage class consumes time for construction of 
sparse matrix. In this study, sparse function is directly used. Because solution model has few nodes 
and their properties are easily stored in memory. sparsestorage class also consumes time, 
especially %25 greater solution times in solv class, when comparing solution with sparse function 
in this solution. solverband object is used for the solution of linear equations. After the solution, 
the nodal displacements are stored in getdisplacement object. getnodestress object stores 
the nodal stresses, which are calculated with respect to nodal displacements. output object stores 
the output of the getdisplacement and getnodestress object for writing them to an 
external file. Energy error is calculated by using totalgausspoints and getengerror 
objects and stored inside of getengerror object.  

4.2 Solutions and discussion 

Analytical and FEM solutions are available in the examined cases. The deformation and axial stress 
formulations are given in Eq. 56 and 57 for axial loaded bar problem. A is cross-section area of the 
bar, E is Young’s modulus of material, x is horizontal distance from one end of the bar and P 
represents applied force. 

 

 
EA
xP




  (56) 

 
A
P

  (57) 

For the cantilever beam problem, the displacements are plotted for the upper side where tensional 
stresses occur. The deflection and axial stresses of the cantilever beam are given in Eq. 58 and 59. I 
is moment of inertia, L is length of the beam and c is the distance between upper surface and natural 
axis of the beam. 
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In ANSYS, same geometrical model is constructed by using PLANE182 elements. These elements 
have 4 nodes at the edges for rectangular type. Plane stress assumption is used. Similar boundary 
conditions are applied as analytical solutions.  

The original procedural meshfree program [45] gives the same displacement results as OOP 
meshfree program as shown in Fig. 3 for cantilever beam and axial loaded bar problems. The 
analytical and ANSYS solutions are also given and it is seen that they are in good agreements. RPIM 
solutions are a little bit closer to analytical solutions than MLS results.  

 

     

Figure 3: The displacement results of analytic, ANSYS, original meshfree [45] and OOP meshfree 
programs for cantilever beam problem (a) and for axial loaded beam problem (b) 

Stress results are given in Fig. 4 for cantilever beam and axial loaded bar problems. It is seen that 
both original procedural meshfree program and OOP program nearly give the same results. All 
numerical results have good agreements with analytical solutions. A little difference can be seen in 
the results of RPIM method at the left corner, but same difference exists in the original procedural 
program. All stress results of bar problem are in perfect agreements with analytical and ANSYS 
results. 

 

     

Figure 4: The stress results of analytic, ANSYS, original meshfree [45] and OOP meshfree 
programs for cantilever beam problem and for axial loaded bar problem 

(b) (a) 

[45] 
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5 Conclusion 

Object-oriented programming of meshfree methods are discussed in detail for solution of elastostatic 
problems. Since new meshfree techniques are continuously improved by different researchers, the 
goal is developing a program that can be easily adapted to new meshfree techniques. Therefore a 
program is mainly organised based on types of support domains, integrations and shape functions.  It 
can handle a solution in different ways: 
 Using different integration cells; either global or local rectangular integration cells, 
 Using different support domains; rectangular, circular or triangular support domains,    
 Using different shape functions; either RPIM or MLS shape functions. 
 Different MATLAB functions are included for increasing modularity at solution. 

A new technique, for example about shape functions, can be easily adapted by creating its classes 
and objects without changing whole program structure. The source of a problem can be easily 
detected by only dealing with relevant classes.  

In a procedural program, the program is developed using functions and subroutines. The parameters 
that are transferred to them must be carefully selected and general flow must be designed without 
causing a “spaghetti code” which is hard to understand and maintain. All variables in a procedural 
program are initially defined as public. However, in an object oriented program, the variables inside 
the classes are initially defined as private. The program is constructed based on objects and works by 
their interactions. Objects are instances of classes. Each class encapsulates its properties and 
methods. So, an encapsulated class can be modified and improved without considering the whole 
program structure. 

The flexibility and modularity of OOP technique are used during developing of Meshfree code in 
MATLAB. However, it was shown that MATLAB OOP codes are slower against procedural 
FORTRAN codes. The reason of slowness of MATLAB is based on slowness of it doing some 
certain operations such as loops [49-51]. The results of MATLAB OOP program, on the other hand, 
are in perfect agreement with results of FORTRAN procedural program.   
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