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OZET

Bu makalede, dairesel bolgelerde ylksek mertebeden lineer kompleks diferansiyel
denklemlerin ¢6ziimii i¢in bir polinom yaklasimi verilmektedir. Kullanilan bu siralama
yontemi esas olarak denklemdeki bilinmeyen fonksiyon ve tiirev ifadelerinin kesilmis
Taylor seri temsillerinin matris gosterimlerine dayanir ki bunlar verilen bolgede tanimlanan
siralama noktalarini igerir. Yontemin &zelliklerini gostermek i¢in karisik kosullu bazi
sayisal drnekler verilmistir.

A Polynomial Approximation for Solutions of Linear Differential Equations in
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Circular Domains of the Complex Plane

ABSTRACT

In this paper we give a polynomial approach to the solution of higher order linear complex
differential equations in the circular domains. The used collocation method is essentially
based on the matrix representations of the truncated Taylor series of the expressions in
equation and their derivatives, which consist of collocation points defined in the given
domains. Some numerical examples with the mixed conditions are given to show the
properties of the technique.
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1. Introduction

When a mathematical model is formulated for a physical
problem it is often represented by complex differential
equations that are not solvable exactly by analytic
techniques. Therefore one must resort to approximation
and numerical methods. For example, the vibrations of a
one-mass system with two degrees of freedom are mostly
described using differential equation with a complex
dependent variable. The differential equation is usually
linear. The solution of the differential equation clarifies
the linear phenomena which occur in the system. The
study of these systems is of interest to several fields of
statistical mechanics, physics, electronics  and
engineering. Examples of such applications include rotor
dynamics, particle beams in high energy accelerators,
plasma physics, kinetic theory, etc. [1, and references
therein]. The various methods for solving differential
equations with complex dependent variable are
introduced by Cveticanin and in the references of the
papers [2, 3].

In recent years, the studies on complex differential
equations, i.e. a geometric approach based on
meromorphic function in arbitrary domains [4], a
topological description of solutions of some complex
differential equations with multi-valued coefficients [5],
the zero distribution [6] and growth estimates [7] of
linear complex differential equations, the rational and
polynomial approximations of analytic functions in the
complex plane [8, 9], have been developed very rapidly
and intensively.

On the other hand, some Taylor and Chebyshev (matrix
and Collocation) methods to solve linear differential,
integral, integro-differential, difference and integro-
difference equations have been presented in many papers
by Sezer et. al. [10-16].

Our purpose in this study is to develop and to apply the

mentioned methods above to the linear complex
differential equation

YR@IY@)=g@), =1, (1)

k=0

which is a generalized case of the complex differential
equations given in [6,7,17-19], with the mixed conditions

-1

3

ZR:cjkf(k’(g“r)z/lj, j=0, 1, .., m-1, 2)

r=0

=~
Il
o

and to find the solution in terms of the Taylor polynomial
of starting point z = z,,

z,z,eD, Nzm: (3)

f(z)0 ZN:fn(z—zo)”, f. :M;

n!

Here P, (z) and g(z) are analytical functions in the
circular domain

D={ZeD,|Z—ZO|Sp, peD+},

c; and A, are appropriate complex coefficients, ¢, € D

and f,, n=0,1,..,N, are the Taylor coefficients to be
determined.

Besides, the collocation points to be used in the solution
method are defined by

- 0q
[l
z.=1 +’0—pe N

m =2t , 0<0<27, 0<p<wo, p,q=01,...,N" (4)

Note that 2y, =12, for q=0,1...,N; Zy0=Zpn =2+t P
for p=12,...N and 6=2x.

The technique presented in the paper is a formal method.
For this reason, existence and uniqueness of the solution

of the problem (1)-(2) is beyond of the paper, and
convergence of the method is not analyzed.

2. Fundamental matrix relations

We first consider the solution f(z) and its derivative
£ (z) in the form

N
fO(2)0 z f® (z-2z)" (5)
n=0
The relation between the Taylor coefficients is
feY=m+)f%, n, k=01 2, .. (6)

Then we convert the expression (5) to the matrix form

f®¥(z)0 Z(z)F® (7
where

Z@)=[1 (z-2) (-z) .. (2-2,)"]
=0 =|:f0(k) 00 fN(k):|T'

Note that F© =F=[f, f, f]
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In addition, from the recurrence relation (6) it is obtained
the matrix relation [15].

FO = M*F ®)

where M? is a unit matrix and

co-OR
co---NO
ozZ---o0

Substituting (8) into (7), we have the relation

9 (2)0 Z(2)M*F. 9)

For the collocation points z=2z,,p,q=0,1,..,N, the
matrix relation (9) becomes

fO9(z,4)0 Z(2,,)M*F (10)
where
Z(2,)=[1 (20-20) (Zpq—2) (20 —2)" |-

For p=0,1,..,N, we can write the relation (10) in the
form

Fék)DZquF, g=0,1...,N, (11)
where
.
FO=[19(z,) f®(z,) £ (z,) |
and
Z(20) ) (1 (2oq—20) (Zog—120)° oo (Zog—2)"
Z(z,,) 1 (24-2) (23-2)° ... (z5-2)"
Zq: : = e e e . e
Z2(zy)) 1 (Zy—2) (Zg—2)° - (Zyg—2)"

On the other hand, substituting the collocation points
z =1, defined by (4) into Eqg. (1) we have

an‘,Pk(zpq) f®(z,.)=09(z,), P.a=01..,N. (12)

By using the expressions (10), (11) and (12), we obtain
the fundamental matrix equation

m N N
> > PZMF=DG, (13)
k=0 q=0 q=0
where
g(ZOq) Pk(ZOq) 0 0
0(z,) 0 RP(z,) - 0
G, = 51q  Pa=| kzlq R
g(ZNq) 0 0 ’ Pk(ZNq)

Note that, as we have (N+1)? collocation points, (N+1)?
equations for the Taylor coefficients are obtained. But in
formula (13) we leave only (N+1) equations summing G,
fromg=0upto g=N.

Besides, we can obtain the corresponding matrix form of
conditions (2) as follows. By means of the relation (9) we
have the matrix equation

m-1 R
{ZZCjKZ(gr)Mk}Fz/zj, j=0,1, .., m-1(14)
k=0 r=0
where ¢, € D, Cy €l , and
Z¢)=[1 & -2) € -2) & —2)" |-
Briefly, the matrix equation (14) is
UF=4, j=01 .., m-1 (15)
where
m-1 R v
Uj: Cjkz(gr)M E|:uj0 Uj ujN:|'
k=0 r=0

3.  Method of Solution

Let us now consider the fundamental matrix equation
(13) corresponding to Eq. (1). We can write Eq. (13) in
the form
WF=G (16)

where

W=[Wm]=ii PoZM", i,n=01..,N
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The augmented matrix of Eq. (16) becomes
[W;G]=[w,:9,] (17)

and also the augmented matrix of Eq. (15) corresponding
to conditions (2) can be written in the form

(U4 ] =[up0 g
Replacing the last m rows of the augmented matrix (17)

by the m rows of matrix (18), we get the new augmented
matrix [W";G"]. If detW” =0, we can write

ujN ; ﬂvj ] (18)

N g
F=(W') G (19)
and the array F of the unknown Taylor coefficients f_ is
uniquely determined. Thus the mth-order linear complex

differential equation (1) under the conditions (2) has a
solution in the form (3).

4. llustrative Examples

Taking z,=0, p=160=2x for the collocation points
defined in (4), the following examples were solved.

Example 1: Let us first consider the problem
f'(2)+2%'(2) - 2f (2)=32°-z+6, f(0)=1 f'(0)=2, [|<1.

Choosing N = 2, we have the augmented matrix

006 ;18
[W5G"]=|1 0 0 ; 1
010 ; 2

so that F=[1 2 S]T. This yields the exact solution
f(z)=322+2z+1.

Table 1. Error analysis of Example 2

Besides, we can easily check the accuracy of the z |fN (2)- f(z)| E@2)
solutions as follows. Since the Taylor polynomial (3) is N=10 N=12 N =10 N=12
an approximate solution of Eqg. (1), when the solution f(2) 0 0 0 4.13E-14  4.61E-13
and its derivatives are substituted in Eq. (1), the resulting 01 1.93E-14  266E-19 6.97E-13  7.38E-12
equation must be satisfied approximately, i.e., for 02 120E-13  3.33E-15 250E-13  1.37E-11
z=17,, r=012,.., k positive integer. 0.3 3.00E-13 2.11E-14 9.35E-12 9.71E-12
0.4 5.68E-13 6.37E-14  1.64E-10 1.03E-12
. " 0.5 1.02E-12 1.38E-13  1.52E-9 1.98E-12
E(z,)= Zpk(zr{z f09(z, - Zo)n]_ g(z,)[<10% (20) 0.6 2.52E-12 2.44E-13  9.41E-9 3.12E-11
k=0 n=0 0.7 1.06E-11 3.96E-13  4.40E-8 2.29E-10
0.8 5.23E-11 7.26E-13  1.56E-7 1.09E-9
If k-1 exact decimal digits are required for the solution, 0.9 2.28E-10 1.90E-12 4.38E-7 4.20E-9
then the truncation limit N is increased until 1 8.34E-10 6.590E-12 1.02E-6 1.37E-8
max E(z,) <107,
Table 2. Comparison the absolute errors of Example 3
, Sezer and Gulsu’s Method Present Method
N=9 N=11 N=9 N=11 N=12
0.0 + 0.0i 0 0 0 0 0
0.1+0.1i 0.7359E-9 0.7826E-10 2.5887E-12 2.4318E-15 8.2114E-16
0.2 +0.2i 0.1237E-7 0.1503E-8 1.7511E-12 7.0230E-15 6.2119E-15
0.3+0.3i 0.6315E-7 0.8173E-8 2.9659E-11 4.1154E-14 2.5422E-14
0.4 +0.4i 0.2001E-6 0.2674E-7 1.0743E-10 3.6518E-13 1.0456E-13
0.5+ 0.5i 0.4887E-6 0.6658E-7 7.2451E-10 1.4451E-12 4.0652E-13
0.6 + 0.6i 0.1013E-5 0.1399E-6 9.5332E-9 1.4661E-11 5.0565E-12
0.7 +0.7i 0.1877E-5 0.2617E-6 5.8629E-8 2.0680E-10 5.7108E-11
0.8 +0.8i 0.3203E-5 0.4497E-6 2.5433E-7 1.4309E-9 4.1195E-10
0.9+ 0.9i 0.5132E-5 0.7244E-6 8.8455E-7 7.0334E-9 2.2183E-9
1.0 + 1.0i 0.7828E-5 0.1108E-5 2.6282E-6 2.7704E-8 9.6869E-9




Sezer ve Dascioglu, Erciyes Universitesi Fen Bilimleri Enstitlisii Dergisi, 28(1): 60-64

Example 2: Consider the third order initial value
problem

f7(2) -4t (2)+e*f(2)=1-Se % +e?, f(0)=2 f'(0)=-1 f"(0)=1

Applying the presented method to the problem, we obtain
the absolute errors shown in Table 1 for N = 10 and N =

12. The exact solution of the problem is f(z)=1+e7*.

Table 1 also shows the accuracy of the solution in Eqg.
(20).

Example 3: Consider the following problem given in
Ref. [20]

f"(z)+2f'(z)+ 22f (z) =2zsinz+zcosz-sinz, f(0)=0, f'(0)=1, |7<1

In Table 2, for different values of N, the results obtained
by the present method are compared with the Taylor
collocation method proposed in [20] by Sezer and Gulsu.
As you can see, for any values of z, the present method
gives better results.
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