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Convergence of SP-iteration for generalized
nonexpansive mapping in Hadamard spaces
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Abstract

In this paper, we study the convergence of SP-iteration scheme for a
class of mappings satisfying the condition (C) and prove ∆-convergence
as well as strong convergence theorems in Hadamard spaces. Our re-
sults generalize and improve several relevant results of the existing lit-
erature.
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1. Introduction

Approximation of �xed points remains a widely used technique to prove the existence
of solutions of ordinary as well as partial di�erential equations. In recent years, a mul-
titude of iterative procedures has been developed and utilized to approximate the �xed
points of various classes of mappings. Indeed, the Mann and Ishikawa iteration proce-
dures are two basic iteration schemes which now form the foundation of iterative �xed
point theory.
In an attempt to construct a convergent sequence of iterates involving a nonexpansive
mapping, Mann [15] de�ned an iteration method as (for any x1 ∈ K)

(1.1) xn+1 = (1− αn)xn + αnTxn, n ∈ N

where αn ∈ (0, 1).
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In 1974, with a view to approximate the �xed point of pseudo-contractive mappings
in Hilbert spaces, Ishikawa [11] introduced a new iteration procedure as (for x1 ∈ K)

(1.2)

{
yn = (1− αn)xn + αnTxn,

xn+1 = (1− βn)xn + βnTyn, n ∈ N

where {αn} and {βn} ∈ (0, 1).
Iterative techniques for approximating �xed points have been investigated by various

authors (e.g., [12, 17, 18, 22, 24, 25, 26, 27]) using the Mann iteration scheme or Ishikawa
iteration scheme. By now, there exists an extensive literature on the iterative �xed points
for various classes of mappings. For an up-to date account of literature on this topic, we
refer the readers to Berinde [2].

As a genuine extension of Mann and Ishikawa iteration schemes, Xu and Noor [28]
introduced a three step iteration scheme as (for x1 ∈ K)

(1.3)


yn = (1− γn)xn + γnTxn

zn = (1− βn)xn + βnTyn,

xn+1 = (1− αn)xn + αnTzn,

where {αn}, {βn} and {γn} ∈ (0, 1).
Thianwan [23] introduced the following two-step iteration scheme as (for x1 ∈ K)

(1.4)

{
yn = (1− γn)xn + γnTxn

xn+1 = (1− αn)yn + αnTyn,

where {αn}, {βn} ∈ (0, 1).
Recently, Phuengrattana and Suantai [16] de�ned the SP-iteration as (for x1 ∈ K)

(1.5)


yn = (1− γn)xn + γnTxn

zn = (1− βn)yn + βnTyn,

xn+1 = (1− αn)zn + αnTzn,

where {αn}, {βn} and γn ∈ (0, 1).
In [16], Phuengrattana and Suantai showed that the rate of convergence of the Mann,

Ishikawa, Xu and Noor and SP-iteration are equivalent for nonexpansive mapping and
SP-iteration converges better than the other schemes for the class of continuous and
nondecreasing functions. On the other hand, in 2008, Suzuki [21] introduced a new
class of mappings which is larger than the class of nonexpansive mappings and name the
de�ning condition as condition (C) (sometimes also referred as generalized nonexpansive
mapping) and prove some existence and convergence theorems.

In this paper, we prove ∆ as well as strong convergence theorems under SP-iteration
in Hadamard spaces for generalized nonexpansive mappings. In process, several relevant
results contained in Xu and Noor [28], Phuengrattana and Suantai [16] and �ahin and
Ba³ar�r [19] are generalized and improved.

2. Basic de�nitions and relevant results

To make our presentation self contained, we collect some basic de�nitions and needed
results. We begin with a metric space (X, d) wherein a geodesic path joining x ∈ X and
y ∈ X is a map c from a closed interval [0, r] ⊂ R to X such that c(0) = x, c(r) = y and
d(c(t), c(s)) = |s − t| for all s, t ∈ [0, r]. In particular, the mapping c is an isometry
and d(x, y) = r. The image of c is called a geodesic segment joining x and y which is
denoted by [x, y] whenever such a segment exists uniquely. For any x, y ∈ X, we denote
the point z ∈ [x, y] by z = (1 − α)x ⊕ αy, where 0 ≤ α ≤ 1 if d(x, z) = αd(x, y) and
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d(z, y) = (1− α)d(x, y). The space (X, d) is called a geodesic space if any two points
of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly
one geodesic joining x and y for each x, y ∈ X. A subset C of X is called convex if C
contains every geodesic segment joining any two points in C.

A geodesic triangle 4(x1, x2, x3) in a geodesic metric space (X, d) is consisted of
three points ofX (as the vertices of4) and a geodesic segment between each pair of points
(as the edges of 4). A comparison triangle for 4(x1, x2, x3) in (X, d) is a triangle

4(x1, x2, x3) := 4(x1, x2, x3) in the Euclidean plane R2 such that dR2(xi, xj) =
d(xi, xj) for i, j ∈ {1, 2, 3}. A point x ∈ [x1, x2] is said to be comparison point for
x ∈ [x1, x2] if d(x1, x) = d(x1, x). Comparison points on [x2, x3] and [x3, x1] are de�ned
in same way.

A geodesic metric space X is called a CAT(0) space if all geodesic triangles satisfy
the following comparison axiom (CAT(0) inequality):

Let 4 be a geodesic triangle in X and let 4 be its comparison triangle in R2. Then
4 is said to satisfy the CAT(0) inequality if for all x, y ∈ 4 and all comparison points

x, y ∈ 4,
d(x, y) ≤ dR2(x, y).

If x, y1 and y2 are points of CAT(0) space and y0 is the midpoint of the segment [y1, y2],
then the CAT(0) inequality implies

d(x, y0)2 ≤ 1

2
d(x, y1)2 +

1

2
d(x, y2)2 − 1

4
d(y1, y2)2.

The above inequality is known as (CN) inequality and was given by Bruhat and Tits
[5]. A geodesic space is a CAT(0) space if and only if it satis�es (CN) inequality. The
following classes of subsets are examples of CAT(0) spaces:
(i)Any convex subset of a Euclidean space Rn, when endowed with the induced metric is
a CAT(0) space.
(ii) Every pre -Hilbert space is a CAT(0) space.
(iii)If a normed real vector space X is CAT(0) space, then it is a pre-Hilbert space.
(iv) If X1 and X2 are CAT(0) spaces, then X1 ×X2 is also a CAT(0) space.
A complete CAT(0) space is called Hadamard space. For further details on these spaces,
one can be referred to [3, 4, 5, 6].

Now, we collect some basic geometric properties which will be utilized throughout the
subsequent discussion. Let X be Hadamard space and {xn} be a bounded sequence in
X. For x ∈ X set:

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) is given by

r({xn}) = inf{r(x, xn) : x ∈ X},

and the asymptotic center A({xn}) of {xn} is de�ned as:

A({xn}) = {x ∈ X : r(x, xn) = r({xn})}.

It is well known for a Hadamard space that A({xn}) consists of exactly one point (see
Proposition 5 of [8]).

In 2008, Kirk and Panyanak [13] gave a concept of convergence in CAT(0) spaces which
is an analogue of weak convergence in Banach spaces and restriction of Lim's concepts
of convergence [14] to CAT(0) spaces.

2.1. De�nition. ([13]) A sequence {xn} in X is said to be ∆-convergent to x ∈ X if x
is the unique asymptotic center of un for every subsequence {un} of {xn}. In this case
we write ∆− limn xn = x and read as x is the ∆-limit of {xn}.
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Notice that given {xn} ⊂ X such that xn ∆-converges to x and given y ∈ X with
y 6= x, by uniqueness of asymptotic center we have,

lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, y).

Thus every CAT(0) space satis�es the Opial property. Now, we collect some basic facts
about CAT(0) spaces which will be used throughout the text.

2.2. Lemma. ([13]) Every bounded sequence in a Hadamard space admits a ∆-convergent
subsequence.

2.3. Lemma. ([7]) If C is closed convex subset of a Hadamard space and if {xn} is a
bounded sequence in C, then the asymptotic center of {xn} is in C.

2.4. Lemma. ([9]) Let (X, d) be a CAT(0) space. For x, y ∈ X and t ∈ [0, 1], there
exists a unique z ∈ [x, y] such that

d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

We use the notation (1− t)x⊕ ty for the unique point z of the above lemma.

2.5. Lemma. ([9]) For x, y, z ∈ X and t ∈ [0, 1], we have

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z).

2.6. Lemma. (([9]) Let X be a CAT (0) space. Then

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2

for all x, y, z ∈ X and t ∈ [0, 1].

Now, we give the de�nition of condition (C) in CAT(0) spaces.

2.7. De�nition. ([21]) A mapping T de�ned on a subset K of a CAT(0) space X is said
to satisfy condition (C) if (for all x, y ∈ K)

1

2
d(x, Tx) ≤ d(x, y)⇒ d(Tx, Ty) ≤ d(x, y).

It is straightforward to notice that every nonexpansive mapping satis�es condition
(C). If a mapping T satis�es condition (C) and has a �xed point, then T remains a
quasinonexpansive mapping. But the converse of above statements need not be true in
general. The following examples demonstrate such facts.

2.8. Example. ([21]) De�ne a mapping T on [0, 3] by

Tx =

{
0, when x 6= 3

1, when x = 3.

Then T satis�es condition (C) but T is not a nonexpansive mapping.

2.9. Example. ([21]) De�ne a mapping T on [0, 3] by

Tx =

{
0, when x 6= 3

2, when x = 3.

Then F (T ) 6= ∅ and T is a quasinonexpansive mapping but does not satisfy condition
(C).

Also, the following theorem is quite interesting.

2.10. Theorem. ([21]) Let T be a mapping on a closed subset K of a Banach space X.
Assume that T satis�es condition (C). Then F(T) is closed. Moreover, if X is strictly
convex and K is convex, then F(T) is also convex.
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The following result is crucial and will be used repeatedly.

2.11. Lemma. ([21]) Let K be a subset of a CAT(0) space X and T : K → K be a
mapping which satis�es condition (C), then for all x, y ∈ K the following holds:

d(x, Ty) ≤ 3d(x, Tx) + d(x, y).

Now, we write the iteration scheme of Thianwan [23] in CAT(0) space as (for x1 ∈ K)

(2.1)

{
yn = (1− γn)xn ⊕ γnTxn
xn+1 = (1− αn)yn ⊕ αnTyn,

where {αn} and {βn} ∈ (0, 1), while the SP-iteration as (for x1 ∈ K)

(2.2)


yn = (1− γn)xn ⊕ γnTxn
zn = (1− βn)yn ⊕ βnTyn,
xn+1 = (1− αn)zn ⊕ αnTzn.

where {αn}, {βn} and {γn} ∈ (0, 1).

In this paper, we study the convergence behaviour of SP-iteration scheme (2.2) for
generalized nonexpansive mappings in Hadamard spaces which generalize several relevant
existing results in literature.

3. Main results

We begin with the following auxiliary lemmas.

3.1. Lemma. Let K be a nonempty closed convex subset of a Hadamard space X and
T : K → K be generalized nonexpansive mapping with F (T ) 6= ∅. Let {αn} and {βn} be
two sequences in [0, 1] and {γn} a sequence in [ε, 1 − ε] for some ε ∈ (0, 1). If {xn} is
described by (2.2), then lim

n→∞
d(xn, p) exists for all p ∈ F (T ).

Proof. Let p ∈ F (T ). Since,

1

2
d(p, Tp) = 0 ≤ d(xn, p),

which due to condition (C) gives rise d(Txn, Tp) ≤ d(xn, p).
Similarly, we have d(Tyn, Tp) ≤ d(yn, p) and d(Tzn, Tp) ≤ d(zn, p). By Equation (2.2)

and owing to Lemma 2.5, we have

(3.1)

d(yn, p) = d((1− βn)xn ⊕ βnTxn, p)
≤ (1− βn)d(xn, p) + βnd(Txn, Tp)

≤ (1− βn)d(xn, p) + βnd(xn, p)

= d(xn, p).

Also,

(3.2)

d(zn, p) = d((1− γn)yn ⊕ γnTyn, p)
≤ (1− γn)d(yn, p) + γnd(Tyn, Tp)

≤ (1− γn)d(yn, p) + γnd(yn, p)

= d(yn, p).

In view of equations (3.1) and (3.2), we get

(3.3) d(zn, p) ≤ d(xn, p).
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Now,

(3.4)

d(xn+1, p) = d((1− αn)zn ⊕ αnTzn, p)
≤ (1− αn)d(zn, p) + αnd(Tzn, Tp)

≤ (1− αn)d(zn, p) + αnd(zn, p)

= d(zn, p).

On combining (3.3) and (3.4), we get

(3.5) d(xn+1, p) ≤ d(xn, p)

which shows that {d(xn, p)} is a decreasing sequence of non-negative reals. Thus in all,
sequence {d(xn, p)} is bounded below and decreasing and hence remains convergent. �

3.2. Lemma. Let K be a nonempty closed convex subset of a Hadamard space X and
T : K → K a generalized nonexpansive mapping with F (T ) 6= ∅. Let {αn} and {βn} be
two sequences in [0, 1] and {γn} a sequence in [ε, 1 − ε] for some ε ∈ (0, 1). If {xn} is
described by (2.2), then lim

n→∞
d(xn, Txn) = 0.

Proof. From Lemma 3.1, lim
n→∞

d(xn, p) exists for all p ∈ F (T ). Let us write,

(3.6) lim
n→∞

d(xn, p) = c.

In view of Equations (3.4) and (3.6), we have

lim inf
n→∞

d(zn, p) ≥ c

while in view of Equations (3.3) and (3.6), we also have

lim sup
n→∞

d(zn, p) ≤ c

so that

(3.7) lim
n→∞

d(zn, p) = c.

Also, owing to Equations (3.2) and (3.7), we get

lim inf
n→∞

d(yn, p) ≥ c

while Equation (3.1) implies that

lim sup
n→∞

d(yn, p) ≤ c,

so that

(3.8) lim
n→∞

d(yn, p) = c.

Now, in view of Lemma 2.6, we can have

d(yn, p)
2 = d((1− γn)xn ⊕ γnTxn, p)2

≤ (1− γn)d(xn, p)
2 + γnd(Txn, Tp)

2 − γn(1− γn)d(xn, Txn)2

≤ (1− γn)d(xn, p)
2 + γnd(xn, p)

2 − γn(1− γn)d(xn, Txn)2

≤ d(xn, p)− γn(1− γn)d(xn, Txn)2

implying thereby

γn(1− γn)d(xn, Txn)2 ≤ d(xn, p)
2 − d(yn, p)

2

so that

d(xn − Txn)2 ≤ 1

γn(1− γn)

{
d(xn, p)

2 − d(yn, p)
2
}
.
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As {γn} ∈ [ε, 1− ε] for some ε ∈ (0, 1), therefore

d(xn, Txn)2 ≤ 1

ε2

{
d(xn, p)

2 − d(yn, p)
2
}
.

Now, in view of equations (3.7) and (3.8), lim
n→∞

d(xn, Txn) = 0. This concludes the

proof. �

Now, we prove the following ∆− convergence theorem for SP-iteration scheme.

3.3. Theorem. Let K be a nonempty closed convex subset of a Hadamard space X and
T : K → K a generalized nonexpansive mapping with F (T ) 6= ∅. Let αn and βn be two
sequences in [0, 1] and {γn} a sequence in [ε, 1−ε] for some ε ∈ (0, 1). If {xn} is described
by (2.2), then the sequence xn ∆-converges to a �xed point of T .

Proof. In view of Lemma 3.1, lim
n→∞

d(xn, p) exists for each p ∈ F (T ) so that the sequence

{xn} is bounded and lim
n→∞

d(xn, Txn) = 0. Let Wω({xn}) =: ∪A({un}), where union is

taken over all subsequence {un} of {xn}. In order to show the ∆-convergence of {xn}
to a �xed point of T , �rstly we show that Wω({xn}) ⊂ F (T ) and thereafter prove that
Wω({xn}) is a singleton set. To show Wω({xn}) ⊂ F (T ), let y ∈Wω({xn}). Then, there
exists a subsequence {yn} of {xn} such that A({yn}) = y. By Lemmas 2.2 and 2.3,
there exists a subsequence {zn} of {yn} such that ∆ − lim

n
zn = z and z ∈ K. Since

lim
n→∞

d(zn, T zn) = 0 and T satis�es condition (C), therefore by Lemma 2.11, we have

d(zn, T z) ≤ 3d(zn, T zn) + d(zn, z).

By taking lim sup of both the sides, we have

lim sup
n→∞

d(zn, T z) ≤ lim sup
n→∞

{3d(zn, T zn) + d(zn, z)}

≤ lim sup
n→∞

d(zn, z).

As ∆− lim
n
zn = z, by Opial's property, we have

lim sup
n→∞

d(zn, z) ≤ lim sup
n→∞

d(zn, T z).

Hence Tz = z, i.e. z ∈ F (T ). Now, we assert that z = y. If not, by Lemma 3.1,
lim
n
d(xn, z) exists and owing to the uniqueness of asymptotic centers,

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn, y)

≤ lim sup
n→∞

d(yn, y)

< lim sup
n→∞

d(yn, z)

= lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z),

which is a contradiction so that y = z. To show that Wω({(xn}) is a singleton, let {yn}
be a subsequence of {xn}. In view of Lemmas 2.2 and 2.3, there exists a subsequence
{zn} of {yn} such that ∆ − lim

n
zn = z. Let A({yn}) = y and A({xn}) = x. Earlier, we

have shown that y = z, therefore it is enough to show z = x. If z 6= x, by Lemma 3.2
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{d(xn, z)} is convergent. By uniqueness of asymptotic centers

lim sup
n→∞

d(zn, z) < lim sup
n→∞

d(zn, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, z)

= lim sup
n→∞

d(zn, z)

which is a contradiction so that the conclusion follows. This concludes the proof. �

By setting βn = 0 for all n ∈ N, we can get the following ∆−convergence theorem for
Thaiwan iteration scheme (2.1) as a direct consequence of Theorem 3.1.

3.4. Corollary. Let K be a nonempty closed convex subset of a Hadamard space X and
T : K → K a generalized nonexpansive mapping with F (T ) 6= ∅. Let {αn} be a sequence
in [0, 1] and {γn} a sequence in [ε, 1− ε] for some ε ∈ (0, 1). If {xn} is described by (2.1),
then the sequence xn ∆-converges to a �xed point of T .

3.5. Theorem. Let K be a nonempty closed convex subset of a Hadamard space X
and T : K → K a generalized nonexpansive mapping with F (T ) 6= ∅. Let αn and βn be
sequences in [0, 1] and {γn} a sequence in [ε, 1−ε] for some ε ∈ (0, 1). If {xn} is described
by (2.2), then {xn} converges to a �xed point of T if and only if lim inf

n→∞
d(xn, F (T )) = 0.

Proof. If {xn} converges to a �xed point p of T , then

lim inf
n→∞

d(xn, p) = 0

so that

lim inf
n→∞

d(xn, F (T )) = 0.

For the converse part, let lim inf
n→∞

d(xn, F (T )) = 0. In view of Equation (3.5) for all p ∈
F (T ), we have

d(xn+1, p) ≤ d(xn, p)

so that

inf
p∈F (T )

d(xn+1, p) ≤ inf
p∈F (T )

d(xn, p),

which amounts to say that

d(xn+1, F (T )) ≤ d(xn, F (T ))

and hence lim
n→∞

d(xn, F (T )) exists so that in view of our supposition, we have

lim
n→∞

d(xn, F (T )) = 0. Therefore for any ε > 0, there exists a positive integer k such that

(for all n ≥ k)
d(xn, F (T )) <

ε

4
,

or

inf{d(xk, p) : p ∈ F (T )} < ε

4
so that there exists a p ∈ F (T ) such that

d(xk, p) <
ε

2
.

Now, for all m, n ≥ k, we have
d(xm, xn) ≤ d(xm, p) + d(p, xn)

≤ 2d(xk, p)
< 2( ε

2
) = ε.



1603

Hence {xn} is a Cauchy sequence in C and converges to some x in C. As lim
n→∞

d(xn, F (T )) =

0 which amounts to say that d(x, F (T )) = 0. In view of Theorem 2.10, F (T ) is closed so
that x ∈ F (T ). This completes the proof. �

Again by setting βn = 0 (for all n ∈ N), we get the following corollary.

3.6. Corollary. Let K be a nonempty closed convex subset of a Hadamard space X
and T : K → K a generalized nonexpansive mapping with F (T ) 6= ∅. Let {αn} be
a sequence in [0, 1] and {γn} a sequence in [ε, 1 − ε] for some ε ∈ (0, 1). If {xn} is
described by (2.1), then the sequence {xn} converges to a �xed point of T if and only if
lim inf
n→∞

d(xn, F (T )) = 0.

In 1974, Senter and Dotson [20] introduced the condition (I) as follows.
A mapping T : C → C is said to satisfy the condition (I) if there exists a nondecreasing

function f : [0,∞) → [0,∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that
d(x, Tx) = f(d(x, F (T ))) for all x ∈ C.

3.7. Theorem. Let K be a nonempty closed convex subset of a Hadamard space X and
T : K → K a generalized nonexpansive mapping with F (T ) 6= ∅ which satis�es condition
(I) . Let αn and βn be sequences in [0, 1] and {γn} a sequence in [ε, 1 − ε] for some
ε ∈ (0, 1). If {xn} is described by (2.2), then {xn} converges to a �xed point of T .

Proof. By Lemma 3.1, lim
n→∞

d(xn, p) exists for all p ∈ F (T ) and let us assume it to be

c. If c = 0, then there is nothing to prove. If c > 0, then as argued in Theorem 3.5,
lim
n→∞

d(xn, F (T )) exists. Owing to condition (I) there exists a nondecreasing function f

such that

lim
n→∞

f(d(xn, F (T ))) ≤ lim
n→∞

d(xn, Txn) = 0

so that lim
n→∞

f(d(xn, F (T ))) = 0. Since, f is a nondecreasing function and f(0) = 0,

therefore lim
n→∞

d(xn, F (T )) = 0. Now, in view of Theorem 3.5, we are through. �

Again by choosing βn = 0 (for all n ∈ N), we get the following corollary.

3.8. Corollary. Let K be a nonempty closed convex subset of a Hadamard space X and
T : K → K a generalized nonexpansive mapping which satis�es Condition (I) wherein
F (T ) 6= ∅. Let αn and βn be sequences in [0, 1] and {γn} a sequence in [ε, 1− ε] for some
ε ∈ (0, 1). If {xn} is described by (2.1), then {xn} converges to a �xed point of T .
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