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ÖZET 

Bu makalede, dairesel bölgelerde yüksek mertebeden lineer kompleks diferansiyel 
denklemlerin çözümü için bir polinom yaklaşımı verilmektedir. Kullanılan bu sıralama 
yöntemi esas olarak denklemdeki bilinmeyen fonksiyon ve türev ifadelerinin kesilmiş 
Taylor seri temsillerinin matris gösterimlerine dayanır ki bunlar verilen bölgede tanımlanan 
sıralama noktalarını içerir. Yöntemin özelliklerini göstermek için karışık koşullu bazı 
sayısal örnekler verilmiştir. 
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ABSTRACT 
 
In this paper we give a polynomial approach to the solution of higher order linear complex 
differential equations in the circular domains. The used collocation method is essentially 
based on the matrix representations of the truncated Taylor series of the expressions in 
equation and their derivatives, which consist of collocation points defined in the given 
domains. Some numerical examples with the mixed conditions are given to show the 
properties of the technique. 
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1. Introduction 

 
When a mathematical model is formulated for a physical 
problem it is often represented by complex differential 
equations that are not solvable exactly by analytic 
techniques. Therefore one must resort to approximation 
and numerical methods. For example, the vibrations of a 
one-mass system with two degrees of freedom are mostly 
described using differential equation with a complex 
dependent variable. The differential equation is usually 
linear. The solution of the differential equation clarifies 
the linear phenomena which occur in the system. The 
study of these systems is of interest to several fields of 
statistical mechanics, physics, electronics and 
engineering. Examples of such applications include rotor 
dynamics, particle beams in high energy accelerators, 
plasma physics, kinetic theory, etc. [1, and references 
therein]. The various methods for solving differential 
equations with complex dependent variable are 
introduced by Cveticanin and in the references of the 
papers [2, 3]. 
 
In recent years, the studies on complex differential 
equations, i.e. a geometric approach based on 
meromorphic function in arbitrary domains [4], a 
topological description of solutions of some complex 
differential equations with multi-valued coefficients [5], 
the zero distribution [6] and growth estimates [7] of 
linear complex differential equations, the rational and 
polynomial approximations of analytic functions in the 
complex plane [8, 9], have been developed very rapidly 
and intensively. 
 
On the other hand, some Taylor and Chebyshev (matrix 
and Collocation) methods to solve linear differential, 
integral, integro-differential, difference and integro-
difference equations have been presented in many papers 
by Sezer et. al. [10-16]. 
 
Our purpose in this study is to develop and to apply the 
mentioned methods above to the linear complex 
differential equation 
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which is a generalized case of the complex differential 
equations given in [6,7,17-19], with the mixed conditions 
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and to find the solution in terms of the Taylor polynomial 
of starting point 0z z= , 
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Here ( )kP z  and ( )g z  are analytical functions in the 
circular domain 
 

{ }0, ,D z z z ρ ρ += ∈ − ≤ ∈  , 
 

jkc  and jλ are appropriate complex coefficients, r Dζ ∈  
and nf , 0,1,...,n N= , are the Taylor coefficients to be 
determined. 
 
Besides, the collocation points to be used in the solution 
method are defined by 
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Note that 0 0qz z=  for 0 00,1,..., ; p pN Nq N z z z pρ= = = +  

for 1,2,..., and 2 .p N θ π= =  
 
The technique presented in the paper is a formal method. 
For this reason, existence and uniqueness of the solution 
of the problem (1)-(2) is beyond of the paper, and 
convergence of the method is not analyzed. 
 
2. Fundamental matrix relations 

 
We first consider the solution f(z) and its derivative 
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The relation between the Taylor coefficients is 
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Then we convert the expression (5) to the matrix form 
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In addition, from the recurrence relation (6) it is obtained 
the matrix relation [15]. 
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where M0  is a unit matrix and 
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Substituting (8) into (7), we have the relation 
 

( ) ( ) ( )k kf z zZ M F .             (9) 
 

For the collocation points , , 0,1,..., ,pqz z p q N= =  the 
matrix relation (9) becomes 
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For 0,1,...,p N= , we can write the relation (10) in the 
form 
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On the other hand, substituting the collocation points 

pqz z=  defined by (4) into Eq. (1) we have  
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By using the expressions (10), (11) and (12), we obtain 
the fundamental matrix equation 
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Note that, as we have (N+1)2 collocation points, (N+1)2 
equations for the Taylor coefficients are obtained. But in 
formula (13) we leave only (N+1) equations summing Gq 
from q = 0 up to  q= N. 
 
Besides, we can obtain the corresponding matrix form of 
conditions (2) as follows. By means of the relation (9) we 
have the matrix equation 
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where ,r jkD cζ ∈ ∈ , and 
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Briefly, the matrix equation (14) is 
 

, 0, 1, ..., 1,j j j mλ= = −U F   (15) 
 
where 
 

1

0 1
0 0

( ) .
m R

k
j jk r j j jN

k r
c u u uζ

−

= =

 = ≡  ∑∑U Z M   

 
 

3. Method of Solution 
 

Let us now consider the fundamental matrix equation 
(13) corresponding to Eq. (1). We can write Eq. (13) in 
the form 
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The augmented matrix of Eq. (16) becomes 
 
[ ] [ ]; ;in nw g=W G         (17) 
 
and also the augmented matrix of Eq. (15) corresponding 
to conditions (2) can be written in the form 
 

0 1; ;j j j j jN ju u uλ λ   ≡   U    (18) 
 
Replacing the last m rows of the augmented matrix (17) 
by the m rows of matrix (18), we get the new augmented 
matrix * *[ ; ]W G .  If  *det 0≠W , we can write 
 

( ) 1* *−
=F W G       (19) 

 
and the array F of the unknown Taylor coefficients nf  is 
uniquely determined. Thus the mth-order linear complex 
differential equation (1) under the conditions (2) has a 
solution in the form (3).   
 
Besides, we can easily check the accuracy of the 
solutions as follows. Since the Taylor polynomial (3) is 
an approximate solution of Eq. (1), when the solution f(z) 
and its derivatives are substituted in Eq. (1), the resulting 
equation must be satisfied approximately, i.e., for 
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If k-1 exact decimal digits are required for the solution, 
then the truncation limit N is increased until  
 
max ( ) 10 k

rr
E z −≤ . 

 

4. Illustrative Examples 
 
Taking 0 0, 1, 2z ρ θ π= = =  for the collocation points 
defined in (4), the following examples were solved. 
 
Example 1: Let us first consider the problem 
 

2 3( ) ( ) ( ) 3 6, (0) 1, (0) 2, 1f z z f z zf z z z f f z′′ ′ ′+ − = − + = = ≤ . 
 
Choosing N = 2, we have the augmented matrix 
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so that [ ]1 2 3 T=F . This yields the exact solution 

2( ) 3 2 1f z z z= + + . 
 
Table 1. Error analysis of Example 2 

z ( ) ( )Nf z f z−  E(z) 
N = 10            N = 12 N = 10            N = 12 

0 0 0 4.13E-14 4.61E-13 
0.1 1.93E-14 2.66E-19 6.97E-13 7.38E-12 
0.2 1.20E-13 3.33E-15 2.50E-13 1.37E-11 
0.3 3.00E-13 2.11E-14 9.35E-12 9.71E-12 
0.4 5.68E-13 6.37E-14 1.64E-10 1.03E-12 
0.5 1.02E-12 1.38E-13 1.52E-9 1.98E-12 
0.6 2.52E-12 2.44E-13 9.41E-9 3.12E-11 
0.7 1.06E-11 3.96E-13 4.40E-8 2.29E-10 
0.8 5.23E-11 7.26E-13 1.56E-7 1.09E-9 
0.9 2.28E-10 1.90E-12 4.38E-7 4.20E-9 
1 8.34E-10 6.59E-12 1.02E-6 1.37E-8 

 
 
 

Table 2. Comparison the absolute errors of Example 3 

 

z Sezer and Gülsu’s  Method Present Method 
N = 9 N = 11 N = 9                N = 11              N = 12 

0.0 + 0.0i 0 0 0 0 0 
0.1 + 0.1i 0.7359E-9 0.7826E-10 2.5887E-12 2.4318E-15 8.2114E-16 
0.2 + 0.2i 0.1237E-7 0.1503E-8 1.7511E-12 7.0230E-15 6.2119E-15 
0.3 + 0.3i 0.6315E-7 0.8173E-8 2.9659E-11 4.1154E-14 2.5422E-14 
0.4 + 0.4i 0.2001E-6 0.2674E-7 1.0743E-10 3.6518E-13 1.0456E-13 
0.5 + 0.5i 0.4887E-6 0.6658E-7 7.2451E-10 1.4451E-12 4.0652E-13 
0.6 + 0.6i 0.1013E-5 0.1399E-6 9.5332E-9 1.4661E-11 5.0565E-12 
0.7 + 0.7i 0.1877E-5 0.2617E-6 5.8629E-8 2.0680E-10 5.7108E-11 
0.8 + 0.8i 0.3203E-5 0.4497E-6 2.5433E-7 1.4309E-9 4.1195E-10 
0.9 + 0.9i 0.5132E-5 0.7244E-6 8.8455E-7 7.0334E-9 2.2183E-9 
1.0 + 1.0i 0.7828E-5 0.1108E-5 2.6282E-6 2.7704E-8 9.6869E-9 
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Example 2: Consider the third order initial value 
problem 
 

54
9 9( ) ( ) ( ) 1 , (0) 2, (0) 1, (0) 1z z zf z f z e f z e e f f f−′′′ ′ ′ ′′− + = − + = = − =  

 
Applying the presented method to the problem, we obtain 
the absolute errors shown in Table 1 for N = 10 and N = 
12. The exact solution of the problem is ( ) 1 zf z e−= + . 
Table 1 also shows the accuracy of the solution in Eq. 
(20). 
 
Example 3: Consider the following problem given in 
Ref. [20]  
 

( ) ( ) 2 ( ) 2 sin cos sin , (0) 0, (0) 1, 1f z zf z zf z z z z z z f f z′′ ′ ′+ + = + − = = ≤   
 
In Table 2, for different values of N, the results obtained 
by the present method are compared with the Taylor 
collocation method proposed in [20] by Sezer and Gülsu. 
As you can see, for any values of z, the present method 
gives better results. 
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