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Abstract

In this paper, we introduce a new subclass fﬂ% (@) of analytic and bi-univalent functions in the open unit disk U. For functions belonging
to this class, we obtain initial coefficient bounds. Our results generalize and improve some earlier results in the literature.
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1. Introduction
Let R = (—oo,00) be the set of real numbers, C be the set of complex numbers and
N:={1,2,3,...} =Np\ {0}

be the set of positive integers.

Let .o/ denote the class of all functions of the form

f@)=z2+Y ad (1.1)
k=2

which are analytic in the open unit disk

U={z:z€C and |[7]<1}.

We also denote by . the class of all functions in the normalized analytic function class 7 which are univalent in U.

For two functions f and g, analytic in U, we say that the function f is subordinate to g in U, and write
f@) <) (z€D),

if there exists a Schwarz function @, which is analytic in U with

®(0)=0  and lo(z)] <1 (z€U)

such that

f@)=g(0@) ().

Indeed, it is known that

f(@)<¢(@) (z€U)=f(0)=¢g(0) and f(U)Cg(U).

Furthermore, if the function g is univalent in U, then we have the following equivalence

f(@)<¢(@) (€)= f(0)=¢g(0) and f(U)Cg(U).
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Since univalent functions are one-to-one, they are invertible and the inverse functions need not be defined on the entire unit disk U. In fact,
the Koebe one-quarter theorem [7] ensures that the image of U under every univalent function f € . contains a disk of radius 1/4. Thus
every function f € & has an inverse f~!, which is defined by

T (f@)=z (zeD)
and

f(f‘l (w)> =w <|w\ <ro(f); ro(f) > i) .

In fact, the inverse function £~ is given by
F! (w) = W —aw? + <2a% —a3) W — <5ag —Sapa; +a4) W (1.2)

A function f € 7 is said to be bi-univalent in U if both f and f~! are univalent in U. Let X denote the class of bi-univalent functions in U
given by (1.1). For a brief history and interesting examples of functions in the class X, see [13] (see also [2]). In fact, the aforecited work of
Srivastava et al. [13] essentially revived the investigation of various subclasses of the bi-univalent function class X in recent years; it was
followed by such works as those by Xu et al. [14, 15], and others (see, for example, [4, 5, 6, 8,9, 12, 17, 18]).

Let ¢ be an analytic and univalent function with positive real part in U with ¢ (0) = 1, ¢/ (0) > 0 and ¢ maps the unit disk U onto a region
starlike with respect to 1, and symmetric with respect to the real axis. The Taylor’s series expansion of such function is of the form

@(2)=1+B1z+By? + B3z + - (1.3)
where all coefficients are real and By > 0. Throughout this paper we assume that the function ¢ satisfies the above conditions.

Let u(z) and v (z) be two analytic functions in the unit disk U with

u(0)=v(0)=0 and max {|u(2)|,|v(2)|} < 1.

We suppose also that

u(@)=piz+p+p+ (z€l) (1.4)
and
v(2) = qiz+ @+ g+ (zel). 15)

We observe that

RS S ES A VRS B VA RS B (1.6)

By simple computations, we have

¢ (u(z)) =1+Bipi1z+ <BIP2+BZP%>ZZ+‘“ (ze ) (1.7)
and
o(v(w) = 1+Bigw+ (Bigz+Bagh ) Wi+ (we). (1.8)

Recently, Babalola [3] defined the class %) (B) of A-pseudo-starlike functions of order 3 as follows:

Suppose 0 < f < 1 and A > 1 is real. A function f € o7 given by (1.1) belongs to the class £} (B) of A-pseudo-starlike functions of order
B in the unit disk U if and only if

/ A
m(vﬂ@)ﬁ ceu).

Babalola [3] proved that all pseudo-starlike functions are Bazilevi¢ of type 1 — 1/A , order 8 1/2 and univalent in U.

Motivated by the abovementioned works, we define the following subclass of function class X.

Definition 1.1. For A > 1, a function f € ¥ given by (1.1) is said to be in the class fﬂ% (@) if the following conditions are satisfied:

/ A
L o0 e
and

/ A
MEE (o) (weD),

where the function g = £~ is defined by (1.2).
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Remark 1.2. In the following special cases of Definition 1.1, we show how the class of analytic bi-univalent functions £ %’% (@) for
suitable choices of A and @ lead to certain known classes of analytic bi-univalent functions studied earlier in the literature.

(i) For A = 1, we get the class £ B (¢) = % Tx (9) of Ma-Minda bi-starlike functions introduced and studied by Ali et al. [1].

(ii) If we let

1+z2

a
: ) =14+2az+20%7+--- (0<a<1,zel),
—2Z

0(0)i=9al) = (
then the class £ %% (@) reduces to the class denoted by £ %‘% (&) which is the subclass of the functions f € X satisfying
A ’ A
2(f'(2)) w(g'(w)) on
arg | ———— arg | ——— || < =,
( Q) 5v) 2

where the function g = f~! is defined by (1.2).
(iii) If we let

an
< — d
2 an

0@ =05 = U -per20-p)Ze . 0<p<izeD),

then the class £ %% (@) reduces to the class denoted by £ By, (A, B) which is the subclass of the functions f € X satisfying
/ A ’ A
% [ 2 @) B ad W w(g'(w)) - B,
1) g(w)

where the function g = £~ is defined by (1.2).

The classes 3,93% (a) and £ By (A,B) are introduced and studied by Joshi et al. [10]. In the special case A = 1, we get the classes
LB (o) = 5 (o] and LAy (1,B) = S5 (B) introduced and studied by Brannan and Taha [2].

In order to derive our main results, we need the following lemma.
Lemma 1.3. [16] Let k,l € R and z1,z5 € C. If|z1| < R and |zp| < R, then
2RIkl [k =1

|(k+1)z1+ (k—=1)z2| <
2R|1] |kl < 1]

2. Main Results

Theorem 2.1. Let the function f (z) given by the Taylor-Maclaurin series expansion (1.1) be in the function class £ @% (p)and A > 1.
Then

B3
< 1 2.1
a2|_\/(2/1—1)[(2&—1)31+|)LB%—(2/1—1)32H @b
and
(2/13_%1)2 , Bi= (23%17—11)2
\a3| < . . . 2.2)
@A-1) B B A1)
(1 B (3/1—1)31) (2/1—1)[(21—I)BH—IMB%—(Z?L—I)BZH tar o Bz

Proof. Let f € ,,2”33% () and g = f~! be defined by (1.2). Then there are analytic functions u,v : U — U, with u (0) = v(0) = 0, such that

/ A
Z(J;((ZZ))) —o(u(2)) (2.3)
and

’ A
ELI o), @4

It follows from (1.7), (1.8), (2.3) and (2.4) that

a = Bip (2.5)
5 = Bip+Bapt 2.6)
2A—1)ay = Biqq 2.7)

(2/12—4/1+1)a

[STS)

J’_
—~ o~~~

w

>

I

—_
2 Z

Q

[\S1S)

a3 = Big+Bagi. (2.3)

(2/12+2/1—1)a
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From (2.5) and (2.7), we find that
P1=—q1 (2.9
and
20012 =B} (p+at). (2.10)
Also from (2.6), (2.8) and (2.10), we have
B} (p2+42)
2 1
= . 2.11
T 2QA 1) [AB = (2A—1)B,] @10
In view of (2.9) and (2.11), together with (1.6), we get
e B0InP) .
C = A ) AB - A- DBy '
Substituting (2.5) in (2.12) we obtain
Bi
< , 2.13
a2 < 2A—1)[(22 —1)By +|AB? — (24— 1) By]] @13
which is desired inequality (2.1).
On the other hand, by subtracting (2.8) from (2.6) and a computation using (2.9) finally lead to
Bi(p2—q2)
2, Bilp—q
= —_— 2.14
BEGT S @19
From (1.6), (2.5), (2.9) and (2.14), it follows that
2 By
< -
las] < lao|"+ 26A-1) (Ip2+1g21)
By 2
< 2 1-
< ol + 5 (1-1mP)
@A—1) 2, B
= | e . 2.15
( Ga-1B ) @ i 2.15)
Substituting (2.5) and (2.13) in (2.15) we obtain the desired inequality (2.2). O

Remark 2.2. Theorem 2.1 is an improvement of the estimates obtained by Mazi and Altinkaya [11, Corollary 5].

If we take A = 1 in Theorem 2.1, then we have the following Corollary 1.

Corollary 1. Let the function f(z) given by the Taylor-Maclaurin series expansion (1.1) be in the function class .¥ 7'y (¢) . Then

B{\/B
las| < __PIvoelL
\/B1 +|B =By
and
B% ’ Bl S%
las| <
_1)_ B B 1
(1 231) Bi+|B3—B,| +t2 . Biz;

Remark 2.3. Corollary 1 is an improvement of the estimates obtained by Mazi and Altinkaya [11, Corollary 4].

If we consider the function @, defined in Remark 1.2 (ii) , in Theorem 2.1, then we get the following consequence.

Corollary 2. Let the function f (z) given by the Taylor-Maclaurin series expansion (1.1) be in the function class . %’% (o) and A > 1. Then

] < 2a
- -1+«
VCA-1)2A - 1+a)
and
4o (2A—1)%
BTy o 0<asETy
laz| <
(1_ (2A—1)? ) 402 + 20 2A-1)* <a<l
1GA-a ) CA—D2i-1+a) " 32-1 = 203i-1) =% =
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Remark 2.4. Note that the coefficient estimates on |az| in Corollary 2 is an improvement of the estimate obtained by Joshi et al. [10,
Theorem 1].

If we take A = 1 in Corollary 2, then we get the following consequence.

Corollary 3. Let the function f (z) given by the Taylor-Maclaurin series expansion (1.1) be in the function class .5 [o] . Then

20
laz| <
Vi+a
and
40> |, O<a<i
laz| <
2
X i<ax<l

If we consider the function ¢g, defined in Remark 1.2 (iii) , in Theorem 2.1, then we get the following consequence.

Corollary 4. Let the function f (z) given by the Taylor-Maclaurin series expansion (1.1) be in the function class . %y (A,) and A > 1.
Then

‘a2| < 2(1 _B)
T V2A-1)2A—1+[2AB—1])
and
2A-1)° 4(1-B)? 2(1-B 24-1)?
(1 - 2(35171)(1113)) (2%1)(23712\2/1;371\) +34R . 0<p<i- émfi)
sl = -y’ (2A-1)°
4(1— 2A-1
(22—1)? =36 < p<1

Remark 2.5. Note that Corollary 4 is an improvement of the estimates obtained by Joshi et al. [10, Theorem 2].

If we take A = 1 in Corollary 4, then we get the following consequence.

Corollary 5. Let the function f (z) given by the Taylor-Maclaurin series expansion (1.1) be in the function class .3 (8) . Then

2(0-B) , 0<B<;

2l <0 g |
\/ﬁ ) 2 S ﬁ <1
and
3-8 0<B<i
2 ) = 2
<] BB 4opos
41-B)? , 3<Bp<i
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