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Abstract 

 

High temperature heat capacity data of the same solid reported by different authors can differ from each other by much 

more than can reasonably be attributed to the experimental errors, and seem to have a systematic origin. In this 

communication it will be shown that each individual data set can adequately be described by a “critical” power function 

of type ~(Tm-T)α plus an absolute constant (Tm=melting temperature). Commonly the critical power function holds for 

all heat capacity data beyond the atomistic Dulong-Petit (D-P) limit. Within the large critical range crossover 

phenomena between different power functions with different exponents α can additionally occur. For the asymptotic 

power functions (T→Tm) exponents near to the rational numbers of α=2/3, 1 and 3/2 are identified. For the non 

asymptotic power functions the identified exponents are α=0 (logarithmic divergence), 1/2 and 2. Quite generally, a 

large validity range of the critical power function indicates that the heat capacity is not of atomistic origin but has to be 

attributed to a field of freely propagating bosons. This view is in analogy to the main issue of Renormalization Group 

(RG) theory that the dynamics in the vicinity of the magnetic ordering transition is not due to exchange interactions 

between spins but due to a boson guiding field. The postulated bosons at melting transition are not specified as yet but 

they are evidently excitations of the continuous solid with energies of much larger than the atomistic excitations 

(phonons). The floating heat capacity near Tm can be explained by a mean free path of the bosons that is of the order of 

the linear dimension of the sample. The heat capacity of the field then depends on size, shape and surface quality of the 

sample. It therefore appears not possible to define an intrinsic behavior.  
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1. Introduction 

Melting of solids is a phase transition of first order. This 

does not mean that there is no critical dynamics observable in 

the vicinity of Tm [1]. In fact, it proves that heat capacity data 

can adequately be described by a critical power function of 

type ~(Tm-T)α plus an absolute constant. The absolute 

constant gives the heat capacity at Tm, the exponent α is 

always positive. With the exception of solid neon [2] melting 

temperatures are much higher than conforms to the inter-

atomic forces (phonons), as they are well known from 

inelastic neutron scattering studies [3]. In other words Tm is 

considerably larger than Debye temperature ΘD. Another 

puzzling experimental observation is that the heat capacity at 

melting temperature is much larger than the atomistic 

Dulong-Petit (D-P) limit of 3R (R=gas constant). Larger heat 

capacities than D-P limit are difficult to explain by atomistic 

concepts [4]. It is therefore suggestive to conclude that there 

must be unknown energy degrees of freedom in addition to 

phonons that stabilize cohesion of the solid up to a 

surprisingly high melting temperature. The two typical 

energies can be characterized by kBΘD and kBTm. As 

additional energy degrees of freedom we identify bosons of 

the continuous solid. Note that the characteristic symmetry of 

the continuous solid is continuous translational invariance. 

This symmetry acts as generator of ballistic propagating 

bosons. The bosons in question stabilize cohesion of the solid 

similar to the binding between quarks by gluons.   

In contrast to the atomistic models the observed heat 

capacity at constant (or no) pressure, cp, does not saturate at 

D-P limit but increases further up to melting temperature Tm. 

For most solids the cp(T) data beyond D-P limit follow a 

perfectly linear function of temperature up to Tm [5]. In 

addition to α=1, α~2/3, 1/2 and 1.5 also can be identified. 

Power functions of temperature that hold up to a large 

distance from critical temperature are the typical indication of 

the dynamics of a field of freely propagating bosons [6]. The 

large validity range of the critical power function results 

because the dispersion relations of freely propagating bosons 

are simple power functions of wave vector. Note that the 

critical power functions predicted by atomistic models hold 

asymptotically at critical point only. The functional change of 

cP(T) from a saturation like behavior for cp<3R to a further 

increasing (concave up) behavior for cp>3R has the character 

of a crossover event [6]. A crossover commonly indicates a 

change of the relevant excitation spectrum [7]. In agreement 

with the principles of Renormalization Group (RG) theory it 

can be assumed that the crossover at cp~3R is from the 

excitation spectrum of the phonons to the excitation spectrum 

of the boson field [8,9]. The two thermal reservoirs get 

alternatively activated (or relevant). Since excitation spectra 

can be classified by symmetries a crossover means a change 

in dynamic symmetry. The generic symmetries are the 

periodic translational symmetry of the discrete lattice and the 

continuous translational symmetry of the macroscopic or 

infinite solid. Note that symmetries and dispersion relations 

of phonons and field bosons are determined by their 

propagation modes. Phonons propagate from atom to atom 

while bosons propagate ballistic, independent of atomistic 

structures. Universality, in the sense of a finite critical range, 

is the typical thermodynamic behavior of a field of freely 

mailto:u.koebler@fz-juelich.de


  
201 / Vol. 18 (No. 3)       Int. Centre for Applied Thermodynamics (ICAT) 

propagating bosons. It is evident that in temperature regions 

where the boson field is the relevant excitation spectrum the 

observed heat capacity is that of the boson field. 

Published high temperature cp(T) data of the same 

material can differ appreciably from experiment to 

experiment [10]. The aim of this communication is to 

propose an explanation for this hitherto unexplained 

phenomenon. It turns out that universal power functions of 

type ~(Tm-T)α can be fitted to each individual data set, though 

with different exponents α and different absolute constants. 

For the temperature range with atomistic dynamics (cp<D-P 

limit) published cp data for the same material agree 

considerably better [10]. As a conclusion, there must be an 

unknown parameter that has to be made responsible for the 

floating heat capacity data with cp>3R. For the proposed 

solution of this problem we assume that the mean free path of 

the bosons near Tm has a comparable length as the linear 

dimension of the sample. The large mean free path implies a 

new mesoscopic length scale to the dynamics. Scattering of 

the bosons at grain boundaries or at the inner surfaces of the 

sample can modify the density of states of the field and 

therefore can change the universality class. The heat capacity 

therefore can depend on size, shape and surface quality of the 

sample and on whether the sample is a single crystal or a 

polycrystal. Unfortunately, these experimental details were 

considered as unimportant and were rarely communicated 

explicitly. In fact, from an atomistic point of view the inter-

atomic distance is the only length scale. As a consequence, 

for atomistic models the shape of the sample should be 

unimportant. Furthermore, melting temperatures reported for 

the same material scatter occasionally by more than can 

reasonably be attributed to the experimental uncertainties. 

For instance, the reported melting temperatures for niobium 

scatter within the broad window of Tm~ 2688-2741 K. This is 

consistent with the view that not only the critical dynamics 

but the actual value of the melting temperature also is 

determined by the boson field. This is as in magnetism where 

it is customary to call the boson driven ordering temperature 

a stable fixed point (SFP) in order to distinguish it from the 

ordering temperature estimated by atomistic models on the 

basis of the exchange interactions between spins.  

The supposed bosons and their sources are, however, 

completely unexplored. This applies to most bosons at other 

types of order-disorder phase transitions as well. Only for the 

magnetic ordering transition it seems to be clear that the field 

bosons essentially are magnetic dipole radiation emitted upon 

precession of the ordered magnetic moments [7]. As long as 

the field quanta are unknown, the basis for the formulation of 

a realistic Lagrangian of the field is not yet given. It is only 

clear that the field bosons near Tm must have larger excitation 

energies than phonons. Excitations with larger energies than 

phonons could be deformation modes of the surface of the 

atoms. These modes get activated only when all phonons are 

activated. The surface regions in question are involved in the 

chemical bond. In other words, atoms can no longer be 

considered as hard spheres but seem to possess internal 

energy degrees of freedom. Alternatively, many-body 

excitations have to be considered as well. However, using 

inelastic neutron scattering, no higher excitation energies 

than the well known single phonon processes have been 

reported [3]. This shows that the harmonic approximation is 

not so bad. 

As a conclusion, melting of solids has to be explained by 

field theories rather than by atomistic concepts. Basically 

there is a twofold problem to be solved by field theories, first, 

the sources of the bosons have to be found out and, second, 

the bosons themselves have to be identified. Only for the 

electromagnetic radiation field the two problems have been 

solved exactly by quantum electrodynamics. For the Debye 

boson field it is clear that the bosons are sound waves. 

However it is completely unclear how sound waves are 

spontaneously generated in thermal equilibrium with an 

external temperature reservoir. Fortunately, if the field is the 

relevant thermal reservoir it suffices to consider the energy 

degrees of freedom of the field exclusively. The (weak) 

coupling between field particles and field sources needs not 

to be known if the field can be assumed to be in thermal 

equilibrium. 

High temperature heat capacity data were frequently 

interpreted in terms of anharmonic effects in the lattice 

vibrations [11]. Those effects modify the phonon dispersion 

relations very little. In particular, anharmonic inter-atomic 

interactions do not create further states in addition to 3N 

(N=Avogadro number). Consequently, the heat capacity does 

not exceed D-P limit of 3R. Since the observed phonon 

energies are too small to explain the high melting 

temperatures anharmonic effects seem not to be essential for 

the melting process. 

Thermal generation of vacancies has occasionally been 

discussed as a mechanism contributing to the increasing 

lattice expansion and heat capacity on approaching melting 

point. However, the fitted activation energies for vacancy 

formation are much higher than the melting temperature 

[12,13]. In those cases where the high temperature heat 

capacity exhibits perfect linear temperature dependence the 

activation energy for vacancy formation, formally, is infinite. 

From the weak non linearity in the lattice parameter of lead 

an activation energy for the generation of vacancies of ~0.5 

eV (≈5800 K) has been deduced [14]. As a consequence, 

thermal generation of vacancies is a weak process at the 

temperatures considered here. 

Universality, in the definition of a finite validity range of 

the critical power functions, is best known for the critical 

magnetic dynamics [15] and for the vapor-liquid transition 

[16,17]. From the surprising similarity of the critical 

exponents at vapor-liquid transition and at the magnetic 

ordering transition one can conclude that the responsible 

bosons have similar dispersion relations and densities of 

state. In other words, physically very different boson fields 

such as the Debye boson field and the electromagnetic 

radiation field can have identical thermodynamic properties if 

the field quanta have identical dispersion relations. For the 

massless Debye bosons and photons the dispersion relation is 

a linear function of wave vector. The energy densities of the 

two fields are ~T4. 

Bosons are difficult to observe directly. In particular, 

massless bosons are invisible to neutrons. The only 

thermodynamic observable for a boson field is its heat 

capacity. Only in ferromagnets experimental information on 

the dispersion relations of the bosons could be obtained from 

experiments on resonating boson states in confined 

geometries [18]. Relevance of the boson field means that the 

passive spin system receives its thermodynamic behavior 

from the field. Thermal decrease of the magnetic order 

parameter is controlled by the heat capacity of the field [7].  

 

2. Analysis of Experimental Data 

For simplicity we restrict discussion to the metallic mono-

atomic solids V, Nb, Ta, Mo and W. On discussing the heat 

capacity of metals, possible contributions of the conduction 
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electrons must be considered. This important point needs to 

be discussed in more detail. It turns out that the well known 

linear-in-T electronic heat capacity is a typical low 

temperature phenomenon. At high temperatures, where the 

heat capacity of many metallic solids is a linear function of 

temperature as well, this contribution has nearly completely 

disappeared. This can be verified best for metals with a large 

coefficient γ of the low temperature electronic heat capacity 

such as niobium with γ=7.79 mJK-2mole-1 [19]. For niobium 

the slope of the linear high temperature heat capacity 

according to [5] is 4.23 mJK-2mole-1 only (see Fig. 2). 

Consequently, the electronic heat capacity must have strongly 

decreased with respect to the low temperature linear-in-T 

function. Change from increasing to decreasing temperature 

dependence is indicative of a crossover event in the 

conduction band. In other words there seem to be two 

alternative excitation spectra in the conduction band. One 

excitation spectrum must be attributed to bosons in the 

(spatially continuous) conduction band. This excitation 

spectrum is responsible for the universal linear-in-T 

electronic heat capacity at low temperatures. The other 

excitation spectrum is relevant (activated) at elevated 

temperatures and has a vanishing heat capacity compared to 

the low temperature linear-in-T function of the boson field. 

Only the second excitation spectrum conforms to the classical 

band theories of metals [20]. In the following data analyses it 

appears justified to neglect electronic contributions to the 

high temperature heat capacity of the metals. 

Figure 1 shows high temperature heat capacity data of 

vanadium as a function of absolute temperature [5, 10]. Data 

of [10] labeled by curve #1 (filled points) show perfect linear 

temperature dependence. The slope of this line (10.75 mJK-

2mole-1) is only slightly larger than the coefficient of the low 

temperature linear-in-T electronic heat capacity of γ=9.26 

mJK-2mole-1 [19]. Since linear-in-T high temperature heat 

capacities with similar slopes as for curve #1 in Figure 1 are 

observed in insulators as well it can be concluded that the 

observed high temperature linear-in-T heat capacity of the 

metals is not of electronic origin. 
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Figure 1. High temperature heat capacity of vanadium from 

two literature sources as a function of absolute temperature 

[5, 10]. While data of [10] labeled by curve #1 exhibit perfect 

linear temperature dependence (α=1) data of [5] show 

crossover from logarithmic behavior (α=0) to linear 

behavior. For better clarity heat capacity data of [5] have 

been shifted upwards along ordinate axis by 5 JK-1mole-1. 
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Figure 2. Temperature dependence of the heat capacity of 

niobium from two literature sources [5,10]. All data sets with 

heat capacities larger than D-P limit have linear temperature 

dependence but with different slopes and different absolute 

values at Tm. The different slopes indicate that the linear-in-T 

heat capacity cannot be due to conduction electrons. The 

slope of the curve labeled by Barin [5] of 4.23 mJK-2mole-1 is 

less than the coefficient of the low temperature electronic 

heat capacity of γ=7.79 mJK-2mole-1 [19]. 
 

In the data of [5] (open points) crossover from low 

temperature logarithmic behavior (α=0) to linear behavior 

(α=1) is identified. For clarity these data have been shifted 

upwards along ordinate axis by 5 JK-1mole-1. Quantitatively 

similar but analytically different temperature dependence of 

the two data sets in Figure 1 shows that averaging over data 

sets of different authors is not reasonable.  

Figure 2 shows a selection of heat capacity data of 

niobium all with linear temperature dependence [5, 10]. The 

small statistical scatter of the data points clearly indicates that 

the different slopes and absolute constants of the three data 

sets must have a systematic origin. 
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Figure 3. Heat capacity data of tantalum from two sources as 

a function of temperature [5, 10]. The slope of curve #6 of 

2.2 mJK-2mole-1 is less than the coefficient of the low 

temperature electronic heat capacity of γ=5.9 mJK-2mole-1 

[19]. Data of [5] are well described over a large temperature 

range by logarithmic dependence (α=0). Asymptotically 

~(Tm-T)2/3 gives reasonable description for T→Tm.  
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Figure 4. Two data sets of high temperature heat capacity of 

molybdenum as a function of absolute temperature [10]. 

Data of curve #10 are well described by crossover from 

~(Tm-T)1/2 function to linear function. In curve #20 the 

crossover is from logarithmic to linear dependence. The 

latter data have been shifted upwards along ordinate axis by 

5 JK-1mole-1. 

 

A surprising behavior of curve #2 and curve #6 in Figure 

2 is that these data do not approach the well established low 

temperature data with cp<3R (curve #5). This indicates that 

crossover to field dynamics is not necessarily at that 

temperature where the heat capacity has reached D-P limit 

but can be shifted to a much larger temperature. This could 

mean that there can be a gap between the two excitation 

spectra. 

Figures 3-5 give quite analogous data analyses for the 

heat capacity of tantalum, molybdenum and tungsten. Note 

that for tungsten the heat capacities at Tm are different by 

nearly 90% (Figure 5).  
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Figure 5. High temperature heat capacities of tungsten from 

two literature sources as a function of absolute temperature 

[5, 10]. Data of curve #5 and curve #6 agree excellently and 

show linear temperature dependence. In the data of [5] 

crossover from linear to logarithmic function can be 

identified. Logarithmic divergence cannot be the asymptotic 

behavior. Asymptotic behavior seems to be linear again. 

 

In this short communication only a limited number of 

experimental examples for universality in the critical heat 

capacity near melting point have been presented. In 

particular, no examples of the non asymptotic exponent of 

α=2 (Al, curve #4, Re curve #2 [10]) and of the asymptotic 

exponent of α=1.5 (Rh [5]) have been shown.  

   

3. Conclusions 

From an atomistic point of view all crystals of the same 

material should have identical properties and, as a 

consequence, should exhibit identical heat capacities. This 

expectation is satisfactorily fulfilled only for heat capacity 

values smaller than D-P limit of 3R. As a conclusion, 

atomistic lattice theory is correct for cp<3R only where the 

dynamics is, in fact, determined by atomic vibrations. On the 

other hand it is long known that on approaching the melting 

point the reported heat capacities for the same material can 

deviate increasingly from each other by much more than the 

experimental error. In particular, for the same material the 

reported heat capacities at melting temperature can differ by 

more than 50%. As a consequence, there must be an 

experimental parameter, not included in atomistic models, 

that has to be made responsible for those anomalies. 

As we have shown, each individual data set can well be 

described by one, or a sequence of more, universal power 

functions of type ~(Tm-T)α with different (rational) values of 

α and different absolute constants. A strong indication for a 

non-atomistic critical dynamics is that the fitted critical 

power functions hold up to a large distance away from Tm. 

This is in contrast to the atomistic critical power functions 

that hold asymptotically at the critical point only. As a 

consequence, the observed high temperature heat capacity of 

solids is that of a boson field. This is nothing unusual since at 

low temperatures the heat capacity of all solids is also that of 

a boson field (the Debye boson field). The large mean free 

path of the field quanta near Tm implies a new length scale to 

the dynamics [21]. Without interactions with the atomistic 

background the mean free path of the field bosons would be 

infinite. For a mean free path of larger than sample 

dimensions the sample acts as a cavity for the field bosons. 

The energy density of the field, and therefore the universality 

class of the heat capacity, that is the exponent α, then 

depends on shape and surface quality of the sample. 

Definition of an intrinsic behavior appears hardly possible. 

When the critical dynamics above and below Tm is 

independent of atomistic structures it follows that the 

ordering transition is executed by the boson field instead by 

inter-atomic interactions. Consequently, the actual value of 

the ordering temperature can depend somewhat on the shape 

of the sample. In fact, for the same material the reported 

melting temperatures are surprisingly different (see Figures 1 

to 5). In RG theory it is customary to call the boson 

controlled critical temperature a stable fixed point (SFP) in 

order to distinguish it from the critical temperature predicted 

by atomistic models [8,9]. 

Although RG theory was developed especially for the 

dynamics at magnetic ordering transitions its main conclusion 

that the critical dynamics in the vicinity of the magnetic 

ordering transition is that of a boson field seems to apply to 

many other types of order-disorder phase transitions as well 

such as the vapor-liquid transition [16,17]. However, in most 

cases the nature of the field quanta is unexplored. 

Development of realistic field theories of the critical 

dynamics at the various types of order-disorder phase 

transitions therefore is not yet possible.   

Because of the limited space we have restricted discussion 

to a few monoatomic metallic elements. As investigations of 

many more materials, including insulating compounds [22] 
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show, the here presented analyses of the high temperature 

heat capacity in terms of universal power functions of type 

~(Tm-T)α works generally [22]. For instance, cp(T) data of [5] 

for Al2O3 are well described by crossover from ~(Tm-T)2 to 

asymptotic ~(Tm-T) function. We could identify asymptotic 

exponent values of α=2/3, 1 and 3/2. As exponents of the non 

asymptotic power function α=0, 1/2 and 2 were identified. 

Considering that the sample shape can be assumed to be of 

importance on the actual exponent value it is surprising that a 

limited number of (rational) exponents occur only. This is 

typical for the stability of the universality classes. Non 

relevant parameters do not perturb the universality class. 

How the observed exponents can be correlated with shape 

and size of the sample is, however, unclear. Systematic heat 

capacity measurements on samples with different shape could 

clarify this question. 
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