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Abstract: This paper presents the use of reinforcement learning approach for modeling vehicles' gap 

acceptance decisions at a stop-controlled intersection. The proposed formulation translates a simple gap 

acceptance decision into a reinforcement learning problem, assuming that drivers' ultimate objective in a 

traffic network is to optimize wait-time and safety. Using an off-the-shelf simulation tool, drivers are 

simulated without any notion of the outcome of their decisions. From multiple episodes of gap acceptance 

decisions, they learn from the outcome of their actions, i.e., wait-time and safety. A real-world traffic 

circle simulation network developed in Paramics simulation software is used to conduct experimental 

analyses. The results show that drivers' gap acceptance behavior in microscopic traffic simulation models 

can easily be validated with a high level of accuracy using Q-learning reinforcement-learning algorithm. 
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Araçların Kritik Aralık Kabul Kararlarının Pekiştirmeli Öğrenmeyle Simülasyonu 

 

Öz: Bu çalışma pekiştirmeli öğrenme yöntemini kullanarak araçların kritik aralık kabul kararlarının basit 

bir T-kavşakta modellemesini sunmaktadır. Önerilen yaklaşım araçların ulaşım ağlarındaki nihai 

amaçlarının bekleme sürelerini ve risklerini optimize edeceklerini varsayarak basit bir kritik aralık kabul 

kararını pekiştirmeli öğrenme problemine çevirmektedir. Trafik simülasyon yazılımında sürücüler 

kararlarının yol açacağı sonuçları bilmeyerek hareket eder, fakat bir çok simülasyon episodu sonrasında 

eylemlerinin sonuçlarını bekleme süresi ve risk şeklinde öğrenmeye başlarlar. Gerçek bir dönel kavşağın 

Paramics trafik simülasyon modeli deneysel analizler için kullanılmıştır. Elde edilen sonuçlara göre 

kullanılan bu simülasyon modeli “Q-learning” öğrenme yöntemi kullanılınca sürücülerin kritik aralık 

kabul kararlarının doğrulaması kolaylıkla yapılabilmektedir.   

 

Anahtar Kelimeler: Pekiştirmeli öğrenme, mikroskobik trafik simülasyonu, kritik aralık kabulu, 

Paramics, dönel kavşak 

 

1. INTRODUCTION 

Microscopic traffic simulation tools allow transportation analysts to design traffic facilities 

and obtain detailed performance measures of existing designs, as well as to assess the impact of 

proposed design alternatives. The value of these tools, however, lies in their ability to 

stochastically simulate drivers’ behavior, such as lane changing, car following, gap acceptance 

and route choice. The functions or rules that govern drivers’ decisions in simulation software 

tools need to be validated and calibrated to reproduce the observed field conditions. Despite the 

advances in computing power and the ability of available simulation tools to represent complex 

driver behavior, simulation modeling and analysis is still a long and painstaking procedure, 

requiring extensive field data for validation/calibration and time.  
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There has been much work documented in the literature focusing on proper 

validation/calibration of traffic simulation models, how to use the results for decision making, 

and to forecast the impact of alternative operations or geometric designs (Sacks et al., 2002; 

Barton et al., 2002; Biller and Nelson, 2002; Henderson, 2003; Dowling et al., 2004; Bartin et 

al., 2006; Iyer et al., 2010). The value of any simulation software package lies in its ability to 

correctly simulate complex vehicle behavior. However, no matter how accurate the underlying 

models are, they need to be modified based on the characteristics of the study area. For 

example, Bartin et al. (2006) presented the shortcomings of the default gap acceptance model of 

Paramics when used to simulate traffic circles. It was shown that an arduous validation and 

calibration process based on detailed field data was required to modify the default gap 

acceptance model embedded in Paramics for accurately modeling a traffic circle. A similar 

validation/calibration process is surely needed when using any simulation software tool for 

analyzing any type of traffic facility. 

1.1.  Motivation 

This study stems from the quest for alternative methods for validating/calibrating simulation 

models, which are so-called “model-free” approaches that do not rely on default functions or 

rules embedded in simulation software packages, rather use learning agents that adapt to the 

simulation network through iterated runs. It should be noted that a “model-free” approach does 

not entirely dismiss the functions or the rules that govern drivers’ decisions in a simulation 

software tool, but replaces the ones that impact the performance of a specific traffic facility the 

most. For example, if the studied facility is a traffic circle or a roundabout, the most essential 

driver behavior that impacts its operational performance is drivers’ gap acceptance decisions. 

Then, the default gap acceptance model of the simulation tool is replaced, and instead agents 

learn this behavior via learning methods in iterative simulation runs. As a result, they develop a 

“network specific” gap acceptance behavior. Another example is toll plazas, where the 

performance of these facilities is linked to vehicles’ toll lane selection decisions. Then, in the 

“model-free” approach drivers’ lane selection decisions in the simulation software tool are 

replaced by facility specific lane selection decisions learned through iterative simulation runs. In 

both cases, the remaining functions that govern the secondary driver behaviors, such as lane 

changing, car following and route choice remain default as provided by the simulation software 

package.   

1.2.  Objectives 

The objective of this paper is to demonstrate the feasibility of a validation/calibration 

process for microscopic traffic simulation models, which does not rely on any underlying model 

or function that governs a particular driver decision/behavior. The proposed idea is to train 

drivers (agents) using a reinforcement learning method during simulation until they make 

decisions that are in accordance with the observed driver behavior. Agents adapt to the network 

and events during the simulation runs and make decisions based on their assigned objectives. 

During training, agents' objectives are twofold: (1) minimize time spent traveling and (2) 

minimize risk. Agents learn from their experience and improve their decision making 

progressively.     

Q-learning reinforcement learning method is used to train drivers for their gap acceptance 

behavior. For this purpose, the simulation network of a traffic circle in New Jersey developed 

by Bartin et al. (2006) is borrowed for the simulation analyses presented in this paper. The 

circle has four yield-controlled intersections and one one-way stop-controlled intersection. 

Bartin et al. (2006) previously used binary probit models estimated using field data to model 

drivers' gap acceptance decisions. In the current paper, the stop-controlled intersection of the 

stated traffic circle is used as the test-bed for evaluating the feasibility of the proposed approach. 

Paramics simulation software is used in the analyses presented in this paper. Paramics is an 

advanced suite of software tools for microscopic traffic simulation developed by Quadstone 
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Limited (Paramics Website, 2017). It is used to model the movement and behavior of individual 

vehicles on urban and highway road networks. Accurate geometry of the network and coding of 

links in Paramics are important for simulation results because the driver’s behavior relies on 

characteristics of drivers and vehicles, the interactions between vehicles and network geometry. 

It has the ability to obtain detailed state variable information on each vehicle on time scales with 

better than second-by-second accuracy. The basic input data for the simulation are a road 

network and time dependent traffic demand (origin destination demand matrix). The software is 

controlled via a graphical user interface, which visualizes the network and simulated traffic in 

two or three dimensions. The most important feature of the software is its Application 

Programming Interface (API) feature, which allows users to customize many of its underlying 

simulation models. Paramics API is coded in C++ programming language. This feature allows 

modelers control the decisions and movements of individual vehicles and incorporate 

customized functionalities and test their own models instead of using the default, in-built traffic 

models. 

The paper is organized as follows. Section 2 presents the related work that utilize 

reinforcement learning methods in traffic simulation studies. Section 3 describes the problem 

formulation, first with a simple case then extends it to a more complex gap acceptance decision-

making scenario. Section 4 presents the traffic simulation model used for evaluating the 

feasibility of the proposed approach, and discusses the validation results. Section 5 presents the 

conclusions and the anticipated future work. 

 

2. RELATED WORK 

Reinforcement learning (RL) is a subset of machine learning that studies how an 

autonomous agent acts in an environment and learns to choose optimal actions to achieve an 

assigned goal (Mitchell, 1997). Similar to humans, agents learn from success and failure 

through reward and punishment (Russell and Norvig, 2003). RL methods have been used to 

solve problems such as mobile robot motion, industrial manufacturing, and combinatorial search 

problems for applications such as computer chess and backgammon games.   

RL methods have been used to model drivers’ macroscopic level decision making, such as 

travel and route choices of drivers (Ozbay et al., 2001; Ozbay et al. 2002; Nagel, 2004; 

Yanmaz-Tuzel and Ozbay, 2009; Yanmaz-Tuzel, 2010), yet less attention has been paid to 

modeling microscopic decision-making of vehicles in traffic simulation networks.  

The majority of the available literature on using RL in traffic simulation mainly focused on 

efficient traffic signal control operations. It was demonstrated that the control policy governing 

an individual traffic signal or a set of signals can be improved in a stochastic traffic environment 

using RL methods (Abdulhai and Kattan, 2003). Traffic signals, acting as agents, map between 

traffic states and the corresponding control actions, and by continuously receiving rewards for 

actions taken, adjust the policy until they reach the optimal one. 

For example, Wiering (2000) employed a set of multi-agent model-based RL systems for 

traffic light control for optimizing the signal control decision of a series of traffic signals. The 

developed RL systems learn the value functions by estimating the expected wait time for 

vehicles given different traffic light settings. In his experiment he used a small network of six 

signalized intersections, and reported that the RL systems can outperform non-adaptable 

systems. Bingham (2001) demonstrated the use of neural networks by fine-tuning the 

membership functions of a fuzzy traffic signal controller. In this work, the neural learning 

algorithm used was RL, giving rewards for successful system behavior and punishes poor 

behavior, where the objective of the learning is to minimize vehicle delays caused by the signal 

control policy. Bingham (2001) used a rather small network, and reported a reduction in delay 

in the range of 3-6%. Abdulhai et al. (2003) used Q-learning algorithm for optimizing the 

operations of an isolated two-phase traffic signal controlling the intersection of two two-lane 

roadways. With the use of RL, they reported delay reductions in the range of 38-44% compared 
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to pretimed signal control policy. Bull et al. (2004) used the learning classifier systems based 

RL approach for optimal signal control policy for an isolated traffic signal, and reported 

promising results. Bazzan et al. (2010) employed multi-agent RL for controlling a set of traffic 

lights. In order to manage the dimensionality problem due to increased number of states and 

actions, they proposed to have agents organized in groups of limited size where the number of 

joint actions is reduced. These formed groups were then coordinated by another agent, acting as 

a supervisor. Their experiment included 36 signals with 12 assigned supervisors and their 

results demonstrate reduced number of stopped vehicles compared to agents learning by using 

individual Q-learning. Arel et al. (2010) used a multi-agent RL framework to obtain an efficient 

traffic signal control policy. In their study they introduce a Q-learning algorithm with a 

feedforward neural network for value function approximation. Their numerical experiment 

included a small network of five signalized intersections, where the central intersection was 

controlled by the RL algorithm and the other four was operated using the longest-queue-first 

policy. It was shown that the RL-based signal significantly outperformed the other policies in 

terms of average delay per vehicle and average number of intersection blockings. Rezaee et al. 

(2012) investigated the use of RL approach for freeway ramp-metering. They employed the k-

nearest neighbor (k-NN) technique to tackle the dimensionality problem. They tested their 

approach using a traffic simulation model of a freeway in Toronto, developed in Paramics 

simulation software. The results showed that their approach can reduce the total network travel 

time by 44% compared to the status-quo, meaning no control, and by 17% compared to 

ALINEA, a well-known ramp metering algorithm. Bombol et al. (2012) also investigated the 

benefits of using Q-learning in finding the optimal policy of an adaptive signal control. For their 

experimental analysis they used the simulation model of an isolated traffic signal in VISSIM 

simulation software, and demonstrated the reduction in average delay due to RL method 

compared to fixed and actuated signal control policies. Ozan (2012) and Ozan et al. (2014) used 

a modified RL approach for solving dynamic user equilibrium network problem. In their novel 

approach, a two level programming technique was employed, where in the first level dynamic 

user equilibrium link flows were obtained from Dynasmart-P and Dynus-T, respectively, and in 

the higher level signal timings are obtained by the modified RL method. The modified RL 

method was evaluated in a medium sized network consisting of 23 links and six signalized 

intersections modeled in TRANSYT-7F. System performance index, defined as the sum of a 

weighted linear combination of vehicle delay and number of stops per unit time was used to 

drive the Q-learning based RL. It was determined that the proposed approach yielded superior 

performance index when compared with the signal control policies determined by genetic 

algorithm and hill-climbing based optimization tools. In a more recent study, Ozan et al. (2015) 

demonstrated the use of this modified RL approach for finding optimum signal timings in 

coordinated signalized networks for a set of fixed link flows. El-Tantawy et al. (2013) used the 

multi-agent RL approach for integrated network of adaptive traffic signal controllers and 

demonstrated its advantages on a large-scale simulation network of Lower Downtown Toronto 

network modeled in Paramics simulation software. Their results showed that average 

intersection delay reduced by 39% and travel time savings increased by 26 % using their multi-

agent RL approach.  

Applying the RL approach to a different problem, Vanhulsel et al. (2009) used an extended 

RL algorithm to fit activity schedules based on diary data of travelers. They evaluated three 

distinct approaches: a generic Q-learning approach, a Q-learning approach including bucket-

brigade reward distribution, which is similar to the one proposed by Holland (1976) and a RL 

approach improved with a regression tree-based function approximator. Their results showed 

that all three approaches were able to determine activity schedules that match the input 

schedules, and that the RL approach that employs regression tree function approximator was 

able to obtain a better solution than the previous two Q-learning approaches. 
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In the studies presented above, the common approach is to represent traffic signals as 

agents. Thus far, to the best of the author’s knowledge, there have been a limited number of 

studies in the literature that utilized RL methods for simulating drivers’ microscopic decisions 

in traffic simulation networks, where vehicles as agents learn from the feedback from their 

surroundings during iterative simulation runs. For example, Moriarty and Langley (1998) 

applied RL using the artificial neural network method to generate vehicles' lane selection 

strategies through trial and error interactions with the traffic environment, in an effort to 

demonstrate efficient intelligent vehicle and highway systems. They employed a global traffic 

performance function that is the difference between the actual and desired speeds averaged over 

several time steps and over all agents. The objective of the learning algorithm is to minimize 

this performance function. In their analyses, Moriarty and Langley (1998) used a customized 

traffic simulator that was coded for a 3.3-mile roadway stretch, a test-bed of their analyses. 

Later, Pendrith (2000) studied the same problem presented in Moriarty and Langley (1998), 

using the Q-learning method. The study area was a hypothetical 13.3 mile-long stretch of 

freeway with 200 cars, and was simulated using a customized simulator.  Gelenbe et al. (2001) 

proposed learning agents that can adapt to their environment to model adaptive behavior of 

humans. Agents select tasks to be accomplished among a given set of tasks as the simulation 

progresses based on the observations of their surroundings and the information they receive 

from other agents. They studied the simulation of manned vehicles where the agents were 

assigned a goal of traversing a dangerous metropolitan grid safely and rapidly using goal based 

RL with neural networks. The ultimate goal of agents in this current paper, i.e. safety and wait-

time, is borrowed from Moriarty and Langley (1998).  

 

3. PROBLEM FORMULATION 

An agent can observe the state of its surroundings, and it can choose from a set of actions it 

can perform to change its current state. Its task is to learn an optimal control strategy, usually 

referred to as a policy, for choosing actions that achieve its assigned objective. The objective of 

the agent can be defined by a reward function that assigns an immediate payoff (a numerical 

value) to each action the agent takes for distinct states (Mitchell, 1997).  

In the context of making decisions in vehicular traffic, states are the surroundings of a 

driver, e.g. which lane the driver is in, where the other vehicles are located, their speeds, etc.  

Actions are the set of decisions a driver can make, such as turn right, left, brake, accelerate, and 

change lanes.  

However, the dynamic nature of vehicular traffic makes the representation of the possible 

states and actions somewhat harder. Gap acceptance of a driver at a stop-controlled intersection 

is therefore a fitting problem domain, because the set of states and actions are relatively limited. 

For example, when a vehicle is at a stop sign searching for a possible gap to cross safely, its 

actions are either to (1) accept the gap or (2) reject the gap and wait for an acceptable gap 

The problem domain for a driver searching for an acceptable gap consists of a population of 

cars on the primary roadway approaching the intersection at various speeds. The vehicle can 

detect within its visibility the speeds and distances of the approaching cars on the main 

roadway.  

3.1. A Simple Case 

The view of the surroundings from the perspective of a vehicle (henceforth called “agent”) 

at a stop sign can be represented as shown in Figure 1. 
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Figure 1: 

 Representation of an agent's surroundings as a grid network 

There are three states in the simple case presented in Figure 1. The first state is the 

beginning of the decision process, where the agent senses the vehicle on the primary roadway, 

along with its location and speed. This can be named state "A". The other two possible states are 

mutually exclusive. The second state, in this example when the agent crosses the intersection 

(accepts the gap), is the goal state (state X). The third state is when vehicle A on the primary 

roadway crosses the intersection, in other words the agent rejects the gap. Because the agent 

cannot observe the environment beyond the line of visibility, the third state is constructed with 

the assumption that there is a vehicle "F" immediately after the visibility line (State F). 

The definition of states in this context is different from how they are defined in the 

literature. The only state that is visible to agents is the one that exists in the present time (state 

A). All other states are constructed by agents as they predict the future events based on the 

dynamics of vehicles in their surroundings. Therefore, while the first state is a current (visible) 

state, the second and third states are the possible future states.  

The state diagram of the agent is shown in Figure 2.  

 

 
Figure 2: 

 State Diagram of the Agent 

Rewards of each action for distinct states are shown in the diagram. If the agent decides to 

transfer from state A to X, accepting the gap, it will receive a reward, XAr  , which denotes the 

risk of collision.  If the agent decides to shift from state A to F, in other words if it rejects the 

gap, it will receive a reward, FAw  , which denotes the time the agent has to wait until vehicle A 

clears the intersection. The next action is to transfer from state F to the goal state, X, where the 

associated reward is  rrF ,min X .  r  stands for the conventionally accepted risk of agents. It is 

updated throughout the training process as follows: 

 

        )(   1rrr


        (1) 

 

where, r


is the value of r  in the previous trial, r  is the risk taken in the present trial, and  is 

a constant 10   , preferably close to 1, indicating that the agents assign more weight to 

recent experiences.  
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The use of r  prevents agents from choosing unrealistic gaps. No matter how small the gaps 

are at a given instance the agents know that, as human drivers do, if they wait there will be 

another gap that is conventionally acceptable. 

The value of r  changes with each action taken by the agent, and smooths out throughout 

the training process, and becomes stable, as shown later in the numerical analyses. 

Most studies in the literature estimate drivers' gap acceptance probability using the first 

available gap only (Bartin et al. (2006), Mahmassani and Sheffi (1981), Teply et al. (1997), 

Polus et al. (2005), Hamed et al. (1997), Polus et al. (2003), Gattis and Low (1999)). One 

exception is the study by Daganzo (1981) where the formulation considers multiple gaps 

available to the driver in the decision process.  Pollatschek et al. (2002) combines wait-time and 

risk of crossing during the decision process, but only considers the risk of the first available gap.  

The premise of the proposed formulation is that the agent chooses an action based not only 

on available gaps but also the risks associated with the probable actions. It can either accept the 

gap and receive a reward, XAr  , or it can wait for vehicle A to clear the intersection then cross, 

thus receiving rewards  FAw   and XFr  , consecutively. 

3.2.  Learning Rewards 

In most RL methods, the rewards of actions for distinct states are assumed to be known by 

the agent. In the formulation presented in this paper it is assumed that agents learn the rewards 

of their actions for various states by trial-and-error. For example, in Figure 1, at the beginning 

of the training period, the agent only knows the location of vehicle A (cell 7 in Figure 1), but it 

does not know the time it would take for vehicle A at cell 7 to clear the intersection, or the risk 

of collision if it attempts to cross. It can observe XAr  when it transfers from state A to X. 

Similarly, it can observe FAw   only when it shifts from state A to F. 

Suppose that the primary roadway is represented as a grid network as shown in Figure 1, 

and that there are ni ...1  cells within the visibility distance of the agent, with each cell of size, 

 . 

Let us denote two vectors w  and c  both with size n . w  and c  store the average wait-time 

(w ) and collision risk ( r ) of each cell as observed by the agent.The definition of wait-time, w , 

is straightforward: gap in seconds. As to risk of collision, r , the following formula developed 

by Ozbay et al. (2008) is employed. 

 

 r =
Vc

1 +Vc

2

2
×

1

TPET

                                                   (2) 

 

where, 
c

V1


is the speed of vehicle on the secondary road crossing the intersection at conflict 

point (mph).
c

V 2


is the speed of vehicle on the primary road clearing the intersection at conflict 

point (mph). PETT is the post-encroachment time, defined as the time lapse between vehicles on 

the primary and secondary road arriving at the conflict point (seconds). 

Equation (2) suggests that the risk of collision becomes higher as the time lapse between 

vehicles at the conflict point decreases, i.e. near collision.  

Vectors w  and c  are updated every time the agent chooses an action for a given state. The 

learning is terminated when: 

     

 

 













rrr

ni iii

ni iii







)(

...    )()()(

...    )()()(

1

1

ccc

www

       (3) 

where, w


and c


 are the vectors, r


is the conventionally accepted risk obtained in the previous 
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trial, and   is the percent error. 

3.3.  Multiple Gaps 

Let us now consider the case where the agent is confronted by multiple vehicles within its 

visibility distance, as shown in Figure 3a. 

 

 
(a) First decision 

 

 
(b) Second decision 

 

 
 (c) Third decision 

 

Figure 3: 

 Representation of Multiple Vehicles on the Primary Roadway 

The agent predicts the future states by using the time when the first vehicle on the primary 

roadway clears the intersection. In other words, by using )(7w , the average observed gap of cell 

7, it calculates the time when vehicle A clears the intersection. Figure 3(b) depicts the estimated 

location of vehicles B and C when vehicle A clears the intersection. Similarly, by using )(3w , 

the agent constructs the future location of vehicle B, as shown in Figure 3(b). 

Figure 4 shows the states and actions diagram for the initial decision of the agent.  

 

 
 

Figure 4: 

 State Diagram of the Agent’s First Decision 

3.4.  Algorithm 

Q-learning is a standard RL method that finds an optimal set of actions to achieve an 

assigned goal by learning action-value representation, instead of learning utilities. Detailed 

information on the Q-learning method and its applications can be found in Mitchell (1997), 

Russell and Norvig (2003) and Sutton and Barto (1998). In this paper, the simplest version of 

B C A F 

X

A

1 

BAw

 
CBw

FCw

XAr XBr
XCr  rrF ,min X
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Q-learning is used with undiscounted rewards. The Q-function is updated by the following 

algorithm (Mitchell, 1997): 

 

For each state, s, and action, a, initialize the table entry  ),( asQ


 to zero.  

Do Forever 

Select a random initial state, s. 

Do until reaching the goal state 

From the current state s, select an action a and execute it. 

 Receive an immediate reward r 

 Observe next state s' 

 Update the table entry  ),( asQ


 as follows: 

                                    ),(max),( asQrasQ
a





  

where,  is discount factor, 10    

 Set the next state as the current state, ss   

End Do 

End Do 

 

In the Q-learning algorithm the agent learns to choose actions that will maximize its 

expected reward based not only on the immediate actions but also on future actions. 

Note that the above algorithm assumes that the agent learns forever. For practical purposes, 

if the table entry ),( asQ


does not vary from one episode to another, the learning should be 

terminated. 

It should be mentioned that the rewards in Figure 4, namely w and r , are not in the same 

scale. Therefore, a scale parameter,  , is used to so that r  is commensurable with w . For 

example, while executing Q-learning for the diagram in Figure 4, the total reward of the path A-

B-X (selecting the gap of vehicle B) is calculated by XBA   Brw  .      

 A smaller  implies a risk-prone agent where the risk of collision has a smaller importance 

in choosing actions. 

In the context of the presented problem, the common goal of all agents is to minimize the 

weighted combination of wait-time and collision risk. Therefore, in the algorithm presented 

above the rewards, w and r  are expressed as negative values. At the beginning of the 

training a small  value can be assigned to help vehicles exploring.  

3.5.  Gap Acceptance Decision Process 

In the multiple-gap case shown in Figure 3, the agent first executes the Q-learning algorithm 

for the diagram shown in Figure 4. If the optimal path as calculated by the algorithm is 

transferring from state A to X, then it accepts the gap and updates the c vector. If the optimal 

path to the goal state X is different from A-X, then it waits for vehicle A to clear the intersection 

and updates the w  vector. Once vehicle A clears the agent will confront yet another present 

state, similar to Figure 3(b), and predict future states accordingly. Therefore, the agent executes 

the Q-learning algorithm when they clear the intersection or when there is a new vehicle in the 

visibility distance. 

The flowchart of agent's decision process is given in Figure 5. 



Bartın B.O.: Simulation of Vehicles’ Gap Acceptance Decisions Using Reinforcement Learning 

170 

 
Figure 5:  

Flowchart of Agent’s Gap Acceptance Decision 

 

4. SIMULATION MODEL DEVELOPMENT 

The simulation model used as a test-bed for this study is borrowed from Bartin et al. (2006). 

Below are the details of the study area, the collected field data and the description of the 

developed simulation model. 

4.1.  Study Area 

Figure 6a shows the study circle, located in Wall Township, NJ. The circle has an unusual 

geometric and operational design. In modern roundabouts, circulating traffic has the right-of-

way. However, in the case of the study circle, the traffic flows on Route 33 westbound, Route 

34 northbound and Route 33/34 eastbound have the priority over the circulating traffic.  

 There are four yield-control intersections and one one-way stop-control intersection in the 

circle. The strikingly unconventional feature of the circle is the one-way stop controlled 

junction, where traffic comes to a full stop to exit the circle into Route 547 southbound 

direction. Particularly during the afternoon rush hours when the flow on Route 33/34 eastbound 

direction is high, drivers waiting for acceptable gaps at location 1 form a queue, which then 

builds up, and blocks the traffic flow on Route 33/34 westbound direction.  
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        (a)           (b) 

Figure 6:  

(a) Operational and geometric design of the study circle (b) Simulation Model in Paramics 

(Bartin et al., 2006) 

4.2.  Data Description 

Field data collected by Bartin et al. (2006) include (1) vehicle counts with percentage 

distributions of trucks and passenger cars, (2) vehicle inter-arrival times at primary roads, (3) 

vehicle wait-times before yield signs and stop sign on secondary roads, and (4) gap 

acceptance/rejection times at the yield and stop signs. 

Averages of wait-times and accepted gaps at the stop controlled intersection during the 

morning and afternoon peak periods are presented in Table 1.  

 

Table 1. Observed data (Bartin et al, 2006) 

Variable 
Morning Peak 

(7 a.m. – 9 a.m.) 
Afternoon Peak  
(3 p.m. – 5 p.m.) 

   

Wait-times (sec) 7.64 13.9 

Accepted Gaps (sec) 6.38 5.45 

Note: Wait-times do not include queuing time 

4.3. Simulation Model 

The simulation model of the study circle was developed by Bartin et al. (2006) in Paramics 

microscopic traffic simulation software, shown in Figure 6b. The simulation model was 

validated / calibrated for the morning peak hours only, using the collected field data.  
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Bartin et al. (2006) modeled the gap acceptance behavior of vehicles at the uncontrolled 

intersections using a binary probit model. The variables of the probit model were (a) Accept: 

Dummy variable for acceptance behavior (1 if the gap is accepted, 0 otherwise) and (b) Gap: 

Time between consecutive vehicles at the approach. The authors developed a binary probit 

model for each uncontrolled intersection at the circle 

Vehicles gap acceptance behaviors were then simulated using the API feature of Paramics, 

by controlling the movement of each vehicle within the simulation network. Basically, at each 

time step during simulation if a vehicle is within the link that has a yield or a stop sign, the API 

code checks the approach link associated with that sign. It then detects the leading vehicle on 

the approach link and calculates the approximate time, g, it would take the approaching vehicle 

to arrive at the junction. Thus, for every approaching vehicle the model calculates the 

probability of accepting the gap g at each location at each simulation time step using the 

developed probit model.  

In this current study, the same simulation model is used yet the focus is the stop controlled 

junction. In other words, Paramics API for the stop-controlled junction is replaced with the RL 

approach described in Section 3, and the gap acceptance decision process shown in Figure 5 is 

simulated by controlling individual vehicles approaching the stop sign. The validation of the 

study location is performed both for the morning and the afternoon peak hours, as described in 

the next section. 

 

5. VALIDATION OF THE STUDY CIRCLE 

5.1.  Assumptions  

  An initial scale parameter,  = 0.10 is used during the training runs. As stated earlier, a 

low initial value is assigned to  to allow the agents to explore different states and update the c  

vector faster. In other words, the agents place a low weight on risk during training and choose 

within the available gaps no matter how unreasonable they are, and experience "unrealistic" 

gaps to update the c  vector. It should be noted that the selection of  does not affect the values 

of w and c  vectors. The line of visibility is assumed to be 250 meters, an approximate value for 

this input parameter, selected based on field observations. The primary road is represented in the 

Q-learning algorithm by cells of size   = 5 meters. The constant,  , used to update r in 

Equation 1, is assumed 0.90.  

Five vehicle categories are considered in the simulation network: one passenger car type 

and four truck types with varying sizes. It should be clear that vehicles with different sizes will 

have different collision risks, since their initial allowable acceleration abilities will affect the 

post encroachment times in Equation 2.  Therefore, there are five different c vectors updated 

during the training runs.  

It is also assumed that all vehicles within each category are homogeneous. In other words, 

they share the information stored in c  vectors, making identical decision for identical state 

representations. However, all vehicles (both passenger cars and truck types) use the same 

conventionally accepted collision risk, r , in the Q-learning algorithm.  

5.2. Training Results 

The agents are first trained in the simulation network with low demand volumes to update 

thew and c  vectors. The demand is gradually increased until it meets the peak period demand 

of the study circle. The training is terminated when the conditions presented in Equation 3 are 

satisfied, with  = 0.01 percent (no significant change).  

Figure 7 shows the trend of r during the training runs when the constant,  , in Equation 1 

is equal to 0.90, and the initial r is equal to 3,000, indicating a certain collision scenario.   
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Figure 7:  

Conventionally accepted risk, r , during training 

It should be noted that the same final value of r is obtained regardless of the initial value 

assigned. 

5.3. Validation Results 

The preliminary simulation runs showed that among the several input parameters, such as 

visibility, cell size, and the  constant, the scale parameter  has the highest impact on the 

results. Agents weigh wait-time and collision risk based on this parameter. Thus, when   is in 

the vicinity of 1.0, the agents experience unrealistically high wait-times leading to severe 

congestion. It is found that when 2010 ..    the simulation yields reasonable operational 

conditions, similar to those observed in the field data. Table 2 presents the output of simulation 

runs for the scale parameter,  =0.13. 

 

Table 2. Simulation results 

Variable 
Morning Peak 

 (7am-9am) 
Afternoon Peak  

(3pm-5pm) 

   

Wait-time (sec) [7.16, 7.52] [12.74,14.10] 

Accepted Gaps (sec) [6.32, 6.41] [5.79, 5.87] 

Note: The values in brackets indicate 95 percent confidence level of the output estimates. 

 

Table 2 shows that some of the output ranges do not cover the corresponding observed 

output values presented in Table 1. However, it should be pointed out that the output collection 

in Paramics and the analyst’s data extraction methods are never identical. Furthermore, it can be 

seen in Table 2 that none of the simulated output values are substantially out of range (less than 

1 second). Therefore, the outputs of the simulation model can be assumed as valid. 

Figure 8 and Figure 9 show the distributions of accepted gaps from simulation outputs and 

observed field data during the morning and afternoon peak periods, respectively.   
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Figure 8:  

Distributions of accepted gaps from simulation outputs and observed data - Morning Peak 

 

Figure 9:  

Distributions of accepted gaps from simulation outputs and observed data - Afternoon Peak 

These figures indicate that the distributions of accepted gaps of the agents are also in 

accordance with field data. The correlation coefficients of distributions are 0.86 and 0.81 for the 

morning and afternoon peak periods, respectively.  

5.4. Discussion 

Although the results shown are promising, there are several caveats to the formulation 

presented in this paper: 

Homogeneous agents: The presented reinforcement-learning algorithm assumes only five 

different agent types, depending on the vehicle type (one passenger car and four truck types). 

Therefore, there is no variability in the decisions made while accepting gaps. In other words, 

when faced with identical states, agents of the same type will make identical decisions. It would 

be more realistic to assume different values for and r , and different visibility ranges for 

different agents. However, such information is not possible to gather from field data. It should 
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be mentioned that the similar limitation exists when the gap acceptance decision is modeled 

using a probabilistic model, such as the probit model used in Bartin et al. (2006). 

Perception Errors: It is assumed that the agents have perfect information of the gaps on the 

primary roadway. However, in reality, drivers are expected to have flawed perceptions of 

vehicles' speeds, especially when the approaching vehicles are farther away from the 

intersection. Therefore, they may reject gaps that should be accepted or vice versa.  

Effect of Delay on Gap Acceptance: It is also assumed that agents' decisions do not change 

with how long they wait at the intersection (both wait-time and queue time). One would assume 

that parameter  decreases as agents' delay increases, indicating that they become impatient and 

choose smaller gaps. However, there is not a clear consensus in the literature that supports the 

unambiguous effect of delay on gap acceptance. While Bartin et al. (2006), Maze (1981) and 

Ashton (1971) do not find significant effects from delay on gap acceptance behavior, the results 

presented by Mahmassani and Sheffi (1981), Polus et al. (2005) and Hamed et al. (1997) 

indicate otherwise.  

The lack of more complex behavior explained above leaves   as the only calibration 

parameter, which reduces the validation / calibration process significantly. Once the training 

runs are complete, the value of  is changed iteratively to match the simulation outputs with the 

observed field data.   

6. CONCLUSIONS 

In this paper, the application of RL in validation/calibration of a microscopic traffic 

simulation model is proposed. In particular, the validity of a validation/calibration process that 

does not rely on any underlying model for a particular driver decision / behavior has been 

investigated. The underlying idea is to train drivers (agents) using the Q-learning method during 

the simulation until they make decisions that comply with observed driver behavior. Agents 

adapt to the network and events during the simulation runs, and make decisions based on 

assigned objectives. During training, agents' objectives are to minimize time spent traveling and 

to minimize risk. Agents learn from their experience and improve their decision making 

progressively.  

The proposed approach is studied for modeling vehicles' gap acceptance decisions at a stop-

controlled intersection of a traffic circle that was modeled and validated in Paramics traffic 

simulation software by Bartin et al. (2006). It was argued in Bartin et al. (2006) that extensive 

field data and time are required to estimate realistic gap acceptance models in traffic simulation 

models. 

In this paper drivers are simulated without any notion of the outcome of their decisions. 

Throughout multiple episodes of gap acceptance decisions, agents learn from the outcome of 

their actions, i.e., wait-time and safety.  Results show that by using a RL algorithm, drivers' gap 

acceptance behavior can easily be validated with high accuracy. 

The proposed approach can be applied in simulating various other traffic facilities where 

complex vehicle decisions dictate the operational performance, and the data required for 

estimating their mathematical models are hard to collect, such as lane selection at toll plazas, 

lane selection ahead of an off ramp, traffic signal, merge point, etc. 

The anticipated future work will include the extension of the proposed approach using other 

available learning methods. In specific, the author expects to adopt Learning Classifier Systems 

(LCS) in their future analyses. LCS ties RL and genetic algorithms. LCS was first proposed in 

his seminal work by Holland (1976). In general terms, LCS can be regarded as an adaptive 

system that learns to perform the best action based on the received input from its environment. 

The “best" action generally means the action that will receive the most reward or reinforcement 

from the environment. "Input", on the other hand, means the environment as sensed by the 

system (agent), usually depicted in binary values. The set of available actions by the agent 

depends on the decision context, for instance turn left, right, stop and so on. LCS can be thought 

http://en.wikipedia.org/wiki/Reinforcement_learning
http://en.wikipedia.org/wiki/Genetic_algorithms
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of a simple model of an intelligent agent in its environment. In short, the use of LCS method in 

simulating learning agents is anticipated to generate a “model-free” approach to 

validate/calibrate traffic simulation models. Therefore, as an extension to this study, vehicles’ 

gap acceptance decisions at the studied stop-controlled junction will be simulated using the LCS 

method and the results will be compared. 
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