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it is proved that the spaces p.., p. and pq are linearly isomorphic to the spaces /., ¢ and
co respectively. Afterward, a-, - and y-duals of these spaces p. and pg are computed
and their bases are consructed. Finally, matrix the classes (p. : {,,) and (p, : ¢) have been
characterized.

1. Preliminaries, background and notation

By w, we shall denote the space all real or complex valued sequences. Any vector subspace of w is called a sequence space. We

shall write /., ¢, and ¢ for the spaces of all bounded, convergent and null sequence are given by le. = q x = (x) € w: sup |x;| < oo},
k—>o0

c= {x = (x) Ew: klimxk exists} and ¢g = {x = (xx) ew: klimxk = 0}. Also by bs, cs, I1 and [, we denote the spaces of all bounded,
—$o0 —$o0

convergent, absolutely convergent and p-absolutely convergent series, respectively.

A sequence space A with a linear topology is called an K-space provided each of the maps p; : A — C defined by p; (x) = x; is continuous
for all i € N; where C denotes the set of complex field and N = {0,1,2,...}. An K-space A is called an FK- space provided A is a complete
linear metric space. An F K-space provided whose topology is normable is called a BK- space [1].

Let X, Y be any two sequence spaces and A = (a,;) be an infinite matrix of real numbers a,;, where n, k € N. Then, we write Ax = ((Ax),),
the A-transform of x, if A, (x) = Y arxx converges for each n € N. If x € X implies that Ax € Y, then we say that A defines a matrix
transformation from X into ¥ and denote itby A : X — Y. By (X : Y) we denote the class of all infinite matrices A such that A : X — Y. For
simplicity in notation, here and in what follows, the summation without limits runs from O to co.

Let F denote the collection of all finite subsets on N and K, N C F. The matrix domain X4 of an infinite matrix A in a sequence space X is
defined by

Xy ={x=(x) eEw:Ax e X} (1.1)

which is a sequence space.

The approach constructing a new sequence space by means of the matrix domain of a particular limitation method was used by authors
[2,3,4,5,6,7,8]. They introduced the sequence spaces (co)z- =g and (c)7 =t/ in [2], (co)gr = g and (¢) - = el in [3], (co)c = €p and
cc =cin[4], (lp)E, = e}, in [5], (ko) g = e, cgr = 1t and (co) g = 1y in [6], (lp)c =X, in [7] and (I,)y, in [8] where T, E", C, R’ and
N, denote the Taylor, Euler, Cesaro, Riesz and Norlund means, respectively.

Following [2, 3, 4, 5, 6, 7, 8], this way, the purpose of this paper is to introduce the new Pascal sequence spaces p.., p. and pg and derive
some results related to those sequence spaces. Furthermore, we have constructed the basis and computed the a-, - and y-duals of the spaces
D> Pc and pg. Finally, we have characterized the matrix mappings from the space p. to I, and from the space p. to c.
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2. The Pascal matrix of inverse formula and Pascal sequence spaces

Let P denote the Pascal means defined by the Pascal matrix [9] as is defined by

P=lowl={ QN ke

and the inverse of Pascal’s matrix P, = [p,] [10] is given by

_q\n—k( n n
O T e

There is some interesting properties of Pascal matrix. For example; we can form three types of matrices: symmetric, lower triangular, and
upper triangular, for any integer n > 0. The symmetric Pascal matrix of order n is defined by

. i+j—2\. .
S,,:(s,-J):( jil )1,1:1,2,....,;1. 2.2)

We can define the lower triangular Pascal matrix of order n by

i—1 s

- 0<j<i)
L, =(l;) = (171)’( , 2.3
=) { 0, (j>i) -

and the upper triangular Pascal matrix of order 7 is defined by

Iho<i<j)
U, = (u::) = (ifl WSS . 2.4
=t ={ G55 ey

We notice that U,, = (L,,)T, for any positive integer n.

i. Let S, be the symmetric Pascal matrix of order n defined by (2.1), L,, be the lower triangular Pascal matrix of order n defined by (2.3), and
U, be the upper triangular Pascal matrix of order n defined by (2.4), then S,, = L,U,, and det(S,) =1 [11].

ii. Let A and B be n x n matrices. We say that A is similar to B if there is an invertible n x n matrix P such that P~'AP = B [12].

iii. Let S, be the symmetric Pascal matrix of order n defined by (2.2), then S, is similar to its inverse S,; L.

iv. Let L, be the lower triangular Pascal matrix of order n defined by (2.3), then L, ' = ((—1)/J; ) [13].

We wish to introduce the Pascal sequence spaces p.., pe and pg, as the set of all sequences such that P-transforms of them are in the spaces

I, ¢ and cg, respectively, that is
Z " Xp| <o o,
Eo\n— k

. <z n .
pe = {x (xx) Ew: nhjc}o];)(nfk)xk ex1sts}

pm:{x=(xk)€w:sup
n

and

o on
Po= {x:(xk) ewznh—IBo];)(n—k)xk:O}'

With the notation of (1.1), we may redefine the spaces p-, p. and pg as follows:

Peo = (l) P, pe = (¢)p and po = (co)p- (2.5)

If A is an normed or paranormed sequence space, then matrix domain Ap is called an Pascal sequence space. We define the sequence y = (y,)
which will be frequently used, as the P-transform of a sequence x = (x,) i.e.,
< n
Yn = Z (n—k)xk’ (neN). (2.6)

k=0

It can be shown easily that p.., p. and p are linear and normed spaces by the following norm:
2l 5, = llxllp, = llxell ., = NPl - @7

Theorem 2.1. The sequence spaces p«, p. and py endowed with the norm (2.7) are Banach spaces.



Fundamental Journal of Mathematics and Applications 63

Proof. Let sequence {x'} = {xg) ,xgt),x(zt>, ...} at pe a Cauchy sequence for every fixed r € N. Then, there exists an ny = ng(€) for every
€ > 0 such that ||x' —x"||., < & for all ¢, r > ng. Hence, |P (x' —x")| < € for all #, r > ng and for each k € N.

Therefore, {Px}} = {(Pxo) o (le)k, (sz) -} is a Cauchy sequence in the set of complex numbers C. Since C is complete, it is
convergent say tlLr?a (Px'), = (Px); and nlgnm (Px™), = (Px),, for each k € N. Hence, we have

. ; _ oy N
Jim [Py — x| = |P (x; —xi) — P (' —x)| < & forall n > ng.

This implies that ||x' —x™|| — oo for ¢, m — co. Now, we should that x € p... We have
So\n—k k

< sup |P (xf, —x¢) | -+ sup | Pxi |
n n

n

¥ (")

[1¥llee = [1Px[]o = sup
n k=0

= sup
n

< W =l + [P <o

for t, k € N. This implies that x = (x;) € pe. Thus, p. the space is a Banach space with the norm (2.7). It can be shown that py and p,
are closed subspaces of p., which leads us to the consequence that the spaces pg and p. are also the Banach spaces with the norm (2.7).
Furthermore, since p- is a Banach space with continuous coordinates, i.e., ||P (x?< fx) Hm — oo imples ’P (x;{ — xk) | —ooforall k € N, itis
also a BK-space.

Theorem 2.2. The sequence spaces p«, p. and pg are linearly isomorphic to the spaces lw, ¢ and cq respectively, i.e Poo = leo, pc = ¢ and
Po = co.

Proof. To prove the fact pg = ¢, we should show the existence of a linear bijection between the spaces pg and cp. Consider the transformation
T defined, with the notation (2.6), from pg to cg. The linearity of T is clear. Further, it is trivial that x = 0 whenever Tx = 0 and hence T is
injective.

Let y € cp. We define the sequence x = (x) as follows:

Then

) ) n n k i k )
Jim (Px), = lim ), (nfk) L1 (kfi>yi*»}59°y" =0

k=0
Thus, we have that x € pg. In addition, note that

5 () ne ()

k=0 i=0

= sup |yn| = [|yll,, < oo
neN

[|x[] ,, = sup
po neN

Consequently, T is surjective and is norm preserving. Hence, T is a linear bijection which therefore says us that the spaces pg to ¢ are
linearly isomorphic. In the same way, it can be shown that p. and p.. are linearly isomorphic to ¢ and /., respectively, and so we omit the
detail. O

Before giving the basis of of the sequence spaces p. and pg, we define the Schauder basis. A sequence (b,), < in a normed sequence space
A is called a Schauder basis (or briefly basis) [14], if for every x € A there is a unique sequence (0,) of scalars such that

l}grgo [lx — (cpxo + a1 xy + ... + Cyxy) || = 0.
In the following theorem, we shall give the Schauder basis for the spaces p. and py.
Theorem 2.3. Let k € N a fixed natural number and pk) = {bf,” }nEN where
b;(qk) = { (0_’1)n—k (((z)zg) n(;;c)k
n—k)> W=

Then the following assertions are true:
i. The sequence {bﬁ,k)} is a basis for the space pg and every x € py has a unique representation of the from x =Y, lkb(k) where
M = (Px) forall k € N.

ii. The set {e,b(()),b(l),...,b(k>,...} is a basis for the space p. and every x € p. has a unique representation of the form x = le +
Y A —1)b®) where | = lim (Px); and Ay = (Px)y for all k € N,
300



64 Fundamental Journal of Mathematics and Applications

3. The a—, B — and y— duals of the spaces p.., p. and pg

In this section, we state and prove the theorems determining the o-, B- and y-duals of the sequence spaces pe, p. and pg. For the sequence
spaces X and Y define the set S(X,Y) by

SX,Y)={z=(zx) ew:xz= (xyz;) €Y forallx e X}.

The a-, B- and y-duals of the sequence spaces A, which are respectively denoted by A%, AP and A7 are defined by Garling [15] , by
A =S(A L), AP = S(A,cs) and AY = S(A,bs). We shall begin with the Lemmas due to Stieglitz and Tietz [16], which are needed in the
proof of the Theorems 3.4-3.6.

Lemma 3.1. A€ (co:1;) = (c:1y) ifand only if

sup Y| Y ap| < oo 3.1
KeF n |kek
Lemma 3.2. A € (¢g : ¢) if and only if
sup Y. lan| < oo, (3.2)
n k
lim a, = o, (k € N). (3.3)
n—soo

Lemma 3.3. A € (c¢ : l») if and only if (3.2) holds.

Theorem 3.4. The a— dual of the sequence spaces p, pc and py is the set

D= {a(ak) ew:supy Z(-l)“*k<nfk)an

KeF n |kek

<w}.

Proof. Let a = (a,) € w and consider the matrix B whose rows are the products of the rows of the matrix P~! and sequence a = (a,).
Bearing in mind the relation (2.3), we immediately derive that

n

apXpy = Z (_])n—k( i )anyk = Z bnkyk = (By)n B (” € N) . 34
n—k =

k=0

Therefore by (3.4) we observe that that ax = (apx,) € [; whenever x € pe, pe and py if and only if By € I; whenever y € I, ¢, and ¢g. Then,
we derive by Lemma 3.1 that

n
sup —1)rk < ) an| < oo
KGF; ,E(( n—k)"
which yields the consequences that {pw}a = {pc}a = {po}a =D. O

Theorem 3.5. Consider the sets Dy, D, and D3 defined as follows:

n

Dl{a(ak)ew: supZ

neN =0

YL o

i=k

<w},

o e .
D, = {a =(ar) ew: Z(_])l k(i_k)ai exists for each k € N},

i=k
and
R ik 1 .
D3 = {a = (ag) ew: "lgr‘}"/;);{(_l) (i—k)ai exzsts} .
Then {po}ﬁ =D;NDy, {pC}B =D;NDyN D3 and {pm}ﬁ =D, NDs.

Proof. We give the proof only for the space pg. Since the proof may be given by a similar way for the spaces p. and p.., we omit it. Consider
the equation
n n n ik i n n ik i
Y ax=Y [Y.(-1) ( k>yi a=Y [Y(-1) < k)di Ve =(Dy),» (3.5)
=0 |i=k b= =0 |i=k L=

k=0 i i

where



Fundamental Journal of Mathematics and Applications 65

D:(dnk):{ = "E)_l)l (2ar O<k<m o pen). (3.6)

Thus, we deduce from Lemma 3.2 with (3.5) that ax = (axx;) € cs whenever x = (x;) € po if and only if Dy € ¢ whenever y = (y;) €
co- Therefore, using relations (3.2) and (3.3), we conclude that lim,,_,. d,, exists fo each k € N and

(i)

which shows that {po}ﬁ =DiND;. O

n

sup Z

neNg=0

aj| < oo

Theorem 3.6. The Y— dual of the sequence spaces pe, pe and pg are Dj.

Proof. We give the proof only for the space pg. Consider the equality

n
Z agxy
k=0

IN
»M:

Taking supremum over n € N, we get

n
Z aXy

k=0

sup
neN

A
w
o
o
RS
™

IN
=
=
S
w2
3 &
s}
VYOS

This means that a = (a;) € {po}". Hence,

Dy C {po}". 3.7

Conversely, let a = (a;) € {po}" and x € po. Then one can easily see that

<kZO Lfk(l)"-k (l._" k) a,} yk) el

whenever ax = (ayx;) € bs. This implies that the matrix D given at the (3.6) is in the class (cg : I ). Hence, the condition

is satisfied, which implies that a = (ay) € Dy. In other words,

{po}” C Dy. (3.8)

Therefore, by combining inclusions (3.7) and (3.8), we estahlish that the y-dual of the sequence spaces pg is Dj, which completes the
proof. O
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4. Some matrix mappings related to Pascal sequence spaces

Lemma 4.1. [16, p. 57] The matrix mappings between BK-spaces are continuous.
Lemma4.2. [16, p. 128] A€ (c:1,) ifand only if

P
oo 1< p<oo @.1)

sup Z

KeF n

Z An

kekK

Theorem 4.3. A € ( pe:l p) if and only if the following conditions are satisfied: For 1 < p < oo,

n . p
k(! | <oo, 4.2
TR @
C ikf 0 ,
Z(—l) i ay; exists for all k, n € N, 4.3)
i=k 1=
- ik 1
Z Z (=1) ) ani converges for alln € N, 4.4)
I i=k i—k
m m ik l
Su[pilz Z(_I)H (i*k)am‘ <o,neN, 4.5)
meN k=0 |i=k
and for p = oo, conditions (4.3) and (4.5) are satisfied and
n n ik l
1)~ i o, 4.6
e R < “o

Proof. Let 1 < p < +o0. Assume that conditions (4.2) - (4.6) are satisfied and take any x € p,. Then (a,;) € (pC)B for all k, n € N, which
implies that Ax exists. We define the matrix G = (g,,x) with

8nk = Zn‘,(—l)';k (iik) ani

i=k

for all k,n € N. Then, since condition (4.1) is satisfied for the matrix G, we have G € (c ) p). Now consider the following equality obtained
from the s. th partial sum of the series Y a,;xy:

S S S . l
Zankxk: Z Z(—l)’ k<, k)a,liyk,m,neN. 4.7
k=0 k=0i=k 1=
Therefore, we derive from (4.7) as s — oo that
oo o n - ;
Y auxe=Y Y (—1)* ( k) anivi, n € N. (4.8)
k=0 k=0i=k =
Whence taking /,-norm we get
lAx],, = |Gyll), <. “9)

This means that A € (p. : [). Now let p = . Assume that conditions (4.2) - (4.6) are satisfied and take any x € pc. Then (a,x) € (pC)ﬁ for
all k, n € N, which implies that Ax exists. Whence taking /.-norm (4.8)

Zgnk
k

[[Ax[];,, = sup < lyll,, sup Y lga] < .
neN neN

Then, we have A € (p : lo).
Conversely, assume that A € ( pe:l p) . Then, since p. and I, are BK-spaces, it follows from Lemma 4 that there exists a real constant K > 0
such that

l[Ax]];, = Klx]|, (4.10)
for all x € p,. Since inequality (4.10) also holds for the sequence

x=(x) =Y b® e p,
ker
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where

(0<n<k)
- (nfk)’ (n >k

)
n

= 6" }:{ (—1())

for every fixed k € N. We have

p

<=

<K |xll,, =K,

lAxll;, = [Z

n

LY, Ja

keF i=k

which shows the necessity of (4.2). O

Theorem 4.4. A € (p. : ¢) if and only if conditions (4.3), (4.5) and (4.6) are satisfied,
n .
. i—k i o
,}L’EQ;(_l)l <iik)am-f(xkforallk€N 4.11)
and
: - l k i
Ji&;; ( k)am- =a. (4.12)

Proof. Assume that A satisfies conditions (4.3), (4.5), (4.6), (4.11) and (4.12). Let us take an arbitrary an x = (x;) in p, such that x; — [ as
k — oo. Then Ax exists, and it is trivial that the sequence y = (y) associated with the sequence x = (x;) by relation (2.3) belongs to ¢ and is
such that y; — [ as k — oo. At this stage, it follows from (4.11) and (4.6) that

Lled<u® E () Jan

nenN j
for every n € N. This yield o, € [;. Considering (4.8), we write

L= ;é(—w"*" (ijk)am - D+ Y (-1 (ifk) @i (4.13)

k i=k

< oo

In this situation, letting n — oo in (4.13), we establish that the first term on the right-hand side tends to Y o (yx — ) by (4.6) and(4.11), and
the second term tends to /o by (4.11). Taking these facts into account, we deduce from (4.13) as n — oo that

(Ax), = Y o (e — 1) + 1ot
3

which shows that A € (p, : ¢).
Conversely, assume that A € (p : ¢). Then, since the inclusion ¢ C I holds the necessity of (4.3), (4.5) and (4.6) is immediately obtained

from
_ i
‘ (i - k) i

To prove the necessity of (4.11) consider the sequence x = pk) = {bﬁ,k)} N in p.. Where
ne

< oo,

(B 0(0<n<k)
= {bn }‘{< (). (1= k

for every fixed k € N. Since Ax exists and belongs to ¢ for every x € p., one can easily see that

ApH) = {i{(l)ik (i _l k) am’}
i= neN

for each k € N, which yields the necessity of (4.11).
Similarly, by setting x = e = (1,1,...) in (4.8), we obtain

(e (L]

neN

which belongs to the space ¢, and this shows the necessity of (4.12). This step conludes the proof.
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