http://www.newtheory.org ISSN: 2149-1402

New Theory

Received: 29.10.2015 Year: 2016, Number: 10, Pages: 19-29
Published: 05.01.2016 Original Article™

ON (k,h)-CONVEX STOCHASTIC PROCESSES

Lysis Gonzédlez">" <lysis.gonzalez@gmail.com>

Nelson Merentes'? <nmerucv@gmail.com>
Maira Valera-Lépez!'? <maira.valeraQciens.ucv.ve>

IEscuela de Matemética, Universidad Central de Venezuela, 1010 Caracas, Venezuela.
2Banco Central de Venezuela, 1010 Caracas, Venezuela.

Abstaract — We introduce the class of (k, h)-convex stochastic processes and we generalize re-
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Hermite-Hadamard and Fejér-type inequalities.
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1 Introduction

In 1980, Nikodem [11] stated the line of investigation on stochastic convexity and
later, several types of convex stochastic processes have been studied [1, 2, 4, 5, 6, 7,
8, 11, 12, 14] based in the classical convex notions for functions.

Micherda and Rajba, introduced in [10] the family of (k, h)—convex functions as
the solutions of the functional inequality

f(E(t)z + k(1 = t)y) <h(t)f(z) +h(1 —1)f(y),

where k,h : (0,1) — R are given. The notion of (k, h)-convexity generalizes s-Orlicz
convexity [3], subaditivity [9] and h-convexity [13].

In this paper, we introduce the notion of (k,h)-convex stochastic processes as
a counterpart of the (k,h)-convex functions and a generalization of h-convex sto-
chastic processes defined in [1]. Also, we prove properties of (k, h)-convex stochastic
processes, among them, Hermite-Hadamard and Fejér-type inequalities.

Now, we would like to recall the context where the stochastic convexity is studied.

Let (2, A,P) be a probability space. A function X : Q2 — R is a random variable
if it is A-measurable. A function X : I x Q — R, where I C R is an interval, is a
stochastic process if for every t € I the function X (¢,-) is a random variable.

** Edited by Kazimierz Nikodem and Naim Cagman (Editor-in-Chief).
* Corresponding Author.
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If h:(0,1) — R is a non-negative function, h # 0, a stochastic process X :
I x Q — R is h-convez, if for every t1,t, € I and A € (0,1), the following inequality
holds

XAty + (1 = Nta,-) < h(N)X(t1,-) + (1 =N X(t2,-), (a.e.).

When h is equal to the identity function, X is said to be convex, and additionally, if
A= % then X is Jensen-conver.

Some examples and properties related with convex, Jensen-convex and h-convex
stochastic processes can be readed in [1, 2, 8, 11, 14].

Now, for calculation, we need to introduce additional definitions:

Let X : I x Q — R be a stochastic process such that E[X (#)]* < oo for all t € I,
where E[X (#)]* < oo denotes the expectation value of X (¢, -). The stochastic process
X is

1. continuous in probability in the interval I, if for all ¢ty € I, we have

P — hm X(t, ) = X(to, '),

t—to

where P — lim denotes the limit in probability.

2. mean-square continuous in the interval I, if for all ty € I

lim E[(X(t) — X (t))?] = 0.

t—to

Is important to note that mean-square continuity implies continuity in probabil-
ity, but the converse implication is not true.

We say that the stochastic process X is mean-square integrable in |a,b] C I, if
there exists a random variable Y such that for all normal sequence of partions of the
interval [a,b], a =ty < t; < ... <t, =b, holds

2

Iim E =0.

ixwk) (e —te1) — Y

k=1

The random variable Y : 2 — R is the mean-square integral of the process X on
[a,b] and we can also write

b
Y(-):/ X(s,)ds, (a.e).

Definition and properties of mean-square integral can be readed in [15].

2 (k,h)-convex Stochastic Processes

In order to extend the definition of h-convexity for stochastic processes, we introduce
the notion of (k, h) stochastic convexity.

Given a function & : (0,1) — R, aset D C R is k-convez if k(A\)t;+k(1—N)ty € D
for all ¢1, to € D and t € (0,1).

In [10], k-convex sets were defined in real linear spaces and some examples for
chosen functions k are given.
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Definition 2.1. Let k, h: (0,1) — R be two given functions and D C R a k-convex
set. A stochastic process X : D x Q — R is (k, h)-convex if, for all 1, t, € D and
A e (0,1),

X(E(N)tr + k(1 — Ntg,-) < h(N)X(t1, ) + h(1 — N) X (2, ) (a.e.). (1)
If in (1) the equality holds, the stochastic process X is called (k, h)-affine.

This definition coincides in many important cases with other ones previously
introduced, some of which are listed bellow.

Example 2.2. 1. For k()\) = A, the notion of (k, h)-convexity matches with the
h-convexity one given in [1] (without the additional assumption of non negativity).

2. For k(X)) = h(\) = 1, the class of (k, h)-convex stochastic processes consists in
all stochastic process which are subadditive.

3. If k(A\) = h(N\) = 1/2 for all A, then (1) gives the family of Jensen-convex
stochastic processes.

4. Let k be defined by the formula

2\, A< 1/2
k(A) =
0, A>1/2
Then X is a (k, k)-convex stochastic process if and only if it is starshaped, i.e.,
X(Mt,-) < AX(t,-) almost everywhere, for all A € (0,1) and ¢ € D. In fact, fix
t1, to € D and choose A € (0,1). Then, assuming that X is a (k, k)-convex stochastic
process, we get

X(At,-):X(k(%)HkO—%)t,-) SAX(t,-),

A A
X0,V =X k(= |t+k|=]|t,-)=
0= (5(3) ek (3) ) -
almost everywhere.

On the other hand, if X is starshaped, for anyone t,t3 € D, A € (0, 1) we obtain

and

X(2Mt1, ) < 22X (1, ), A€ (0,1/2),

X\t + k(1= N, ) = X(0,-) <0, A=1/2,

X((2=20)t,) € (2 - 20X (62 ), A€ (1/21).
Hence, (1) is satisfied for all t € D and A € (0, 1).

Hereinafter, we keep the notation used in the definition (2.1) for D,k and h.

3 Properties of (k, h)-convex Stochastic Processes

Many of the well-known properties of convex stochastic processes are satisfied by
(k, h)-convex stochastic processes too. In the following propositions we present some
basic properties for (k, h)-convex stochastic processes.
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Proposition 3.1. If X, Y : D x Q — R be a (k, h)-convex stochastic processes and
¢ >0, then X +Y and cX are also (k, h)-convex stochastic processes.

Proof. Let be ty, to € D, A € (0,1) and ¢ > 0. Then,

(X + )k + k(1= Nta,-)
= X\t + k(1 = Mo, ) + Y (ANt + k(1 — Nia, )
< BO)NX +Y) () +h(1 =N (X +Y)(Es, ), (ae).

Also,
(X (E(Nty + k(1 — Nta, ) c[h(N) X (t1,-) + h(1 — N) X (ts, )]

<
< R(EX)(t, ) + h(L = N)(eX) (), (ace).

Proposition 3.2. Let k, hy, hy : (0,1) — R be non negative functions and X, Y :
D x Q) — R non-negative stochastic processes such that:

(X(t1,) = X(t2,))(Y(t1,-) = Y(ta,-)) 20, (2)

for all t1, to € D. If X is (k, hy)-convex, Y is (k, hy)-convex and h(\) +h(1 =) < ¢
for all A € (0,1), where A(A) = max{hi(A), ha(N)} and c is a fixed positive number,
then the product XY is a (k, ch)-convex stochastic process.

Proof. Fix t;,ts € D and A\, § € (0,1) such that A + 3 = 1. First, note that if
(X (t1,) — X(t2,*)(Y(t1,-) — Y(t2,-)) > 0 holds almost everywhere, then:

X(tl, )Y(t27 ) + Y(tl, )X(tz, ) S X(tl, )Y(tl, ) + Y(t27 )X(tQ, '), ((1.6).

Hence,

(XY) (BNt + k(1= Mtz )) < (M(A)X(t1, ) + h(1 = X)X (22, )
(RA)Y (t1, ) + h(1 = )Y (2, )
< (h))HXY) (L, -)
+h(AN)(L = N[(XY)(t1, ) + (XY) (L2, )]

(h(1 =) (XY)(ta, -)
= (h(A) +h(1=2))
TRAXY) () + h(1 = A) XY (2, )]
JXY)(t, ) + ch(l = N)X(t2, 7)), (a.e).

+

< ch(X

Proposition 3.3. Let X : [ x Q@ — R be a (k, h)-convex stochastic process and
f : R — R an increasing (h, h)-convex function. Then, fo X : I x Q — R is a
(k, h)-convex stochastic process.

Proof. For arbitrary t;,ts € I and A € (0,1), we have

FX (RNt + k(L = Mta, -))

IAINA
>
—~
K
=
<
=
+
=
—_
|
>
N—
=
<
=~
g
)
@
~—



Journal of New Theory 10 (2016) 19-29 23

In [8], Kotrys and Nikodem defined for every stochastic process X and random
variable A, the sublevel set as follows

Li={teD:X(t-)<A(), (ae)}

In the following proposition we present a condition for h in way to the sublevel set
L 4 be k-convex for given (k, h)-convex stochastic process X and random variable A.

Proposition 3.4. Let X : D x Q — R be a (k, h)-convex stochastic process, with
h a positive function. For every random variable A : 2 — R, the sublevel set L4 is
k-convex if the inequality h(A) + h(1 — A) < 1 holds for every A € (0,1).

Proof. Since X is (k, h)-convex, for t1, to € L4 and X € (0, 1), we have:
X(k(Nty + k(1 = Nta, ) R(N)X (t1,-) + h(1 — N X(ts,-)

R(NA() + h(1 —N)A(+)

(A(A) + A1 = A)A() < A(),  (a.e.).

IA A

Therefore, L4 is k-convex set.
Example 3.5. Considering h(A) = A in the previous proposition, the result holds.
The proof of the following proposition follows immediately from the definitions.

Proposition 3.6. If hy, hy are functions such that hy > hy, then every non-negative
(k, h1)-convex stochastic process is also (k, hg)-convex stochastic process.

Remark 3.7. Note that if D is a k-convex subset of X and X : D x 2 — R is a
(k, h)-affine stochastic process, then the image of X not necessarily is an h-convex
set in R. For instance, if D = Q = [0,1], k, h are the identity function and X is
defined by

0, if t#w,
X(t,w) =
1, if t=w.

then X (D x Q) = {0, 1} is not an h-convex subset of R.

In the following theorem we present conditions under the inequality

X(EA)t + k(B)t2,-) < (AN X (tr, ) + h(B) X (t2,-),

holds almost everywhere, for all A\, 3 > 0 such that A+ ( < 1.
In the following theorem definitions of supermultiplicative and submultiplicative
functions are needed. We recall these notions:

Definition 3.8. A function f : (0,1) — R is said to be supermultiplicative if for all
z,y € (0,1),

f@)f(y) < f(zy), (3)

If inequality (3) is reversed, then f is a submultiplicative function. Moreover, if the
equality holds in (3), f is multiplicative.
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Theorem 3.9. Let be k,h : (0,1) — R non-negative functions and D C R a
k—convex set such that 0 € D . If k£ is submultiplicative, h is supermultiplicative
and X : D x 2 — R is a (k, h)-convex and non-decreasing stochastic process such
that X (0,-) = 0, then the inequality

Xk + k(B)ta, ) < BONX (11,-) + h(B) X (£, ),
hold almost everywhere, for all A, 5 > 0 such that A + 3 < 1.

Proof. If A+ 8 = 1, the inequality holds from (k, h)-convex stochastic process def-
inition. Let A, ﬁ > 0 be numbers such that A + 3 = v with v < 1. Let us define
numbers a = ; and b : g Then, a + b = 1 and fixed t1,t, € D, we have the
following inequality:

X (k(ay)t + k(by)t2, ) X (k(a)k(v)t + k(b)k()ta, )

(@)X (k(7)t, ") + h(b) X (k(7)t2, )
(@)X (k(y)ts + k(1 —7)0,-)
+h(b)X(k;( )t + k(1 —v)0,-)
[A(v) X (t1,-) + h(1 = )X (0, )]
h(b)[R(7)X (t1,-) + h(1 — )X (0, )]
= h(a)h(7) X (t1,) + h(b)h(7) X (t2, )
h(ay) X (t1, ) + h(by) X (t2, )

= hN)X(t1,-) +h(B)X(t2,-), (ae).

Theorem 3.10. Let k, h be non-negative functions and D C R a k-convex set such
that 0 € D. If X : D x 2 — R is a non-negative stochastic process such that

I VANPVAN
> S

A
+§

IN

X (Bt + k(B)t2,-) < h(MN)X (L, -) + h(B) X (t2,) (a-e), (4)

holds for any ¢1, t, € D and A, 8 > 0 with A+3 < 1 and h(X) < 3 for some A € (0, 3),
then X (0,-) = 0.

Proof. Let us suppose that exists w €  with X (0,w) # 0, then X(0,w) > 0 and
putting ¢; = ts = 0 in the inequality (4), we get

X(0,w) < h(A)X(0,w) + h(F)X(0,w),

for A, 8 > 0 such that A+ < 1. Putting A = 3, A € (0, %) and dividing by X (0,w),
we obtain 1 < h(A) + h(A) = 2h(\) for all A € (0,3). That is, 3 < h()) for all
A e (0, ) what is a contradiction with the assumption of theorem.

In the following proposition we present a Schur-type inequality.

Proposition 3.11. If k£, h : (0,1) — R are non-negative functions, with k(\) > A,
h submultiplicative and X : D x @ — R is a non-decreasing (k, h)-convex stochastic
process, then the following inequality holds:

h(ts — t2)X (t,-) — h(ts — t)X (t, ) + h(ts — t)X (t5,-) > 0, (ae),  (5)

for t1,t0,t3 € D, such that t; < t5 < t3 and t3 — t1,t3 —lo,to — 1 € D.
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Proof. Consider tq,ts,t3 € D be numbers wich satisfy assumptions of the proposition.

Then,
l3—1ty to—1

ts—t1 t3 — 1

€ (0,1),

and
t3—ty to—1y
t3 — 1 ts —

Also, since h is supermultiplicative and non-negative, we have

h(ts —ts) = h (f’ —l2 tl)) > h (t*”’ - t2> h(ts — 1),

= 1.

3 — 11 t3 — 11

to—t ty—t
h(tg—tl):h( 2 1.(t3—t1)) zh( 2 1)h(tg—tl),

t3 — 11 3— 1

Let h(ts3 —t1) > 0. Because k(\) > A, X is non-decreasing and (k, h)-convex, X
satisfies:

X(Az1+(1=N) 22, ) < X(k(A)z1+Ek(1=X)22, ) < h(AN)X (21, -)+h(1-X) X (22,-), (a.e),

for all 21,20 € D, X € (0,1). In particular, for A = ig:if, 2 = t1, 29 = t3, we have
to = Az; + (1 — A)z9 and

Xy < (=)t e (=) X ©)
= HX(t1,~>+%X(t3’.)7 (a'e)'

Finally, multiplying by h(t3 — t1), we obtain the following

h(tg — tl)X(tQ, ) S h(t3 — tQ)X(t17 ) + h(tz - tl)X(t3, '), (CL.€>.
That is,

0 S h(tg - tQ)X(tl, ) - h(tg - tl)X(tQ, ) + h(tQ - tl)X(tg, '), (a.e).

The following theorem is an converse Jensen-type inequality.

Theorem 3.12. Let Ay, Ag, ..., A, be positive real numbers such that Y A, =1
and (m,M) C I. If k,h : (0,1) — R is a non negative with k(A) > X and h
supermultiplicative function, and X : I x Q@ — R is an (k, h)-convex stochastic
process, then for any t1,1s,...,t, € [m, M], the following inequality holds almost
everywhere

Zh()\i)X(tia') - X(my.)Zh()\i)h (M—ti)

M—-—m

+X(M,-)2n:h(/\i)h (;4‘_’;) .

=1




Journal of New Theory 10 (2016) 19-29 26

Proof. Fix i € {1,...,n}. Putting t; = m,ty = =M and ) = (2=4) € [0,1] in
the inequality (6), we get

X(t;,) < h (]\Aj - ti) X(m,)+h (;4_ m ) X(M,"), (ae).

—m —m

Since h is non negative, we have that multiplying by h(\;):

BAIX () < B () X, )

FhOWh (L_ TZL) X(M,-).

Adding all inequalities for ¢ = 1, ..., n, we complete the proof.

4 Main Results

We will prove the main results of this paper which consists in some new Fejér and
Hermite-Hadamard-type inequalities for (k,h)-convex stochastic processes. From
now, we suppose that all mean-square integrals considered bellow exist.

Theorem 4.1. (First Fejér-type inequality) If there are X : D x Q@ — R a
(k, h)-convex stochastic process with h(1/2) > 0, a < b such that [a,b] C D and
G : [a,b] x 2 — R a non-negative and symmetric respect ‘”b mean-square integrable
stochastic process, then the following inequality holds almost everywhere:

((12/}12172” /G dt</ X(t L (ae) (1)

Proof. From the definition with A = 1/2, t; = wa+ (1 —w)b and t5 = (1 —w)a + wb
with w € [0, 1], then

X (k (%) <a+b),.) -~ X (k (%) btk (%) t2,‘)
~ X (k; (%) (wa + (1 — w)b) + k (%) (1 = w)a + wbh), )

h (%) X(wa + (1 — w)b,-)

IN

+h (%) X((1—w)a+wb,-), (ae).  (8)

Multiplying both sides of the inequality (8) for G(¢1,-) = G(ta, -), almost everywhere
and integrate it with respect to w, getting:

X(k(%) (a+b), ) /Gwa+ (1= w)b, )duw
<h <§> [/0 X(wa+ (1= w)b, )Gwa + (1 — w)b, -)dw

b [ X what s G~ w)at Y]
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almost everywhere. This implies

X(k (%) (a+b),-)~bia/abG(t,-)dt < h(%) 9

which completes the proof.

ia/bX(t \G(t, )t

Some important results are obtained as consequence of the previous result, among
them, a Hermite-Hadamard-type inequality for (k, h)-convex stochastic processes, as
the following corollary shows.

Corollary 4.2. Let X : D x Q — R be a (k, h)- convex stochastic process with
h(1/2) > 0 and fixed a < b such that [a,b] C D. Then

X(k(1/2)(a+0),-
2h(1/2) = b—a/ Xt )dt, (ace). )

Remark 4.3. 1. If X is an h-convex stochastic process, then (7) gives the following

inequality
1 a+b b
X < X(t
20(1/2) (2 )/ et /

2. For every convex stochastic process X the following Fejér-type inequality is
valid by Theorem 4.1,

X(a;b,) /abG(t,.)dtg/abX(t )G(t,)dt

In particular, for G(¢,-) = 1 we get the Hermite-Hadamard inequality

a+b 1 b
X )< X (t,-)dt.

3. From (7) and (9) we recover the left-hand sides of the classical Fejér and
Hermite-Hadamard-type inequalities for Jensen-convex stochastic processes.

Theorem 4.4. (Second Fejér-type inequality) Let be k,h : (0,1) — R given

functions such that h(1/2) > 0 and k(w) + k(1 —w) = 0 for all w € [0,1]. If

X : D xQ — Risa (k, h)-convex stochastic, a, b€ D, a <band G : [a,b] x Q@ — R
a+b

is a non-negative and symmetric respect to 3> mean-square integrable stochastic

process, then the following inequality holds almost everywhere:

1

(

/le (k (1) [k(t) + k(1 —t)](a + D), ) G(ta+ (1 — )b, -)dt

>

2)

/X Ba+ k(1 — b, )Glat + (1— )b, )dt  (10)

X(a,-) + X (b, )]/ h(t)G(at + (1 — t)b, -)dt.

0
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Proof. By definition (1) with t; = k(w)a + k(1 — w)b, t5 = k(1 — w)a + k(w)b and
t = 1/2, we have the following inequality almost everywhere:

Qs o) x(os ()

<h <%> (X (k(w)a + k(1 —w)b,-) + X (k(1 —w)a+ k(w)b,-)].  (11)

As in the proof of the previous theorem, we multiply both sides of the inequality (11)
by G(wa 4+ (1 —w)b,-) = G((1 — w)a + wb, ), and we integrate the new inequality
over (0, 1), getting

/01 2 (k (%) [k(w) + k(1 —w)] - (a+b), ) G(wa + (1 — w)b, -)dt
( ) [/ X(k(w)a + k(1 = w)b, )G(wa + (1 = w)b, -)dw
+/ X(k(1 —w)a + k(w)b, )G(wa + (1 — w)b, -)dw

<2h() /X (1= w)a + k(w)b, )G(wa + (1 — w)b, )dw, (a.c).

From this we obtain the first desired inequality.
To prove the second one, we need to use the definition of (k,h)-convexity with
x = a and y = b. Namely, we have:

X(k(t)a+ k(1 —1t)b,-) < h(t)X(a,:) + h(1l =t)X(b,:), (a.e),
witch, by symmetry of G(t, -), implies

/X Pa+ k(1= t)b, ) Glta+ (1 — )b, )t
< X(a,") /01 h(H)G(wa + (1 — w)b, -)dw
X (b, ) /01 B(1 = )G((1 = w)a + wb, -)dw
_ [X(a,.>+X(b,.)]/Olh(t)c:(wwu—w)b,.)dw, (a.c),
and the proof is complete.

As a corollary, we obtain the second Hermite-Hadamard inequality for (k,h)-
convex stochastic processes.

Corollary 4.5. Let X : D x 2 — R be a (k, h)-convex stochastic process where
h(1/2) > 0 and choose a,b € D such that a < b. Then

ﬁ/lx (k (%) e(t) + k(1 — 1)](a + b), ) dt

/ X (k(t)a + k(1 — )b, )dtg[X(a,-)+X(b,-)]/1h(t)dt.
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