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Abstract: In this paper, a servomechanism under teleoperation is considered. Since the teleoperation itself can result in large amount of 

time-delays and this amount can change operation to operation, it can be difficult to control such mechanisms in order to accomplish the 

desired tasks. From the robust control viewpoint, a methodology that guarantees the stability in worst case is essential. Based on a simple 

methodology to find the delay independent stabilizing proportional (P) controller regions, just by forming the magnitude polynomial and 

employing the root locus technique, the stability of the robot is guaranteed, even in the worst case: the system becomes stable even if the 

connection has huge amount of time-delays. This fact is evidenced first by the simulations. To simulate the real system, as there is no 

information about the motor parameters, the motor is modeled by a global optimization methodology, named Genetic Algorithm in order 

to obtain a valid model for the system as accurate as possible. Then the resulting P controllers are applied to the real system, the results of 

which are found in accordance with the simulation results; the stability of the operation is not affected by the time-delay.  
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1. Introduction 

Teleoperation is one of the important control strategy which 

especially suits the unfavourable environmental conditions, such 

as underwater or mountainous terrains and for the processes that 

is dangerous for human life, such as nuclear plants, toxic 

chemical reactions etc. This methodology has been more widely 

used especially for a few decades due to the advances of the 

internet based technologies [1, 2]. Nevertheless, the most 

important drawback of this methodology is the phenomenon of 

the propagation time-delay, amount of which can be huge. 

Moreover, the amount of time-delay can be affected from 

operational conditions and hence can be changed operation to 

operation [3-7].  

Time-delay, which is almost an inevitable phenomenon for most 

of the physical systems, has generally adverse effects on the 

system performance [8]. In other words, a designed control 

system to behave in a prescribed way with the assumption of the 

absence of the time-delay does not work as it is intended under 

the emergence of the time-delay. The amount of the performance 

deviation might become greater, if the amount of the time-delay 

increases; even the system might be unstable.  

From the mathematical point of view, for Linear Time Invariant 

(LTI) and Single Input Sıngle Output (SISO) systems, this fact is 

mostly caused by the fact that time-delay term adds infinite 

number of poles in the closed-loop. As a result, analysing the 

performance of time-delay systems, even assessing the stability 

becomes more complicated in such systems [9- 16]. 

As might be expected from the operational and the mathematical 

viewpoints and as stated above, the amount of the time-delay may 

considerably attenuate the overall control performance, even it 

may lead the system to instability. As the stability is the first and 

the foremost important requirement of the design, an effective 

methodology providing the time-delay independent stability is 

essential from the robust control viewpoint.  

To address this problem, in [17], an effective and simple 

methodology to compute all P type controllers providing time-

delay independent stability is given for SISO-LTI systems. 

Although there are some methods about delay-independent 

stability available in the literature [18-20], the method given in 

[17] is much easy to understand and provides a simple and fast 

solution for the SISO LTI plants. The methodology is based on 

the stability analysis given in [9] and it consists of forming the 

magnitude polynomial, sketching the resulting root locus with the 

suitable transformations of the variables and searching the 

regions of gains for which any positive real roots do not exist.  

Using the methodology given in [17], a servomechanism subject 

to teleoperation is considered in this paper. The motors are 

selected as Dynamixel MX-106T [21] and as the motor 

parameters are not explicitly given, the global optimization 

method, named Genetic Algorithm (GA) is employed to obtain a 

proper model of the motors. Then using the obtained 

mathematical model, all gains providing time-delay independent 

stability is computed as proposed in [17], and it is shown that the 

simulation results are as expected. To verify the simulation 

results in the real environment, the resulting gains are applied the 

servomechanism subject to teleoperation under different 

scenarios, i.e. for different values of time-delay. Then it is shown 

that, the application results are in accordance with the 

simulations, i.e. the stability of the system is not affected by the 

time-delay even if the delay is of huge values, such as 12 

seconds.  

The paper is organized as follows: The second section is devoted 

to the theoretical background, in order for the readers to follow 

the paper easily. In this section, the methodology given in [17] is 

presented and the brief summary about the GA is given, 

respectively. In the third section, it is explained how the 

mathematical model of the motors are obtained and the 

methodology given in [17] is applied to this model, i.e. all the 

gains providing time-delay independent stability is calculated. In 

the fourth section, the simulation and the real system results are 
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shown, in a comparative manner. In the last section, further 

discussions are given and the possible extensions of this study is 

stated. 

2. Theoretical Background 

In this section, the methodology for the computation of all gains 

providing time-delay independent stability proposed in [17] will 

be briefly explained and the Genetic Algorithms (GA) will be 

briefly overviewed, respectively. 

2.1. Calculation of All Gains Providing Time-Delay 
Independent Stability Using the Root Locus 

In this subsection, the methodology given in [17] will be briefly 

explained. Since this subsection is a summary only, the reader is 

referred to [17] for further discussions and explanations. 

 To begin with, let the interested control scheme is given in figure 

1. 

Figure 1. The interested control scheme 

Where the G(s) and the C(s) is given as follows: 
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Where N(s), D(s) and C(s) denote the numerator - the 

denominator polynomials and the P type controller respectively. 

Additionally, L symbolizes the nonnegative time-delay of the 

system.  

Apparently, when L=0, i.e. the system is delay-free, the 

characteristic structure of the closed loop system constitutes a 

polynomial; i.e the closed loop poles are finite in number and it is 

easy to determine the stability of the system. However, when L 

takes the values greater than zero, the closed loop structure 

begins to constitute an expression named quasipolynomial, which 

possess infinite number of roots; resulting in infinite number of 

closed-loop poles. Additionally, these poles move in the s plane 

with the change of the L value.  

To track these movements in terms of stability problem [8], let an 

infinitesimally small L is introduced to the system. In that case, 

the number of the closed loop poles become infinite, and these 

new poles appears at infinity in the s plane. From the stability 

viewpoint, all of these roots must occur in the left half s plane. To 

sum up, if the following conditions are satisfied, all the new roots 

occur in the left half plane: 

i) m<n, i.e the system is strictly proper, or 

ii) m=n, i.e. the system is biproper and |kpbn/an|<1 

In other words, if the system is strictly proper, all the new roots 

occur in the left half s plane without any further condition.  If the 

system is biproper, an additional condition have to be satisfied 

about the ratio of the principal coefficients, i.e. |kpbn/an|<1.  

Assuming that either of these conditions are satisfied, the roots 

begin to move in the s plane with the increase of the L. When L 

reaches to a critical value, say Lcr, a pair of roots begin to locate 

on the imaginary axis just before changing their half planes, 

which is crucial as it implies a possible stability change. When 

such a situation happens, the closed loop expression satisfies the 

following equation: 
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Obviously, this expression implies two condition to be satisfied:  

( ( 1pD j k N j                                                            (3) 

( (pD j k N j L                                                             (4) 

The first one can be considered as the magnitude condition, 

which determines the location of the closed loop pole pairs on the 

imaginary axis, just before changing their half planes. The second 

one can be thought as the phase condition, from which, the 

corresponding L value, i.e. Lcr is determined.  

If the magnitude condition given in (3) is elaborated, the 

following equivalent condition can be obtained: 

2 2( ) : ( ) ( ) ( ) ( ) 0pW D j D j k N j N j                                (5) 

As might be expected, the roots of this equation correspond to the 

solution of (3). Apparently, (5) is a polynomial of ω2 implying 

that the closed loop poles cross the imaginary axis as pairs by 

locating at ±j√ω. Moreover, it is independent of L and its roots 

change with kp.  

Clearly, the complete imaginary axis crossing of the closed-loop 

poles, i.e. possible stability changes with respect to time-delay are 

governed by (5). Then if there can be found some kp values 

and/or regions such that (5) has no positive real roots, it can be 

stated that for these kp values, no pair of closed-loop poles cross 

the imaginary axis i.e. there is no stability change. Since (5) is a 

polynomial that is independent of L, this situation does not 

change with the L values; implying that the stability of the time-

delay system is not affected by the time-delay.  

In this way, if (5) is elaborated, it can be observed that the 

problem can be converted into a simple root locus sketch. To 

accomplish that, let the following variable transformations are 

done in (5): 

2 2: ,  pv k                                                                          (6) 

( ) : ( ),  ( ) : ( (A v D j D j B v N j N j                                 (7) 

If both sides of (5) are divided into A(v) along with the other 

transformations above, (5) can be rewritten as 

( )
1 0

( )

B v

A v
                                                                         (8) 

Obviously, this defines a negative root locus in the v plane. The 

all needs to be done is to interpret this root locus whether there 

exists α gain values and/or intervals such that (8) has no positive 

real roots. If such an α gain value and/or interval can be found, 

for those gains (5) has also no positive real roots, implying that 

no root pair can cross the imaginary axis, regardless of the value 

of L. Obviously, by considering (6), those α gain values are 

squared gains and needs to be retransformed into kp values again. 

Let such a squared gain interval (α1 α2) is found for which (8) has 

no positive real roots. Then from (6), the corresponding gains can 
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be given as the following intervals: 

   2 1 1 2, ,pk                                              (9) 

To sum up, for those gains, the stability of the system given in (1) 

with figure 1 is not affected by the time-delay; if the delay-free 

system is stable (unstable) the time-delay system is stable 

(unstable) for all values of L. 

 

2.2. Genetic Algorithms (GA) 

Here, a brief overview of the Genetic Algorithms is given, and 

the reader is referred to [22] for much more detailed explanations.  

Genetic Algorithms are known as their robustness and usefulness 

as optimization algorithms. In principle, GAs are search 

algorithms based on mechanics of natural selection and natural 

genetics. They combine survival of the fittest among the string 

structures with randomized yet structured information exchange 

to form a search algorithm with innovative flair of natural 

evolution [22].  

In general, it can be mentioned that GA mainly works at three 

stages which are briefly described below:  

1) Reproduction: The stage where the candidates are copied by 

their fitness function values. 

2) Crossover: The stage where some parts of the candidates are 

changed within themselves. 

3) Mutation: The stage where the randomization is applied. 

3. Identification of The System and The 
Calculation of The Time-Delay Independent 
Stabilizing Gains 

In this chapter, it will be described how the system model is 

obtained and using the obtained mathematical model, the 

corresponding gains will be calculated employing the 

methodology explained in the subsection 2.1. 

3.1. Identification of the System 

As mentioned before, the utilized motors are selected as the 

Dynamixel MX-106T. It is a permanent magnet direct current 

(PMDC) motor and all the necessary information and all 

operating conditions about the motor can be found in [21].  

However, since the motor parameters are not explicitly known, a 

system identification process is taken into account from the real 

data obtained from the motors. However, before describing the 

identification process, it is desirable to discuss the model 

properties of the servomechanisms.  

In general a permanent magnet direct current (PMDC) motor can 

be modelled by the following equations: 

m
m L m m m

d
J B

dt


                                                          (10) 

m
a b m m m

dI
V V L R I

dt
                                                        (11) 

m t mK I                                                                       (12) 

b b mV K                                                                       (13) 

where τm and τL represents the motor and load torque, Jm and Bm 

represents the equivalent inertia and the viscous damping at  the 

armature, Va and Vb represents the applied voltage and the back 

electromotive force (back emf), and the Kt and the Kb represents 

the motor torque and the motor back emf constants, respectively. 

The corresponding block diagram of such a servomechanism can 

be seen in figure 2. 

And also from the motor document [22], it is known that, motor 

has a closed loop block, which does not affect the system order 

but affects the form of the transfer function, i.e. the integral term 

at the output of the figure 2 cannot be present in the transfer 

function of the motor. From the equations above, from the block 

diagram in figure 2 and from [22], it is clear that, the transfer 

function from the input (Va(s)) to the output (θm(s)) results in a 

third order system no longer comprising the integral effect and 

can be given as follows:: 

3 2
( )

K
G s

s as bs c

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                                                     (14) 

To obtain a valid mathematical model, the real data are taken 

from the motor to employ them in the system identification 

toolbox of the MATLAB. The inputs applied to the motor and the 

output of the motor can be seen in the figure 3.  

Using the data shown in figure 3, and with the priori of the order 

of the model, the parameters given in (14), i.e. K, a, b and c are 

obtained, and they are used to determine the initial ranges for the 

GA. These obtained parameter values are shown in the Table 1. 

Also, the parameters for GA are shown in Table 2. In this table, 

 

Figure 2. Block diagram of a servomechanism. 
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the population size is the number of candidates, crossover 

fraction is the factor for reproduction, mutation is selected as 

constraint dependent, the nonlinear constraint is the penalty factor 

and iteration is the number of iterations. 

As the last, the obtained motor parameters from the GA is shown 

in the Table 3. 

In other words, the transfer function of the servomechanism given 

in (14) can be written as follows: 

3 2

11520.33
( )

449.371 4103.139 11599.107
G s

s s s


  
                     (15) 

To show the validity of the model, the model output and the 

actual motor output is compared in figure 4. 

After obtaining the motor parameters and the equivalent 

servomechanism transfer function, it is desirable to describe the 

system subject to teleoperation. As might be expected, the system 

consists of a master and the slave operators (i.e. 

servomechanisms) which are sufficiently far from each other (up 

to several kilometres) and it is expected that the slave operator to 

follow the position of the master operator. The real system and 

the corresponding block diagram is shown in figures 5 and 6, 

respectively. 

 

 

Figure 3. The input applied to the motor and the response of the motor. 

Table 1. System identification toolbox results 

Parameter Value 

K 11820.461 

a 532.478 

b 4786.245 

c 11816.266 

Table 2. Genetic algorithm parameters 

Parameter Value 

Population Size 50 

Crossover Fraction 0.8 

Penalty Factor 100 

Iteration 50 

 

Figure 4. Motor input, output and the model output. 

 

Figure 5. The utilized system (the master and the slave 
servomechanisms) 

 

Figure 6. The simplified block diagram of the complete system 

In the block diagram, the reference input is the angular position 

input produced by the master operator, C(s) is the proportional 

controller, the values of which will be calculated in the next 

subsection, and L1 and L2 is the propagation delay from master to 

slave operator and vice versa respectively, along with G(s) is the 

obtained transfer function of the servomechanism.  

Supposing that the propagation delay from master to slave is L1 

seconds and from slave to master is L2 seconds, the closed-loop 

transfer function, Pc(s) becomes as follows: 

 3 2

1

1 2

11520.33
( )

449.371 4103.139 11599.107 11520.33

L s

p

c L L s

p

k e
P s

s s s k e



 


   
 (16) 

3.2. Calculation of All Time-Delay Independent Stabilizing 
Gains 

In this subsection, based on the mathematical model given in (16)

, all the stabilizing gains providing time-delay independent 
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stability will be computed using the methodology summarized in 

the subsection II-A.  

To begin with, it is noticeable to mention that, the polynomials 

N(s) and D(s) given in (1) are as follows in (16): 

( ) 11520.33N s                                                                       (17) 

3 2( ) 449.371 4103.139 11599.107D s s s s                         (18) 

 

along with a time-delay of L=L1+L2 seconds.  

To compute all the time-delay independent stabilizing gains, if 

the polynomial is formed as suggested in (5), the following is 

obtained: 

2 6 4 2 2( ) 193728 6411145 134539283 132718003 0pW k         (19) 

If the transformations given in (6)-(7) is done, the polynomials 

A(v) and the B(v) is found as follows:  

 

3 2( ) 193728 6411145 134539283A v v v v                         (20) 

( ) 132718003B v                                                          (21) 

Considering these new polynomials and variables in (19) and 

dividing the both sides by A(v) gives the following root locus 

problem: 

3 2

132718003
1 0

193728 6411145 134539283v v v
 

  
     (22) 

The corresponding root locus is sketched via MATLAB, and can 

 

Figure 8. The root locus of (22) (complete) 

 

Figure 8. The root locus of (22) (zoomed-in) 
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be seen in figure 7. The initial roots of the locus can be found as 

v1 = -193694.92 and v2,3 = -16.548± 20.513j.  Since the initial 

roots are extremely far from each other, the zoomed in version of 

the root locus can be seen in figure 8. 

To interpret the root locus, it is clear from the figures that, there 

is no positive real roots for α=0. When α begins to increase, the 

complex conjugate roots break into the real axis, and one of them 

moves to positive real axis by passing the point v=0 for a critical 

value of α, say αcr. For α values greater than αcr, the 

corresponding root always locate at the positive real axis, 

thereby, there exists always a positive root on the real axis. Then 

it can be summarized that there is no positive root of (22) for the 

α values such that ∀α∈(0 αcr). 

In order to compute the αcr, if the corresponding α is found at the 

point v=0 using the root locus arguments, the following is 

computed: 

3 2

0

132718003
1 0

193728 6411145 134539283 vv v v




 
  

     (23) 

The critical α, i.e. αcr is found as 1.0137. Then it can be 

concluded that (22) has no positive real roots for ∀α∈(0, 1.0137).  

To obtain the corresponding kp values, if α is retransformed into 

kp using (9) gives the kp set: 

   1.0068,  0 0,  1.0068pk                                        (24) 

Obviously, for these gains the stability of the closed-loop time-

delay system is independent of time-delay, i.e. the stability of the 

time-delay system is identical of the delay-free one. Then all need 

is to check whether the delay-free system is stable for those kp 

values. Computation of the stabilizing gains of Pc(s) given in (16) 

for L=0 is straightforward and can be found as follows: 

1.0068 159.0434pk                                                        (25) 

It is clear from (25) that for the gain values given in (24), the 

delay-free system is stable. Therefore, it can be concluded that for 

gain values given in (24) the time-delay system given in (16) is 

stable, regardless of the value of the time-delay. 

4. Simulation-The Real System Results 

In this section, for the gain values given in (24), the responses of 

the slave operator to the signals produced by master operator are 

obtained under different scenarios, i.e. under different values of 

propagation delays. From both simulations and the real system 

responses, it can be observed that the system is stable and the real 

system results are in accordance with the simulation ones.  

In addition, for the gain values outside of the given region in (24), 

it is also shown that the stability of the system is not independent 

of the time-delay and the system can be unstable for smaller 

propagation delays.  

To overcome the intrinsic steady state error problem, a pre-

amplifier is put after the input signal. The utilized simple block 

diagram in both simulations and for the real system is shown in 

figure 9. 

 

Figure 9. The simplified block diagram used for simulations and the real 
system. 

Here, the K* is the gain of the pre-amplifier the value of which is 

the inverse of the steady state value of the system. Using the gain 

set given in (24), with a priori of possessing a stable closed-loop 

system in (16), the gain of the preamplifier can be computed via 

final value theorem as follows: 

* *

0

1 11599.107
lim 1

( ) 11520.33s
p

K K
T s k

                                         (26) 

At first, the controller value, i.e. kp is taken as 0.5 and the 

simulation-real system results under different propagation delays 

are shown in figures 10-11. From the figures, it is clear that the 

system remains stable even if the total propagation delay is 12 

seconds.  

After that, the kp is selected as 0.85, more close to the borders of 

the kp set given in (24). In this case, the system remains stable 

even if the total propagation delay is 12 seconds. The simulation-

real system results are shown in the figures 12-13.  

As the last, the kp is selected as 1.05, which is in the close 

proximity of the given set in (24), but out of borders. Although 

the selected kp is very close to the borders of the set, it is clear 

from the simulation-real system results that, the robust stability is 

no longer guaranteed, i.e. the system is unstable, although the 

total propagation delay is 4 seconds. The results can be seen in 

figures 14-15. 

 
Figure 10. The simulation-real system results for kp=0.5 and L1+L2=2 

seconds. 

 
Figure 11. The simulation-real system results for kp=0.5 and L1+L2=12 

seconds. 
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Figure 12. The simulation-real system results for kp=0.85 and L1+L2=2 

seconds. 
 

 
Figure 13. The simulation-real system results for kp=0.85 and L1+L2=12 

seconds. 

 
Figure 14. The simulation-real system results for kp=1.05 and L1+L2=4 

seconds. 

 
Figure 15. The simulation-real system results for kp=1.05 and L1+L2=12 

seconds. 

5. Conclusions 

In this paper a servomechanism subject to teleoperation is 

considered. The teleoperation can possess huge time-delays and 

these delays may vary operation to operation, which makes 

developing efficient control strategies extremely difficult. Since 

the stability is the first and the foremost important criterion for all 

of the control systems, the robust stabilization of such 

servomechanisms with respect to huge and varying time-delays 

considered. To achieve this goal, an efficient method in the 

literature is employed, and such kind of a mechanism is robustly 

stabilized in both simulations and in a real environment.  

Since the interested controller is P type only, the robust 

stabilization problem is the only focused one in this paper. This 

can be thought somewhat as a drawback of the methodology. To 

improve the other performance criterion/criteria along with the 

robust stabilization problem, more complicated controller 

structures such as PD and lead/lag are planned to be taken 

account in the possible future publications. 
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