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ABSTRACT 

In this paper we consider the operator L generated in 𝐿∇
2 [𝑎, 𝑏] by the boundary problem 

−[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡) = 0, 𝑡 ∈ [𝑎, 𝑏],                                                                  

𝑦(𝑎) − 𝑘𝑦∆(𝑎) = 0,     𝑦(𝑏) + 𝐾𝑦∆(𝑏) = 0                                                                           

where 𝑞(𝑡) is partial continuous, 𝑞(𝑡) ≥ 0, 𝑘 ≥ 0, 𝐾 ≥ 0. In this paper, spectral properties of Schrodinger problem 
on finite time scale is examined and the formula of convergent expansion is obtained which is form of series in terms 

of the eigenfunctions in 𝐿∇
2 [𝑎, 𝑏] space. 

Keywords: Time scale, delta and nabla derivatives, Schrödinger operator, eigenvalue, eigenfunction. 

 

1. INTRODUCTION 

The first articles on eigenvalues problems for linear ∆-

differential equations on time scales have been 

investigated in [2] and [7]. 

 

Guseinov [8] investigated eigenfunction expansions for 

the simple Sturm-Liouville eigenvalue problem 

 

−𝑦∆𝛻(𝑡) = 𝜆𝑦(𝑡),      𝑡 ∈ (𝑎, 𝑏) (1) 

 

𝑦(𝑎) = 𝑦(𝑏) = 0 (2) 

 

where 𝑎 and 𝑏 are some fixed points in a time scale 𝑇 

with 𝑎 < 𝑏 and such that the time scale interval (𝑎, 𝑏) is 

not empty. 

 

In that paper [8], existence of the eigenvalues and 

eigenfunctions for problem (1), (2) is proved and mean 

square convergent and uniformly convergent 

expansions in eigenfunctions are established. 

 

Huseynov and Bairamov in [1] have extended the 

results of [8] to more general following eigenvalue 

problem 

 

−[𝑝(𝑡)𝑦∆(𝑡)]∇ + 𝑞(𝑡)𝑦(𝑡) = 𝜆𝑦(𝑡),     𝑡 ∈ (𝑎, 𝑏], 
𝑦(𝑎) − ℎ𝑦∆(𝑎) = 0, 𝑦(𝑏) + 𝐻𝑦∆(𝑏) = 0 

 

Let us consider the operator L generated in  
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𝐿∇
2 [𝑎, 𝑏] ≔ {𝑦: [𝑎, 𝑏] → ℝ |∫ 𝑦2(𝑡)∇t < ∞

𝑏

𝑎

} 

by the eigenvalue problem  

 

−[𝑦∆(𝑡)]𝛻 + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡) = 0, 𝑡 ∈ [𝑎, 𝑏] (3) 

 

and the boundary condition 

 

𝑦(𝑎) − 𝑘𝑦∆(𝑎) = 0,     𝑦(𝑏) + 𝐾𝑦∆(𝑏) = 0 (4) 

 

We will assume that the following two conditions are 

satisfied. 

 

(C1) 𝑞(𝑡) is piecewise continuous on [𝑎, 𝑏], k and K are 

real numbers. 

 

(C2) 𝑞(𝑡) ≥ 0 for 𝑡 ∈ [𝑎, 𝑏] and 𝑘 ≥ 0, 𝐾 ≥ 0. 

 

In this paper, the Hilbert-Schmidt theorem on self-

adjoint completely continuous operators is applied to 

show that the eigenvalue problem (3), (4) has a system 

of eigenfunctions that forms an orthonormal basis for an 

appropriate Hilbert space. Moreover, uniformly 

convergent expansions in eigenfunctions are obtained 

when the expanded functions satisfy some smoothness 

conditions. 

 

Let 𝑇 be a time scale and 𝑎, 𝑏 ∈ 𝑇 be fixed points with 

𝑎 < 𝑏 such that the time scale interval 

 

(𝑎, 𝑏) = {𝑡 ∈ 𝑇: 𝑎 < 𝑡 < 𝑏} 
 

is not empty. For standard notions and notations 

connected to time scales calculus we refer to [5, 6]. 

 

 

2.  𝑳𝟐- CONVERGENT EXPANSION 

Denote by H Hilbert space of all real ∇ −measurable 

functions 𝑦: (𝑎,𝑏] → ℝ such that 𝑦(𝑏) = 0 in the case b 

is left-scattered and 𝐾 = 0, and that  

 

∫ 𝑦2(𝑡)∇𝑡 < ∞

𝑏

𝑎

, 

 

with the inner product 

 

〈𝑦, 𝑧〉 = ∫ 𝑦(𝑡)𝑧(𝑡)∇𝑡

𝑏

𝑎

 

 

and the norm 

 

‖𝑦‖ = √〈𝑦, 𝑦〉 = {∫ 𝑦2(𝑡)∇𝑡
𝑏

𝑎
}

1
2⁄
. 

 

Next denote by 𝐷  the set of all functions 𝑦 ∈ 𝐻 

satisfying the following three conditions 

 

 

 

(i) 𝑦  is continuous on [𝑎, 𝜎(𝑏)], where 𝜎 denotes 

the forward jump operator. 

(ii) 𝑦∆(𝑡)  is defined for 𝑡 ∈ [𝑎, 𝑏] 

y(𝑎) − 𝑘𝑦∆(𝑎) = 0,     𝑦(𝑏) + 𝐾𝑦∆(𝑏) = 0 

(iii) 𝑦∆(𝑡) is ∇-differentiable  on [𝑎, 𝑏]  and 

[𝑦∆(𝑡)]∇ ∈ 𝐻. 

 

Obviously 𝐷  is a linear subset dense in 𝐾 . Now we 

define the operator 𝐿: 𝐷 ⊂ 𝐻 → 𝐻  as follows. The 

domain of definition of 𝐿 is 𝐷 and we put 

 

(𝐿𝑦)(𝑡) = −[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡),

𝑡 ∈ [𝑎, 𝑏]for 𝑦 ∈ 𝐷 

 

 

 

Definition 1: 𝜆 ∈ ℂ is called an eigenvalue of problem 

(3)-(4) if there exists a nonidentically zero function 

𝑦 ∈ 𝐷 such that  

 

−[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡) = 0,   𝑡 ∈ (𝑎,𝑏] 
 

The function y is called an eigenfunction of problem 

(3)-(4), corresponding to the eigenvalue 𝜆. We see that 

the eigenvalue problem (3)-(4) is equivalent to the 

equation 

 

𝐿𝑦 − 𝜆𝑦 = −[𝑦∆(𝑡)]𝛻 + [𝜆2 + 𝜆(2𝑞(𝑡) − 1) +
𝑞2(𝑡)]𝑦(𝑡),   𝑦 ∈ 𝐷,   𝑦 ≠ 0 (5) 

 

 

 

 

 

Theorem 1: Under the condition (C1) we have, for all 

𝑦, 𝑧 ∈ 𝐷, 

 
〈𝐿𝑦, 𝑧〉 = 〈𝑦, 𝐿𝑧〉         (6) 
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Proof: We have for all  𝑦, 𝑧 ∈ 𝐷 

 

〈𝐿𝑦, 𝑧〉 = ∫{−[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡)}𝑧(𝑡)∇𝑡

𝑏

𝑎

 

= −𝑦∆(𝑡)𝑧(𝑡) |
𝑏

𝑎
+ ∫ 𝑦∆(𝑡)𝑧∆(𝑡)∆𝑡 + ∫[𝜆 + 𝑞(𝑡)]2𝑦(𝑡)𝑧(𝑡)∇𝑡

𝑏

𝑎

𝑏

𝑎

 

= 𝑦∆(𝑡)𝑧(𝑡) |
𝑏

𝑎
+ 𝑦(𝑡)𝑧∆(𝑡) |

𝑏

𝑎
− ∫ 𝑦(𝑡)[𝑧∆(𝑡)]∇∇𝑡

𝑏

𝑎

+ ∫[𝜆 + 𝑞(𝑡)]2𝑦(𝑡)𝑧(𝑡)∇𝑡

𝑏

𝑎

 

= ∫ 𝑦(𝑡){−[𝑧∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑧(𝑡)}∇𝑡

𝑏

𝑎

 

= 〈𝑦, 𝐿𝑧〉 

 

where we have used the boundary conditions (4) for functions 𝑦, 𝑧 ∈ 𝐷. (6) shows that the operator L is symmetric (self-

adjoint). 

 

Theorem 2: Under the conditions (C1) and (C2) we have, for all 𝑦 ∈ 𝐷, 

〈𝐿𝑦, 𝑦〉 > 0. 

 

Proof: We have for all 𝑦 ∈ 𝐷 

〈𝐿𝑦, 𝑦〉 = ∫{−[𝑦∆(𝑡)]∇ + [𝜆 + 𝑞(𝑡)]2𝑦(𝑡)}𝑦(𝑡)∇𝑡

 𝑏

𝑎

 

= −𝑦∆(𝑡)𝑦(𝑡)|
𝑏

𝑎
+ ∫[𝑦∆(𝑡)]2∆𝑡 + ∫[𝜆 + 𝑞(𝑡)]2𝑦2(𝑡)∇

𝑏

𝑎

𝑡

𝑏

𝑎

 

= 𝑘[𝑦∆(𝑎)]2 + 𝐾[𝑦∆(𝑏)]2 + ∫[𝑦∆(𝑡)]2∆𝑡 + ∫[𝜆 + 𝑞(𝑡)]2𝑦2(𝑡)∇𝑡                      (7)

𝑏

𝑎

𝑏

𝑎

 

 

(7) shows that it is positive 〈𝐿𝑦, 𝑦〉 > 0 for all 𝑦 ∈ 𝐷, 

𝑦 ≠ 0. Therefore all eigenvalues of the operator L are 

real, positive and any two eigenfunctions corresponding 

to the distinct eigenvalues are orthogonal. 

Now we would like to show that the existence of 

eigenvalues for problem (3)-(4). 

Theorem 3:  

𝑘𝑒𝑟𝐿 = {𝑦 ∈ 𝐷: 𝐿𝑦 = 0} = {0} 

 

Proof:  If 𝑦 ∈ 𝐷 and 𝐿𝑦 = 0, then from (7) we have by 

the condition (C2) that 𝑦∆(𝑡) = 0 for 𝑡 ∈ (𝑎, 𝑏]. Hence 

𝑦(𝑡)  is constant on [𝑎, 𝑏] . Then using boundary 

conditions (4) we get that  𝑦(𝑡) ≡ 0. 

 

It follows that the inverse operator 𝐿−1 exists. 

 

Theorem 4: The Green function 𝐺(𝑡, 𝑠) of (3)-(4) is 

defined as 

 

𝐺(𝑡, 𝑠) = {

𝐺1(𝑡, 𝑠),     𝐼𝑚𝜆 ≤ 0

𝐺2(𝑡, 𝑠),     𝐼𝑚𝜆 ≥ 0
  (8)  (8) 

Furthermore the Green function is symmetric that is 

 

𝐺(𝑡, 𝑠) = 𝐺(𝑠, 𝑡) 

 

for s,t. Where 𝐺1(𝑡, 𝑠) on the plane 𝐼𝑚𝜆 ≤ 0 is defined 

as  

𝐺1(𝑡, 𝑠) = −
1

𝑤1
{
𝑢1(𝑡)𝑣1(𝑠),     𝑡 ≤ 𝑠

𝑢1(𝑠)𝑣1(𝑡),     𝑡 ≥ 𝑠
 

 

and 𝐺2(𝑡, 𝑠) on the plane 𝐼𝑚𝜆 ≥ 0 is defined as  

 



470  GU J Sci, 29(2) 467-472 (2016)/ Esra KIR ARPAT, Hatice TERZİ 

 

𝐺2(𝑡, 𝑠) = −
1

𝑤2
{
𝑢2(𝑡)𝑣2(𝑠),     𝑡 ≤ 𝑠

𝑢2(𝑠)𝑣2(𝑡),     𝑡 ≥ 𝑠
 

In here, 𝑢1(𝑡)  and 𝑢2(𝑡)  are the solution of (3) 

satisfying boundary conditions 

𝑢1(𝑎) = 𝑘,     𝑢1
∆(𝑎) = 1 

𝑣1(𝑏) = 𝐾,    𝑣1
∆(𝑏) = −1 

and 

 

𝑢2(𝑎) = 𝑘,     𝑢2
∆(𝑎) = 1 

𝑣2(𝑏) = 𝐾,    𝑣2
∆(𝑏) = −1 

 

respectively, 𝑤1 and 𝑤2 are Wronskian of the solution 𝑢 

and 𝑣 which are defined as 

 

𝑤1 = 𝑤𝑡(𝑢1, 𝑣1) = 𝑢1(𝑡)𝑣1
∆(𝑡) − 𝑢1

∆(𝑡)𝑣1(𝑡) 

and 

 

𝑤2 = 𝑤𝑡(𝑢2, 𝑣2) = 𝑢2(𝑡)𝑣2
∆(𝑡) − 𝑢2

∆(𝑡)𝑣2(𝑡) 

Note that 𝑤1 ≠ 0 and 𝑤2 ≠ 0. 

Then, 

(𝐿−1𝑓)(𝑡) = ∫ 𝐺(𝑡, 𝑠)𝑓(𝑠)𝛻𝑠 ,     ∀𝑓 ∈ 𝐻
𝑏

𝑎
  (9) 

for any 𝑓 ∈ 𝐻 [3, 4]. 

 

The equations (8) and (9) imply that 𝐿−1 is completely 

continuous (or compact) self-adjoint and lineer operator 

in the Hilbert space 𝐻. 

 

The eigenvalue problem (5) is equivalent (note that 

𝜆 = 0  is not an eigenvalue of L) to the eigenvalue 

problem 

𝐵𝑔 = 𝜇 ,     𝑔 ∈ 𝐻 ,     𝑔 ≠ 0 

where 

𝐵 = 𝐿−1  and  𝜇 =
1

𝜆
 . 

In other words, if 𝜆  is an eigenvalue and 𝑦 ∈ 𝐷  is a 

corresponding eigenfunction for L, then 𝜇 = 𝜆−1 is an 

eigenvalue for B with the same corresponding 

eigenfunction y conversely, if 𝜇 ≠ 0 is an eigenvalue 

and 𝑔 ∈ 𝐻 is corresponding eigenfunction for 𝐵 , then 

𝑔 ∈ 𝐷  and 𝜆 =  𝜇−1  is an eigenvalue for 𝐿  with the 

same eigenfunction 𝑔. 

 

Next we use the following well-known Hilbert-Schmidt 

theorem. For every completely continuous self-adjoint 

linear operator B in a Hilbert H there exists an 

orthonormal system {𝜑𝑘} of eigenvectors corresponding 

to eigenvalues {𝜇𝑘}(𝜇𝑘 ≠ 0)  such that element 𝑓 ∈ 𝐻 

can be written uniquely in the form  

 

𝑓 = ∑ 𝑐𝑘𝜑𝑘 + 𝜓

𝑘

 

where 𝜓 ∈ 𝑘𝑒𝑟𝐵, that is, 𝐵𝜓 = 0. Moreover,  

𝐵𝑓 = ∑ 𝜇𝑘𝑐𝑘𝜑𝑘

𝑘

 

and if the system {𝜑𝑘} is infinite, then  

 

lim 𝜇𝑘 = 0     (𝑘 → ∞).  

 

As a corollary of the Hilbert-Schmidt theorem we have 

if B is a completely continuous self-adjoint linear 

operator in a Hilbert space H and if 𝑘𝑒𝑟𝐵 = {0}, then 

the eigenvectors of B form an orthogonal basis of H. 

 

Applying the corollary of the Hilbert-Schmidt theorem 

to the operator 𝐵 = 𝐿−1 and using the above described 

connection between the eigenvalues and eigenfunctions 

of L and the eigenvalues and eigenfunctions of B we use 

the following result in [1]. 

 

Theorem 5: Under the conditions (C1) and (C2), for 

the eigenvalue problem (3)-(4) there exists an 

orthonormal system {𝜑𝑘}  of eigenfunctions 

corresponding to eigenvalues {𝜆𝑘}. Each eigenvalue 𝜆𝑘 

is positive and simple. The system {𝜑𝑘}  forms an 

orthonormal basis for the Hilbert space H. Therefore the 

number of the eigenvalues is equal to 𝑁 = 𝑑𝑖𝑚𝐻. Any 

function 𝑓 ∈ 𝐻  can be expanded in eigenfunctions 𝜑𝑘 

in the form 

𝑓(𝑡) = ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑁

𝑘=1

                                    (10) 

 

where𝑐𝑘 are the Fourier coefficients of f defined by  

 𝑐𝑘 = ∫ 𝑓(𝑡)𝜑𝑘(𝑡)𝛻
𝑏

𝑎
𝑡             (11) 

 

In the case 𝑁 = ∞ the sum in (10) becomes an infinite 

series and it converges to the function f in metric of the 

space H, that is, in mean square metric 

𝑙𝑖𝑚
𝑛→∞

∫ [𝑓(𝑡) − ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

]

2

𝛻𝑡 = 0

𝑏

𝑎

      (12) 

  

Note that since 

∫ [𝑓(𝑡) − ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

]

2

∇𝑡 = ∫ 𝑓2(𝑡)∇𝑡 − ∑ 𝑐𝑘
2

𝑛

𝑘=1

𝑏

𝑎

𝑏

𝑎

 

we get from (12) the Parseval equality 

∫ 𝑓2(𝑡)𝛻𝑡

𝑏

𝑎

= ∑ 𝑐𝑘
2

𝑁

𝑘=1

                    (13) 
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3. UNIFORMLY CONVERGENT EXPANSION 

In this section, if the condition (C1) and (C2) are 

satisfied, we prove the following result.  

 

Theorem 6: Let 𝑓: [𝑎, 𝑏] → ℝ be a function such that it 

has a ∆ −derivative 𝑓∆(𝑡) everywhere on [𝑎, 𝑏], except 

at a finite number of points 𝑡1, 𝑡2, … , 𝑡𝑚  belonging to 

(𝑎, 𝑏) , the ∆ -derivative being continuous everywhere 

except at these points, at which 𝑓∆ has finite limits from 

the left and right. Besides assume that f satisfies the 

boundary conditions  

 

𝑓(𝑎) − 𝑘𝑓∆(𝑎) = 0   ,   𝑓(𝑏) + 𝐾𝑓∆(𝑏) = 0 

Then the series 

∑ 𝑐𝑘𝜑𝑘(𝑡)

∞

𝑘=1

                                    (14) 

  

where 

  

𝑐𝑘 = ∫ 𝑓(𝑡)𝜑𝑘(𝑡)𝛻𝑡

𝑏

𝑎

                    (15) 

  

Converges uniformly on [𝑎, 𝑏] to the function f.  

 

Proof: Let the function f  is ∆-differentiable everywhere 

on [𝑎, 𝑏] and that 𝑓∆ is continuous on [𝑎, 𝑏]. Consider 

the functional 

𝐽(𝑦) = 𝑘[𝑦∆(𝑎)]2 + 𝐾[𝑦∆(𝑏)]2 + ∫[𝑦∆(𝑡)]2∆𝑡

𝑏

𝑎

+ ∫[𝑞2(𝑡) + 2𝜆𝑞(𝑡)]𝑦2(𝑡)∇𝑡

𝑏

𝑎

 

so that we have 𝐽(𝑦) ≥ 0. Substituting in the functional 

𝐽(𝑦) 

𝑦 = 𝑓(𝑡) − ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

 

where 𝑐𝑘 are defined by (15), we obtain  

𝐽 (𝑓 − ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

) = 𝑘 [𝑓∆(𝑎) − ∑ 𝑐𝑘𝜑𝑘
∆(𝑡)

𝑛

𝑘=1

]

2

+ 𝐾 [𝑓∆(𝑏) − ∑ 𝑐𝑘𝜑𝑘
∆(𝑏)

𝑛

𝑘=1

]

2

 

+ ∫ [𝑓∆ − ∑ 𝑐𝑘𝜑𝑘
∆(𝑏)

𝑛

𝑘=1

]

2

∆𝑡 + ∫[𝑞2(𝑡) + 2𝜆𝑞(𝑡)]

𝑏

𝑎

𝑏

𝑎

[𝑓 + ∑ 𝑐𝑘

𝑛

𝑘=1

𝜑𝑘]

2

∇𝑡 

= 𝑘(𝑓∆(𝑎))
2

+ 𝐾(𝑓∆(𝑏))
2

− 2 ∑ 𝑐𝑘[𝑘𝑓∆(𝑎)𝜑𝑘
∆(𝑎) + 𝐾𝑓∆(𝑏)𝜑𝑘

∆(𝑏)]

𝑛

𝑘=1

 

+ ∑ 𝑐𝑘𝑐𝑙[𝑘𝜑𝑘
∆(𝑎)𝜑𝑙

∆(𝑎) + 𝐾𝜑𝑘
∆(𝑏)𝜑𝑙

∆(𝑏)] + ∫(𝑓∆)2∆𝑡

𝑏

𝑎

∫[𝑞2(𝑡) + 2𝜆𝑞(𝑡)]𝑓2Δ𝑡

𝑏

𝑎

𝑛

𝑘,𝑙=1

 

−2 ∑ 𝑐𝑘 (∫ 𝑓Δ

𝑏

𝑎

𝜑𝑘
∆(𝑡)∆𝑡 + ∫(𝑞2 − 2𝜆𝑞)𝑓𝜑𝑘∇𝑡

𝑏

𝑎

)

𝑛

𝑘=1

 

+ ∑ 𝑐𝑘𝑐𝑙

𝑛

𝑘,𝑙=1

(∫ 𝜑𝑘
∆𝜑𝑙

∆∆𝑡

𝑏

𝑎

+ ∫(𝑞2 + 2𝜆𝑞)

𝑏

𝑎

𝜑𝑘𝜑𝑙𝛻𝑡)                                              (16) 

 

where 𝛿𝑘𝑙 is the Kronecker symbol and where we have 

used the boundary conditions (4). 

  

  

 

 𝜑𝑘(𝑎) − 𝑘𝜑𝑘
∆(𝑎) = 0,     𝜑𝑘(𝑏) + 𝐾𝜑𝑘

∆(𝑏) = 0 (17) 

and the equation  

−[𝜑𝑘
∆(𝑡)]

∇
+ (𝑞2 + 2𝜆𝑞(𝑡))𝜑𝑘(𝑡) = 𝜆𝑘𝜑𝑘(𝑡). 

Therefore we have from (16) 

𝐽 (𝑓 − ∑ 𝑐𝑘𝜑𝑘(𝑡)

𝑛

𝑘=1

) = 𝑘[𝑓∆(𝑎)]2 + 𝐾[𝑓∆(𝑏)]2 + ∫[𝑓∆2 + (𝑞2 + 2𝜆𝑞)𝑓2]Δ𝑡

𝑏

𝑎

− ∑ 𝜆𝑘𝑐𝑘
2

𝑛

𝑘=1

 

Since the left-hand side is nonnegative we get the inequality 

  

∑ 𝜆𝑘

∞

𝑘=1

𝑐𝑘
2 ≤ 𝑘[𝑓∆(𝑎)]2 + 𝐾[𝑓∆(𝑏)]2 + ∫[𝑓∆2 + (𝑞2 + 2𝜆𝑞)𝑓2]

𝑏

𝑎

𝛥𝑡                              (18) 

  

analogous to Bessel’s inequality, and the convergence 

of the series on the left follows. All the terms of this 

series are nonnegative, since 𝜆𝑘 > 0 . Note that the 

proof of (18) is entirely unchanged if we assume that 

the function f  satisfies only the conditions stated in the 

theorem. Indeed, when integrating by parts, it is 

sufficient to integrate over the intervals on which  𝑓Δ is 

continuous and then add all these integrals. (The 

integrated terms vanish by (4), (17) and the fact that 

𝑓, 𝜑𝑘 and 𝜑𝑘
∆ are continuous on [𝑎, 𝑏]). 

 

We now show that the series  
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∑|𝑐𝑘𝜑𝑘(𝑡)|

𝑛

𝑘=1

                      (19) 

  

is uniformly convergent on the interval [𝑎, 𝑏]. 
Using the integral equation  

𝜑𝑘(𝑡) = 𝜆𝑘 ∫ 𝐺(𝑡, 𝑠)𝜑𝑘(𝑠)∇𝑠

𝑏

𝑎

 

which follows from 𝜑𝑘 = 𝜆𝑘𝐿−1𝜑𝑘  by (9), we can 

rewrite (19) as  

∑ 𝜆𝑘|𝑐𝑘𝑔𝑘(𝑡)|

𝑛

𝑘=1

                                  (20) 

  

where 

𝑔𝑘(𝑡) = ∫ 𝐺

𝑏

𝑎

(𝑡, 𝑠)𝜑𝑘(𝑠)∇𝑠 

can be regarded as the Fourier coefficient of 𝐺(𝑡, 𝑠) as a 

function of s.  

 

By using inequality (18), we can write 

 

∑ 𝜆𝑘𝑔𝑘
2

∞

𝑘=1

≤ 𝑘[𝐺𝛥𝑠(𝑡, 𝑎)]2 + 𝐾[𝐺𝛥𝑠(𝑡, 𝑏)]2 + ∫[[𝐺𝛥𝑠]2(𝑡, 𝑠) + (𝑞2 + 2𝜆𝑞(𝑠))𝐺2(𝑡, 𝑠)]𝛥𝑠

𝑏

𝑎

                  (21) 

  

where 𝐺Δs(𝑡, 𝑠)  is the delta derivative of 𝐺(𝑡, 𝑠)  with 

respect to s. The function appearing under the integral 

sign is bounded (see (8)) and it follows from (21) that  

∑ 𝜆𝑘𝑔𝑘
2

∞

𝑘=1

≤ 𝑀 

Where M  is a constant. Now replacing 𝜆𝑘by √𝜆𝑘, we 

apply the Cauch-Schwarz inequality to the segment of 

series (20), 

∑ 𝜆𝑘|𝑐𝑘𝑔𝑘(𝑡)| = ∑ |√𝜆𝑘𝑐𝑘|

𝑚+𝑝

𝑘=𝑚

|√𝜆𝑘𝑔𝑘(𝑡)|

𝑚+𝑝

𝑘=𝑚

 

≤ √ ∑ 𝜆𝑘𝑐𝑘
2

𝑚+𝑝

𝑘=𝑚

. √ ∑ 𝜆𝑘𝑞𝑘
2(𝑡)

𝑚+𝑝

𝑘=𝑚

 

≤ √𝑀√ ∑ 𝜆𝑘𝑐𝑘
2

𝑚+𝑝

𝑘=𝑚

 

And this inequality, together with the convergence of 

the series with terms 𝜆𝑘𝑐𝑘
2  (see (18)) at once implies 

that series with terms (20), and hence series (19) is 

uniformly convergent on the interval [𝑎, 𝑏]. Denote the 

sum of series (14) by 𝑓1(𝑡) 

𝑓1(𝑡) = ∑ 𝑐𝑘𝜑𝑘(𝑡)

∞

𝑘=1

                   (22) 

  

Since the series in (22) is convergent uniformly on 
[𝑎, 𝑏], we can multiply both sides of (22) by 𝜑𝑙(𝑡) and 

then ∇ integrate it term-by-term to get  

∫ 𝑓1(𝑡)𝜑𝑙(𝑡)∇𝑡 = 𝑐𝑙

𝑏

𝑎

 

Therefore the Fourier coefficients of 𝑓1  and 𝑓  are the 

same. Then the Fourier coefficients of the difference 

𝑓1 − 𝑓 are zero and applying the Parseval equality (13) 

to the function 𝑓1 − 𝑓  we get that 𝑓1 − 𝑓 = 0, so that 

the sum of series (14) is equal to 𝑓(𝑡). 
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