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Özet. Bu çalışmada, sonlu bir aralıkta üç durumda difüzyon denklemi için ADM ve VIM
yöntemleri kullanılarak yaklaşık çözümler elde edilmiş ve bulunan bu çözümler karşılaştırıl-
mıştır. Elde edilen sonuçlar ADM’nin daha etkili sonuçlar verdiğini göstermiştir. Sayısal
sonuçlar, sadece birkaç terimin tam çözümler elde etmek için yeterli olduğunu göstermiştir.

Anahtar Kelimeler. Difüzyon operatorü, Adomian ayrışım metodu, He’nin varyasyonel
iterasyon metodu.

Abstract. In this study, we obtain approximate solutions for diffusion equation on a finite
interval by the Adomian decomposition method (ADM) and variational iteration method
(VIM) for three cases and then the numerical results are compared. These results show
that the ADM leads to more accurate results, and they indicate that only a few terms are
sufficient to obtain accurate solutions.

Keywords. Diffusion operator, Adomian’s decomposition method, He’s variational iter-
ation method.

1. Introduction

The problem of describing the interactions between colliding particles is of funda-

mental interest in physics. It is interested in collisions of two spinless particles, and

it is supposed that the s-wave scattering matrix and the s-wave binding energies are

exactly known from collision experiments. With a radial static potential V (x) the

s-wave Schrödinger equation is written as

y′′ + [E − V (E, x)]y = 0,

Received April 17, 2010; accepted June 10, 2010.

ISSN 1309 - 6788 c© 2010 Çankaya University
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where V (E, x) is the following form for the energy dependence [1]

V (E, x) = 2
√
E p(x) + q(x).

Let E = λ2. In this case, the Schrödinger equation transforms to the following

equation

−d
2y

dx2
+ [q(x) + 2λp(x)]y = λ2y, (1.1)

which is known as a diffusion equation in the literature, where the function q(x) ∈
L1[0, π], p(x) ∈ L2[0, π]. Some spectral problems were extensively solved for the

diffusion operator in references [2-5].

Consider the problem

−y′′ + [q(x) + 2λp(x)]y = λ2y, (1.2)

y(0) = 1, y′(0) = −h, (1.3)

where h is a finite number. Let us denote by ϕ(x, λ) the solution of (1.2) satisfying

the initial conditions (1.3). Let [3]

λn = n+ c0 +
c1
n

+
c1,n
n
,

be the nth eigenvalue where

c0 =
1

π

ˆ π

0

p(x)dx,
∑
n

|c1,n|2 <∞,

c1 =
1

π

(
h+H +

1

2

ˆ π

0

[q(x) + p2(x)]dx

)
,

and H is a finite number.

The aim of this study is to approach the diffusion equation differently, but effectively,

by using VIM and ADM. The VIM and ADM avoid the complexity involved in other

purely numerical methods. We use VIM and ADM to investigate the problem of

diffusion equations slowly approaching each other. The paper is organized as follows;

in Section 2, we give an application of ADM to a Volterra type integral equation. An

application of ADM to the diffusion equation is given in Section 3. In Section 4, we

introduce a framework theoretical analysis of the VIM. In Section 5, VIM is carried

out to obtain the solution of a diffusion problem. The exact solutions obtained by

VIM and ADM are compared in Section 6. The conclusion can be found in Section

7.
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2. Application of ADM to a Volterra Type Integral

Equation

We consider nonhomogeneous Volterra type integral equation

u(x) = f(x) + γ

ˆ x

0

K(x, t)u(t)dt, (2.1)

where K(x, t) is the kernel of the integral equation, and γ is a parameter. Our

concern will be to apply ADM to determine the u(x) of (2.1). In this method, u(x)

will be decomposed into components, that will be determined, given by the series

form

u(x) =
∞∑
n=0

un(x), (2.2)

with u0 identified as all terms out of the integral sign

u0(x) = f(x). (2.3)

Substituting (2.2) into (2.1) yields

∞∑
n=0

un(x) = f(x) + γ

ˆ x

0

K(x, t)

(
∞∑
n=0

un(t)

)
dt. (2.4)

The above-mentioned scheme for the determination of the components u0(x), u1(x),

u2(x), . . . of the solution u(x) for equation (2.1) can be written in a recursive scheme

by

u0 = f(x), (2.5)

un+1(x) = γ

ˆ x

0

K(x, t)un(t)dt, n ≥ 0. (2.6)

With these components determined, the solution u(x) of (2.1) is readily determined

in a series form upon using (2.2) [6].

Lemma 2.1 ([7]). The solution of problem (1.2)-(1.3) has the following form

ϕ(x, λ) = cos(λx)− h

λ
sin(λx) +

ˆ x

0

sinλ(x− t)
λ

[q(t) + 2λp(t)]ϕ(t, λ)dt. (2.7)

This is a nonhomogeneous Volterra type integral equation of the second kind. Our

concern will be to apply ADM to determine the solution ϕ(x, λ) of (2.7). It is clear

that

f(x, λ) = cos(λx)− h

λ
sin(λx), γ = 1, K(x, t) =

sinλ(x− t)
λ

[q(t) + 2λp(t)]
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in (2.7). Using the decomposition series solution (2.2) and the recursive scheme

(2.5) and (2.6) to determine the components ϕn(x, λ), n ≥ 0 for three cases, we find

the following results.

Case 1. In the case p(x) = x2 and q(x) = 0, we get

ϕ0(x, λ) = cos(λx)− h

λ
sin(λx),

ϕ1(x, λ) =
1

6λ4
[xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx)],

ϕ2(x, λ) =
1

3λ7
[(−2 + x2λ2 + 2 cos(λx))(xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx))],

...

and so on. Noting that

ϕ(x, λ) = ϕ0(x, λ) + ϕ1(x, λ) + ϕ2(x, λ) + . . . ,

we can easily obtain the solution in a series form given by

ϕ(x, λ) = cos(λx)− h

λ
sin(λx) +

1

6λ4
[xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx)] + · · · .

Case 2. In the case p(x) = 0 and q(x) = x2, we get

ϕ0(x, λ) = cos(λx)− h

λ
sin(λx),

ϕ1(x, λ) =
1

12λ5
[xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx)],

ϕ2(x, λ) =
1

12λ9
[(−2 + x2λ2 + 2 cos(λx))(xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx))],

...
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and

ϕ(x, λ) = cos(λx)− h

λ
sin(λx) +

1

12λ5
[xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx)] + · · · .

Case 3. In the case p(x) = x2 and q(x) = x2, we get

ϕ0(x, λ) = cos(λx)− h

λ
sin(λx),

ϕ1(x, λ) =
1

12λ5
(1 + 2λ)[xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx)],

ϕ2(x, λ) =
1

12λ9
(1 + 2λ)2[(−2 + x2λ2 + 2 cos(λx))(xλ(3xλ2 + h(−3 + 2x2λ2))

cos(λx) + (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx))],

...

and

ϕ(x, λ) = cos(λx)− h

λ
sin(λx) +

1

12λ5
(1 + 2λ)[xλ(3xλ2 + h(−3 + 2x2λ2)) cos(λx)

+ (3h− 3xλ2 − 3hx2λ2 + 2x3λ4) sin(λx)) + · · · .

3. Application of ADM to the Diffusion Equation

The decomposition method was introduced by Adomian [8], [9] in the 1980s in or-

der to solve linear and nonlinear functional equations (algebraic, differential, partial

differential, integral, integro-differential equations, etc.). Approximate and exact

solutions of wide varieties of physically significant problems modeled by nonlinear

partial differential equations are easily calculated by the decomposition method [10–

18]. The nonlinear partial differential equations and systems are directly solvable

preserving the actual physics and involving much less calculations. No lineariza-

tion, perturbation or discretized methods which result in intensive computation are

necessary.

In this section, we describe the algorithm of the ADM as it applies to the diffusion

equation. We consider the equation (1.2) in operator form

Lxy = [q(x) + 2λp(x)− λ]y, (3.1)
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where Lx =
∂2

∂x2
. Assuming the inverse of the operator L−1x exists and it can con-

veniently be taken as the two fold definite integral with respect to x from 0 to x,

i.e.,

L−1x (·) =

xˆ

0

xˆ

0

(·) dx dx,

and applying the inverse operator L−1x , (3.1) yields

y(x, λ) = y(0, λ) + xyx(0, λ) + L−1x {[q(x) + 2λp(x)− λ]y}

= 1− xh+ L−1x {[q(x) + 2λp(x)− λ]y}. (3.2)

Following ADM [8], [9], we expect the decomposition of the solution into a sum of

components to be defined by the decomposition series form

y(x, λ) =
∞∑
n=0

yn(x, λ). (3.3)

Substituting the initial conditions into (3.2) identifying the zeroth component

y0(x, λ) = 1 − xh by terms arising from initial conditions, we obtain the subse-

quent components by the following recursive relationship

y0(x, λ) = 1− xh, (3.4)

yn+1(x, λ) = L−1x {[q(x) + 2λp(x)− λ]yn(x, λ)}, (3.5)

where n ≥ 0. The remaining components y1, y2, y3, . . . , etc. were computed by a

recursive scheme either directly by hand or programmed on Mathematica by using

(3.5) in four cases. Some of the symbolically computed components are as follows:

Case 1. In the case p(x) = 0 and q(x) = 0, we get

y0(x, λ) = 1− xh,

y1(x, λ) = −
(
x2

2
− hx3

6

)
λ,

y2(x, λ) =

(
x4

24
− hx5

120

)
λ2,

...
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In this manner, three components of the decomposition series were obtained of which

y(x, λ) was evaluated to have the following expansion

y(x, λ) = 1− xh−
(
x2

2
− hx3

6

)
λ+

(
x4

24
− hx5

120

)
λ2 + · · · .

Case 2. In the case p(x) = 0 and q(x) = x2, we get

y0(x, λ) = 1− xh,

y1(x, λ) =
x4

12
− hx5

20
− x2

2
λ+

1

6
hx3λ,

y2(x, λ) =
x8

672
− hx9

1440
− 7x6λ

360
+

13hx7λ

2520
+
x4λ2

24
− 1

120
hx5λ2,

...

In this manner, three components of the decomposition series were obtained of which

y(x, λ) was evaluated to have the following expansion

y(x, λ) = 1− xh+
x4

12
− hx5

20
− x2

2
λ+

1

6
hx3λ+

x8

672
− hx9

1440

− 7x6λ

360
+

13hx7λ

2520
+
x4λ2

24
− 1

120
hx5λ2 + · · · .

Case 3. In the case p(x) = x2 and q(x) = 0, we get

y0(x, λ) = 1− xh,

y1(x, λ) =

(
−x

2

2
+
hx3

6
+
x4

6
− 1

10
hx5
)
λ,

y2(x, λ) =

(
x4

24
− hx5

120
− 7x6

180
+

13hx7

1260
+

x8

168
− 1

360
hx9
)
λ2,

...

In this manner, three components of the decomposition series were obtained of which

y(x, λ) was evaluated to have the following expansion

y(x, λ) = 1− xh+

(
−x

2

2
+
hx3

6
+
x4

6
− 1

10
hx5
)
λ

+

(
x4

24
− hx5

120
− 7x6

180
+

13hx7

1260
+

x8

168
− 1

360
hx9
)
λ2 + · · · .
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Case 4. In the case p(x) = x2 and q(x) = x2, we get

y0(x, λ) = 1− xh,

y1(x, λ) =
1

20
hx5(−1− 2λ)− x2λ

2
+

1

6
hx3λ+

1

12
x4(1 + 2λ),

y2(x, λ) =
x4λ2

24
− 1

120
hx5λ2 − 7

360
x6λ(1 + 2λ)

+
13hx7λ(1 + 2λ)

2520
+

1

672
x8(1 + 2λ)2 − hx9(1 + 2λ)2

1440
,

...

In this manner, three components of the decomposition series were obtained of which

y(x, λ) was evaluated to have the following expansion

y(x, λ) = 1−xh+
1

20
hx5(−1−2λ)−x

2λ

2
+

1

6
hx3λ+

1

12
x4(1+2λ)+

x4λ2

24
− 1

120
hx5λ2

− 7

360
x6λ(1 + 2λ) +

13hx7λ(1 + 2λ)

2520
+

1

672
x8(1 + 2λ)2 − hx9(1 + 2λ)2

1440
+ · · · .

4. The Basic Idea of He’s Variational Iteration Method

The VIM was first proposed by He [19-22]. It has been shown to solve effectively,

easily and accurately a large class of nonlinear problems with approximations con-

verging rapidly to accurate solutions. He applied his method to autonomous ordinary

differential systems [23] and nonlinear equations with convolution product nonlin-

earity [24]. In several papers, VIM has been successfully applied to a wide range of

mathematical, physical and engineering problems by many authors [25-34].

The idea of VIM is constructing a correctional functional by a general Lagrange

multiplier. The multiplier in the functional should be chosen such that its correction

solution is superior to its initial approximation (trial function) and is the best within

the flexibility of the trial function; accordingly we can identify the multiplier by

variational theory. The initial approximation can be freely chosen with possible

unknowns which can be determined by imposing the boundary or initial conditions.

To clarify the basic ideas of VIM, we consider the following differential equation:

Lu+Nu = g(t), (4.1)

where L and N are linear and nonlinear operators respectively, and g(t) is the source

inhomogeneous term. According to VIM, we can write down a correction functional
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as follows

un+1(t) = un(t) +

ˆ t

0

λ1 {Lun(ξ) +Nũn(ξ)− g(ξ)} dξ, n ≥ 0, (4.2)

where λ1 is a general Lagrangian multiplier which can be identified optimally via

the variational theory. The subscript n indicates the nth approximation and ũn is

considered as a restricted variation [19-24], i.e. δũn = 0.

5. VIM Solutions

Now, we apply the variational iteration method to the diffusion problem to obtain

an explicit, uniformly valid, and totally analytic solution. In order to solve the

equation (1.2) using VIM, we first construct a correction functional, as follows

yn+1(x) = yn(x) +

ˆ x

0

λ1(s) {y′′n(s) + [λ− q(s)− 2λp(s)]ỹn} ds, n ≥ 0, (5.1)

where λ1 is Lagrange multiplier whose optimal value is found by variational theory.

Also, ỹn is chosen suitably to satisfy the restricted variation condition, i.e. δỹn = 0.

To determine the optimal value of λ1(s), we continue as follows

δyn+1(x) = δyn(x) + δ

ˆ x

0

λ1(s) {y′′n(s) + [λ− q(s)− 2λp(s)]ỹn} ds, n ≥ 0, (5.2)

which gives

δyn+1(x) = [1− λ′1(x)]δyn(x) + λ1δy
′
n(x) +

ˆ x

0

λ′′1(s)δyn(s)ds = 0. (5.3)

Hence, the stationary conditions can be obtained from equation (5.3) read as

1− λ′1(x) = 0, λ1(x) = 0, λ′′1(s)
∣∣
x=s

= 0, (5.4)

and the Lagrange multiplier is obtained as

λ1(s) = s− x. (5.5)

Finally, the iteration formula can be given as

yn+1(x) = yn(x) +

ˆ x

0

(s− x) {y′′n(s) + [λ− q(s)− 2λp(s)]yn} ds, n ≥ 0. (5.6)

We start with the initial approximation y0(x) = 1. The next iterates y1, y2, y3, · · ·
are given below respectively for three cases.
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Case 1. Let p(x) = 0 and q(x) = x2. In this case, we get the next iterates y1, y2,

y3, ... as follows

y1 = 1 +
x4

12
− x2λ

2
,

y2 = 1 +
x4

12
+

x8

672
− x2λ

2
− 7x6λ

360
+
x4λ2

24
,

y3 = 1 +
x4

12
+

x8

672
− x12

88704
− x2λ

2
− 7x6λ

360
− 211x10λ

907200
+
x4λ2

24
+

11x8λ2

10080
− x6λ3

720
,

...

Case 2. Let p(x) = x2 and q(x) = 0. In this case, we get the next iterates y1, y2,

y3, · · · as follows

y1 = 1− x2λ

2
+
x4λ

6
,

y2 = 1− x2λ

2
+
x4λ

6
+
x4λ2

24
− 7x6λ2

180
+
x8λ2

168
,

y3 = 1− x2λ

2
+
x4λ

6
+
x4λ2

24
− 7x6λ2

180
+
x8λ2

168

− x6λ3

720
+

11x8λ3

5040
− 211x10λ3

226800
− x12λ3

11088
,

...

Case 3. Let p(x) = x2 and q(x) = x2. In this case, we get the next y1, y2, · · · as

follows

y1 = 1 +
x4

12
− x2λ

2
+
x4λ

6
,

y2 = 1 +
x4

12
− x2λ

2
+
x4λ

6
+
x4λ2

24
+

7

72
x6λ(1 + 2λ)

+
1

672
x8(1 + 2λ)2 − 7

60
x6(λ+ 2λ2),

...

6. Comparison Analysis

In this section, we will compare the ADM and VIM analytic solutions in order

to confirm the efficiency of ADM. By mathematical experiments, we will give more

lively descriptions. The detailed results are shown in Table 1. In Table 1, fix h = 1.0,
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λ = 5, vary the value x, for the numerical solutions obtained by the iteration method

and decomposition method for 2 and 3 steps. From Table 1, we see that analytic

approximations (VIM and ADM) of y(x, λ) show good agreement with the numerical

ones and ADM leads to more accurate results than VIM.

x VIM VIM ADM ADM
(2 order) (3 order) (2 order) (3 order)

0.01 0.00101 0.00101 9.99664× 10−6 9.99664× 10−6

0.02 0.002039 0.0020399 0.00003997 0.000039972
0.03 0.003089 0.0030898 0.000089907 0.000089908
0.04 0.004159 0.0041597 0.00015978 0.00015978
0.05 0.005249 0.0052494 0.000249567 0.000249568
0.06 0.006359 0.0063590 0.000359246 0.000359248
0.07 0.007488 0.0074885 0.000488794 0.000488797
0.08 0.008637 0.0086377 0.000638187 0.000638191
0.09 0.009806 0.0098068 0.000807399 0.000807406
0.1 0.010995 0.0109956 0.000996407 0.000996417

Table 1. Error between VIM, ADM using 2-3 terms and exact solu-
tions for y(x, λ) when λ = 5, h = 1, p(x) = 0 and q(x) = x2.

As Figure 1 shows, a comparison is made between 3 iterates of VIM solutions, ADM

solutions and analytic solutions for the case λ = 5, h = 1, p(x) = 0 and q(x) = x2.

The results presented in Figure 1 clearly show the good accuracy of the VIM and

ADM. If we solve the equation for p(x) = x2, q(x) = 0 and p(x) = x2, q(x) = x2,

we get analogous results.

Figure 1. A comparison between VIM solutions, ADM solutions and
analytic solutions for the case λ = 5, h = 1, p(x) = 0 and q(x) = x2.
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7. Conclusion

In this paper, we obtain an explicit series solution of the diffusion equation by means

of the ADM and VIM for different cases of p(x) and q(x). We made a comparison be-

tween ADM and VIM solutions. The results of numerical examples are presented and

only a few terms are required to obtain accurate solutions with ADM. The present

study shows that ADM is more effective than VIM (See Table 1). Consequently, the

present success of the VIM and ADM for the diffusion equation verifies that these

methods are useful tools for these kind of problems in science and engineering.
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