
MJEN MANAS Journal of Engineering 

http://journals.manas.edu.kg 

 

MJEN 1 (1) (2013) 23–32 

 

 

 
 

Fixed Point Iteration Method 
 

Mehmet Karakaş 
Sakarya University Vocational School of Sakarya 54100, Sakarya / TURKEY 

 

Received:01.05.2013; Reviewed:10.06.2013; Accepted:23.09.2013 

 
Abstract We discuss the problem of finding approximate solutions of the equation  

0)( xf  (1) 

In some cases it is possible to find the exact roots of the equation (1) for example when 
)(xf is a  quadratic on cubic polynomial otherwise, in general, is interested in finding 

approximate solutions using some numerical methods. Here, we will discuss a  method 

called fixed point iteration method and a  particular case of this method called Newton’s 

method 
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1. INTRODUCTION 

In this section we consider methods for determining the solution to an equation expressed, for 

some functions g .in the form 

xxg )(  (2) 

A solution to such an equation is said to be a  fixed point of the function g . Let’s we found a 

fixed point for any given g. Then every root finding problem could also be solved for example. 

The root finding problem 0)( xf  has solutions that correspond precisely to the fixed points of 

xxg )(  when )()( xfxxg  . The first task, then, is to decide when a function will have a 

fixed point and how the fixed points can be determined. (In numerical analysis, "determined" 

generally means approximated to a sufficient degree of accuracy.) 

 

EXAMPLE 1. 

(a) The function g ( x ) = x , 0 1 x  has a fixed point at each x  in  1,0 . 

(b) The function g  ( x ) = sinx  has exactly two fixed points in  1,0 . x  = 0 and x  

= 1. (see figure 1.1) 
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Figure 1.1. 

The following theorem gives sufficient conditions for the existence and uniqueness of a  fixed 

point. 

Theorem 1.1. 

If g   ba,  and  baxg ,)(  . then g  has a fixed point in  ba, . Further, suppose g  ( x ) 

exists on  ba,  and then a positive constant k  < 1 exists with  

(1.1) 1)(  kxg  for all x  ),( ba . 

Then g has a unique fixed point p in  ba, . (see figure 1.1) 
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Figure 1.1. 

Proof: if )(ag = a  or bbg )( , the existence of a  fixed point is obvious. Suppose not; then it 

must be true that )(ag > a  and bbg )( . Decline xxgxh  )()( . Then his continuous on 

],[ ba  and  

0)()(,0)()(  bbgbhaagah  

The intermediate value theorem implies that there exists ),( bap  for which 0)( ph  thus, 

0)(  ppg  and p is a fixed point of g. 

Suppose in addition that inequality (1.1) holds and that p  and q  are both fixed points in ],[ ba  

with p  .q  by the mean value theorem a number   exists between p  and q . And hence in 

],[ ba with. 

qp   = )()( qgpg   = )( fg   qp  qpk  < qp   

Which is a contradiction this contradiction must come from the only supposition p q .hence 

p  = q  and the fixed point in ],[ ba  is unique 

 

EXAMPLE 2. 

( a ) Let )(xg = (
2x -1) /3 on [-1, 1] using the extreme value theorem, it is easy to show that the 

absolute minimum or g  occurs at x  = 0 and 
3

1
)0( g . Similarly. The absolute maximum of g 

occurs at x  = 1 and has the value g  1 = 0.moreover. g  is continuous and  

)(xg   = 
3

2

3

2


x  for all  1,1x . 

So g  satisfies the hypotheses of theorem 1.1 and has a  unique fixed in [-1, 1].  

In this example the unique fixed point p  in the interval [-1, 1] can be determined exactly. If  

)(pgP   = 
3

12 p
, then 0132  pp  

Which by the quadratic Formula implies that? 

2

133
p . 
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Figure 1.2. 

 

That g also has a unique fixed point p  = ( 3 + )13( / 2 for interval [3,4] forever 5)4( g  and 

sog :1
3

1
)4(   g  does not satisfy their hypotheses of theorem 1.1 this shows that the 

hypotheses of theorem 1.1 sufficient guarantee a  unique fixed point, but are not necessary. (see 

figure 1.2). 

)(xG = 
x3 . since ]1.0[.03ln3)( onxg x   , the function this decreasing [0,1] hence g  (1) 

= .10)0(1)(
3

1
 xforgxg  this for x [0,1] )(xg   1,0  therefore, g  has a  fixed 

point in [0,1] since 

g  (0) = - in 3 = -1.098612289 

)(xf  1 on [0, 1] theorem 1.1 cannot be used determinant unequation forever g  is decreasing 

so it is clear that the fixed point must the unique (see figure 1.3) 
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Figure 1.3. 

 

Approximate point of a  function g ,we choose an initial information p  and sequence 
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Theorem 1.2 

)()(lim)(limlim 11 pgpgpgpp nnn    

n   n   n   

and a solution to )(xgx  is obtained this technique is called fixed – point or functional 

iteration the procedure is detailed in algorithm 1.2 and described in figure 1.4 
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FIXED – POINT ALGORITHM 1 

To find a  solution to )(pgp   given an initial approximation :0p INPUT initial 

approximation ;0p tolerance TOL; maximum number of iterations no: OUTPUT approximate 

solution p  or message failure. 

Step 1 set i = 1. 

Step 2 white i   N0 

Step 3 set gp   .0p  ( compare p.) 

Step 4 if TOLpp  0  then 
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OUTPUT (P), (Procedure completed successfully) 

STOP. 

Step 5 set i = i + 1. 

Step 6 set 0p = p. (Update 0p ) 

Step 7 OUTPUT (Method failed after 
0N  iterations

00 NN  ; 

(Procedure completed unsuccessfully.) 

STOP. 

To illustrate the technique of functional iteration consider the following example. 

 

 

EXAMPLE 3. 

a) Let us take the problem given where )2(
7

1
)( 3  xxg . Then ]1,0[]1,0[: g  and 

7

3
)(, xg  for all ]1,0[x . Home by the previous theorem sequence nP  defined by the process 

)2(
7

1 3

1  nn PP  converges to a root of 0273  xx  

b) Consider Rf ]2,0[:  defined by 5

1

)1()( xxf  . Observe that f  maps [0, 2] onto 

itself. Moreover 1
5

1
)(, xf  for ]2,0[x . By the previous theorem the sequence ( nP ) 

defined by 
5/1

1 )1( nn PP   converges to a root of 012  xx in the interval [0,2] 

In practice, it is often difficult to check the condition ]),[],([ babaf  given in the previous 

theorem. We now present a variant of theorem. 

Theorem 1.2. (Fixed point theorem) let  bag ,  and suppose that    baxg ,  for all x  in  

 ba, . further, 

Suppose g   exists on  ba,  with  

  kxg  < 1 for all  bax ,  

If 0p  is any number in  ba,  then the sequence defined by 

 1 nn pgp  .1n  

Converges to the unique fixed point p  in  ba,  

Proof by theorem 1.1 a unique fixed point exist in  ba,  since g  maps  ba,  into itself the 

sequence 


0}{ nnp  is defined for all 0n  and  bapn ,  for all n. Using inequality and the 

mean value theorem. 

      .1 11 ppkppgpgpgpp nnnn    

Where  ba,  applying inequality )3.1(  inductively gives: 

........ 02

2

1 ppkppkppkpp n

nnn    

Since ,1k  

0limlim 0  ppkpp n

n  

n  n  
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and 


0}{ nnp  converges to p . 

Corollary 1.3 If g  satisfies the hypotheses of theorem 1.2 a  bound for the error involve in using 

np  to apporoximate p is given by. 

 00 ,max pbapkpp n

n   for all n .1  

Proof from inequality, 

 ,,max 000 pbapkppkpp nn

n   

Since  .,bap  

Corollary 1.4 If g satisfies the hypotheses of theorem 1.2, then 

10
1

pp
k

k
pp

n

n 


  for all 1n  

Proof for 1n  the procedure used in the proof of theorem 1.2 implies that 

    01111 .... ppkppkpgpgpp nnnnnnn    

Thus, for m > 1n  

nnmmmnm ppppppp   111 ...  

nnmmmm pppppp   1211 ....  

0101

2

01

1 ... ppkppkppk nmm  
 

=   01

2 1....1 ppkkkk nmn  
 

By theorem 1.2, lim. ppm  so 

m  

01

0

01
1

lim pp
k

k
ppkpppp

n

p

pn

nmn k 


 




 

m  

Both corollaries relate the rate of convergence to the bound k on the first derivate it is clear that 

the rate of convergence depends on the factor  kk n 1  and that the smaller k  can be made the 

faster the convergence the convergence may be very slow if k  is close to 1.In the following 

example the fixed-point methods in example 3 are reconsidered in light of the results described in 

theorem 1.2. 

 

EXAMPLE 4.  

(a) When     1,104 1

23

1  xgxxxxg  xx 83 2  . Then is no interval  ba,  containing 

p  for which   11  xg  though theorem (1.2) does not guarantee that the method must fail for 

this choice of g , there is no reason to expect convergence. 

(b) With      2/1

2 4/10 xxxg  , we can see that 2p  does not map [1,5] into [1,2] and the 

sequence 


0}{ nnp  is not defined with p =1.5 moreover there is no interval containing such that 

  ,12  xg  since   4.32  pg  

(c) for the function     2/13

3 10
2

1
xxg    
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    010
4

3 2/132

3 


xxxg  on [1,2], 

So g  is strictly decreasing on [1,2] however,   ,12.223 g  so inequality (1.2) does not hold on 

[1,2].A closer examination of the sequence 


00}{ np  starting with 5.10 p  will show   03  xg  

and g  is strictly decreasing but additionally, 

      5.115.128.11 333  gxgg  

For all  5.1,1x  this shows that 3g  maps the interval [1,1.5] into itself. Since it is also true that 

    66.05.133  gxg  on this interval, theorem 1.2 configures the convergence which we 

were already aware  

(c) for   ,
4

10
2/1

4 











x
xg  

 
 

15.0
510

5

)4(10

5
2/32/34 






x
xg  for all [1.2] 

The bound on the magnitude  xg4
  is much smaller than the bound on the magnitude of  xg3

  

which explains the more rapid convergence using 4g  the other part of example 3 can be handled 

in a similar manner. 

 

REMARK: If g is invertible then P is a fixed point of g  if and only if q is a fixed point 

of 
1g , in view of this fact, sometimes we can apply the fixed point iteration method for 

1g  

instead of g .For understanding, consider 213)(  xxg then 3)(, xg  for all x . So the fixed 

point iteration method may not work. However, 7
3

1
);(1  xxg  and in this case 

3

1
)()( ,1  xg  

for all x . 

 

 

REFERANCES 

[1] Aho A.V., Hopcroft J.E. and Ullman J.D. (1974) The desing and analysis of computer 

algoritdms addıson Wesley.reading mass. 470 pp. Qa76.6.A.36 

[2] Ames W.F (1977) Numerial methods for partial differential equations (second 

edition).Academic pres. New York: 365 pp. QA374 A46 

[3] Bailey N.I.J (1967) The mathematical approach to bıology and medicine john 

wiley&sons london: 296 pp. QH324 B28 

[4] Bailey N.T.J (1957) The mathematical theory of epidemics c.griffin.london: 194 pp. 

RA652.B3 

[5] Bailey P.B., Shampine L.F and Waltman P.E. (1968) Nonlinear two-point boyndary talue 

problems academic pres New York:171 pp. QA372 B27 

[6] Bartle R (1976) the elements of real analsysis (second edition) John wiley&sons New 

York: 480 pp. QA300.B29 

[7] Bekker R.G. (1969) Introduction to terrain vehicle systems. University of Michigan pres 

An Arbor.Mich: 846 pp. TL243.B39 



 

31 
MJEN  Manas Journal of Engineering © 2013 

 

[8] Barnadelli H. (1941) “Population Waves” journal of the Burma Research society: 31, 1-

18 

[9] Birkhoff G. and C.De Boor (1964) “Error bounds for spline interpolation” Journal of 

mathematics and mechanics 13.827-836 

[10] Birkhoff G. and Lynch R.E. (1984) Numerical solution of elliptic problems SIAM 

publications Philadelphia. Pa: 320 pp. QA374.B57 

[11] Birkhoff G. and Rota G. (1978) Ordinary differential equations.john wiley&sons New 

York: 342 pp. QA372.B58 

[12] Bracewel R. (1978) The fourier transform and its application (second edition). McGaw 

Hill.New York: 444 pp. QA403.5.B7 

[13] Brent R. (1973) Algorithms for munimuzation without derivatives. prentice-hall. 

Englewood cliffs.n.j. 195 pp. QA403.5.B7 

[14] Brigham E.O. (1974) The fast fourier transform prentice-hall.englewood cliffs.NJ; 252 

pp. QA403.B74 

[15] Brogan W.L. (1982) Modern control theory prentice-hall.englewood cliffs.N.J; 393 pp. 

QA402.3.B76 

[16] Brown K.M. (1969) “A quadratically convergent Newton-like method based upon 

Gaussian elimination” SIAM journal on numerical analysis 6.no 4.560-569. 

[17] Broyden C.G. (1965)”A class of methods for solving nonlinear simultaneous 

equations.”mathematics of computation.19.577-593 

[18] Belirsch R (1964) “Bemerkungen zur romberg-integration” numerische mathematik 

6.6.16 

[19] Fehlberg E. (1964) “New high-order Runge-Kutta formulas with step-size control for 

systems of first-and second-order differential equations” Zeitschrift für angewandte 

mathematic and mechanic. 44.17-29. 

[20] Fehlberg E. (1966) “New high-order Runge-Kutta formulas with an arbitrarily small 

truncation error” Zeitschrift für angewandte mathematic and mechanic. 46.1-16. 

[21] Fehlberg E. (1970) “Klassche Runge-kutta formeln vierter und niedrierer ordnung mit 

schrittweiten-kontrolle und ihre anwendung auf warmeleitungsprobleme” Computing 

6.61-71. 

[22] Fix G. (1975) “A survey of numerical methods for selected problems in continuum 

mechanics”procedings of a conference on numerical methods of ocean circulation 

national academy of sciences durham N.H.october 17.20. 1972, 268-283 

[23] Forsythe G.E., Malcolm M.A. and Moler C.A. (1977) Computer methods for 

mathematical comtations.Prentice-hall.englewood cliffs NJ: 259 pp. QA297.F568. 

[24] Forsythe G.E. and Moler C.B. (1967) Computer solution of linear algebraic 

systems.prentice-hall.Englewood cliffs.NJ; 148 pp. QA297.F57 

[25] Fulks W. (1978) Advanced calculus (third edition). john wiley&sons. New York; 731 pp. 

QA303 F568 

[26] Garcia C.B. and Gould F.J. (1980) “Relations between several path-following algorithms 

and local and global Newton methods” SIAM Review; 22, No.3, 263-274. 

[27] Gear C.W. (1971) Numarical initial-value problems in ordinary differential 

equations.pretice-hall, Englewood cliffs, N.J: 253 pp. QA372.G4 

[28] Gear C.W. (1981) “Numerical solution of ordinary differential equations: Is there 

anything left to do?” SIAM review; 23 No.1, 10-24 

[29] George J.A. (1973) “Nested dissection of a regular finite-element mesh” SIAM journal 

on numerical analysis 10, No.2, 345-362 

[30] George J.A. and Liu J.H. (1981) Computer solutıon of large sparse positive difinite 

systems. prentice-hall englewood cliffs NJ; 324 pp. QA188.G46 



 

32 
MJEN  Manas Journal of Engineering © 2013 

 

[31] Gladwell I. and Wait R. (1979) A survey of numerical methods for partial differential 

equations. oxford university pres; 424 pp. QA377.S96 

[32] Golub G.H. and Van Loan C.F. (1963) Matrix computations john Hopkins university 

press Baltimore; 476 pp. QA188.G65 

[33] Gragg W.B. (1965) “On extrapolation algorithms for ordinary initial-value problems” 

SIAM Journal on numerical analysis, 2, 284-403. 

[34] Hageman L.A. and Young D.M. (1981) Applied iterative methods. Acedemic pres. New 

York; 386 pp. QA297.8.H34 

[35] Hamming R.W. (1973) Numerical methods for scientists and engineers (second edition). 

McGraw-hill, New York; 721 pp. QA297.H28 

[36] Hatcher T.R. (1982) “An error bound for certain successive overrelaxation schems” 

SIAM journal on numerical analysis.19. No.5.930-941. 

[37] Henrici P. (1962) Dıscrete variable methods in ordinary differential equations john 

Wiley&sons New York; 407 pp. QA372.H48 

[38] Householder A.S. (1970) The numerical treatment of a single nonlinear equation 

McGraw-Hill, New York; 216 pp. QA218.H68 

[39] Watkins D.S. (1982) “Understanding the QR algorithm” SIAM review. 24. No.4, 427-44 

[40] Wendroff B. (1966) Theoretical numerical analysis academic pres New York; 2 

pp.QA297.W43 

[41] Wilkinson J.H. (1963) Rounding errors in algebraic processes H.M. stationery Office 

london; 161 pp. QA76.5.W53 

[42] Wilkinson J.H. and Reinsch V. (1971) Hanbook for automatic computation. Volume 

linear algebra. springer-verlag. Berlin;439 pp. QA251.W67 

[43] Wilkinson J.H. (1965) The algebraic eigenvalue problem. clarendon pres.oxford; 64 

pp.QA218.W5 

[44] Winograd S. (1978) “On computing the discrete fourier transform” mathematics 

computation, 32, 175-199 

[45] Young D.M. and Gregory R.T. (1972) A survey of numerical mathematics vol. addıson-

wesley; reading.mass, 533 pp. QA297.Y63. 

[46] Young D.M. (1971) Iterative solutıon of large linear systems. academic pres, New York; 

5 pp. QA195.Y68 

[47] Ypma T.J. (1983) “Finding a multiple zero by transformation and Newton –like methods 

SIAM Review, 25, No.3, 365-378 

[48] Zienkiewicz O. (1977) The finite-element method in engineering science. McGraw-hill 

london; 787 pp.TA640.2.Z5. 


