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Abstract
Face-centred cubic lattice FCC(n) has attracted large attention in recent years owing
to its distinguished properties and non-toxic nature, low-cost, abundance, and simple
fabrication process. The graphs of face-centred cubic lattice contain cube points and face
centres. A topological index of a chemical graph G is a numeric quantity related to G
which describes its topological properties. In this paper, using graph theory tools, we
determine the topological indices namely, Randic index, atomic bond connectivity index,
Zagreb types indices, Sanskruti index for face-centred cubic lattice FCC(n).
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1. Introduction
Mathematical chemistry is a branch of theoretical chemistry in which we discuss and

predict the chemical structure by using mathematical tools. Chemical graph theory is a
branch of mathematical chemistry in which we apply tools of graph theory to model the
chemical phenomenon mathematically. This theory contributes a prominent role in the
fields of chemical sciences.

By their help some physical properties, e.g., boiling point, can be predicted based on
the structure of the molecules. Mathematical and computational methods are successfully
used to model and predict the structure of matter in atomic level [5]. The structures
of molecules, from mathematical point of view, are graphs. Graph theory is used in
almost every field of science and it is also heavily used in practice, both for simulations
and engineering solutions. A graph in this context is made up of vertices or nodes and
lines called edges that connect them. Digital geometry deals with regular tessellations,
i.e., graphs with regular, periodic structures, and in this way, it is closely related to
crystallography.
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Each structural formulas that incorporate covalent bonded compounds or atoms are
diagrams. Thusly they are called molecular graphs or, basic diagrams or its better to
state constitutional graphs. In chemistry, graph theory gives the premise to definition,
numeration, systematization of the issue close by, it gives the way toward organizing laws
or standards as per a framework or arranging, terminology, it gives the association between
the compounds or atoms, and PC programming. The significance graph theory for science
stands fundamentally from the presence of isomerism, which is supported by chemical
graph theory.

A graph G(V, E) with vertex set V and edge set E is connected, if there exists a con-
nection between any pair of vertices in G. A network is simply a connected graph having
no multiple edges and no loops. For a graph G, the degree of a vertex v is the number
of edges incident to v and denoted by deg(v). A molecular graph is hydrogen depleted
chemical structure in which vertices denote atoms and edges denote the bonds.

A molecular graph is a set of vertices representing the atoms in a molecule and a set
of edges representing the covalent bonds between the atoms. Not only molecules can
be represented by graphs, there are some elements that form lattice structures in their
crystals. Carbon (in diamond) and Silicon have cubic lattice structure known as the
diamond structure.

A topological index is a numeric quantity associated with a graph which characterize
the topology of graph and is invariant under graph automorphism. A topological index
Top(G) of a graph G, is a number with the property that for every graph H isomorphic
to G, Top(H) = Top(G). The concept of topological index came from work done by
Wiener [31] while he was working on boiling point of paraffin. He named this index as
path number. Later on, the path number was renamed as Wiener index. The Wiener
index is the first and most studied topological index, both from theoretical point of view
and applications, and defined as the sum of distances between all pairs of vertices in G,
see for details [8].

The first andi oldest degree based index is introduced by Milan Randić [23] in 1975
and is defined in the following equation.

R− 1
2
(G) =

∑
st∈E(G)

1√
d(s) × d(t)

. (1.1)

In 1988, Bollobás et al. [4] and Amic et al. [1] proposed the general Randić index
independently. For more details about Randić index, its properties and important results
[6, 21]. The general Randić index is defined as:

Rα(G) =
∑

st∈E(G)
(d(s) × d(t))α. (1.2)

Where α = 1, −1, 1
2 , −1

2 .
The atom bond connectivity index is of vital importance and introduced by Estrada et

al. [10]. It is defined as:

ABC(G) =
∑

st∈E(G)

√
d(s) + d(t) − 2

d(s) × d(t)
. (1.3)

The geometric arithmetic index GA of a graph G is introduced by Vukičević et al. [28].
It is defined as:

GA(G) =
∑

st∈E(G)

2
√

d(s)d(t)
d(s) + d(t)

. (1.4)

One of the oldest topological index is the first zagreb index an introduced by I. Gutman
and N. Trinajstic on based degree of vertices of G in 1972. The Zagreb indices were
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conceived in 1972 by Gutman and Trinajestic in [14,17], they characterized as:

M1(G) =
∑

st∈E(G)
(d(s) + d(t)). (1.5)

M2(G) =
∑

st∈E(G)
(d(s) × d(t)). (1.6)

For more details see [15,16].
In 2008, Došlić put forward the first Zagreb coindex and second Zagreb coindex, defined
as [9]:

M1 = M1(G) =
∑

st/∈E(G)
[d(s) + d(t)]. (1.7)

M2 = M2(G) =
∑

st/∈E(G)
(d(s) · d(t)). (1.8)

In 2016, I. Gutman et al, [16] proves the following Theorems:

Theorem 1.1 ([16]). Let G be a graph with |V (G)| vertices and |E(G)| edges. Then

M1(G) = 2|E(G)|
(

|V (G) − 1
)

− M1(G). (1.9)

Theorem 1.2 ([16]). Let G be a graph with |V (G)| vertices and |E(G)| edges. Then

M2(G) = 2|E(G)|2 − 1
2

M1(G) − M2(G). (1.10)

In 2016, S. M. Hosamani [18] introduced the Sanskruti index S(G) for a molecular graph
G, defined as:

S(G) =
∑

st∈E(G)

(
Ss × St

Ss + St − 2

)3
. (1.11)

where Ss =
∑

st∈E(G)
d(t) and St =

∑
st∈E(G)

d(s).

Nowadays there is an extensive research activity on above mention topological indices,
see also [2, 3, 11–13,19,20,24–27,29,30].

2. Main results
In this section, additive topological indices mainly Randic index, atomic bond connec-

tivity index, Zagreb types indices and Sanskruti index are computed. Moreover, close
formulas are derived which are helpful for the analysis of topological properties of molec-
ular structures of FCC(n).

2.1. Face-centred cubic lattice
Face-centred cubic lattice FCC(n) consists of unit cells that are cubes with an atom

at each corner of the cube and an atom in the centre of each face of the cube, see Figure
1. In our graphs vertices (points) represent the atoms; the terms, cube vertices (cube
points) and face centres (or face centre points) will be used, respectively. Edges connect
the closest (neighbour) atoms. In fact, FCC(n) structure has the largest packing density
in the three dimensional space: this is one of the most efficient structures to pack same
size spheres in a volume [7, 22], as it can be seen in Figure 1. Therefore, this structure
is also known as cubic closest-packed crystal structure. Metals with FCC(n) structure
include: Aluminium, Copper, Gold, Nickel and Silver. In this paper, we are using graphs
that represent rows of unit cells of the FCC(n) lattice (i.e., the dimension of our space is
(n×1×1) unit cells). The molecular graph of face-centred cubic lattice FCC(n) has total
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9n + 5 atoms(vertices), among them, the number of vertices of degree 4 are 5n + 1, the
number of vertices of degree 6 are 8 and the number of vertices of degree 9 are 4n−4. Also
on the other hand total number of bodes(edges) are 28n + 8, see Figure 2. To find the

(a) (b)

Figure 1. (a) Unit cell of FCC(n) (b) Face-centred cubic lattice FCC(2).

Figure 2. Face-centred cubic lattice FCC(n).

abstracted indices we will partition the edges of FCC(n) The first edge partition contains
24 edge st, where deg(s) = 4 and d(t) = 6. The second edge partition contains 20n − 20
edges st, where deg(s) = 4 and d(t) = 9. The third edge partition contains 8 edges st,
where deg(s) = 6 and d(t) = 6. The fourth edge partition contains 8 number of edges st,
where deg(s) = 6 and d(t) = 9. The fifth edge partition contains 8n − 12 number of edges
st, where deg(s) = d(t) = 9. The Table 1 shows the edge partition of FCC(n) with n ≥ 2.

Table 1. Degree based partition of edges of FCC(n).

(d(s), d(t)) Frequency Edge sets
(4, 6) 24 E1
(4, 9) 20n − 20 E2
(6, 6) 8 E3
(6, 9) 8 E4
(9, 9) 8n − 12 E5
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Theorem 2.1. Consider the Face-centred cubic lattice FCC(n), then its general Randić
index is equal to

Rα(FCC(n)) =


1368n − 396, if α = 1,
53n+54

81 , if α = −1,

192n − 230 + 96
√

6, if α = 1
2 ,

20
3
√

6 + 38n−30
9 if α = −1

2

Proof. Let G be the graph of Face-centred cubic lattice FCC(n). The above results for
Randić index can be proved by using Table 1 and Equation 1.2 in the following computa-
tion.
For α = 1,

R1(G) =
∑

st∈E(G)
(d(s) × d(t))

R1(G) =
∑

st∈E1(G)
(d(s) × d(t)) +

∑
st∈E2(G)

(d(s) × d(t)) +
∑

st∈E3(G)
(d(s) × d(t))

+
∑

st∈E4(G)
(d(s) × d(t)) +

∑
st∈E5(G)

(d(s) × d(t))

R1(G) =(24)(4 × 6) + (20n − 20)(4 × 9) + (8)(6 × 6) + (8)(6 × 9) + (8n − 12)(9 × 9)
R1(G) =1368n − 396.

For α = −1, the formula of Randić index takes the following form.

R−1(G) =
∑

st∈E(G)

1
(d(s) × d(t))

R−1(G) =
∑

st∈E1(G)

1
(d(s) × d(t))

+
∑

st∈E2(G)

1
(d(s) × d(t))

+
∑

st∈E3(G)

1
(d(s) × d(t))

+
∑

st∈E4(G)

1
(d(s) × d(t))

+
∑

st∈E5(G)

1
(d(s) × d(t))

R−1(G) =(24)
( 1

4 × 6

)
+ (20n − 20)

( 1
4 × 9

)
+ (8)

( 1
6 × 6

)
+ (8)

( 1
6 × 9

)
+ (8n − 12)

( 1
9 × 9

)
R−1(G) =53n + 54

81
.

For α = 1
2 ,

R 1
2
(G) =

∑
st∈E(G)

√
(d(s) × d(t))

R 1
2
(G) =

∑
st∈E1(G)

√
(d(s) × d(t)) +

∑
st∈E2(G)

√
(d(s) × d(t)) +

∑
st∈E3(G)

√
(d(s) × d(t))

+
∑

st∈E4(G)

√
(d(s) × d(t)) +

∑
st∈E5(G)

√
(d(s) × d(t))

R 1
2
(G) =(24)(

√
4 × 6) + (20n − 20)(

√
4 × 9) + (8)(

√
6 × 6) + (8)(

√
6 × 9)

+ (8n − 12)(
√

9 × 9)

R 1
2
(G) =192n − 230 + 96

√
6.
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For α = −1
2 ,

R− 1
2
(G) =

∑
st∈E(G)

1√
(d(s) × d(t))

R− 1
2
(G) =

∑
st∈E1(G)

1√
(d(s) × d(t))

+
∑

st∈E2(G)

1√
(d(s) × d(t))

+
∑

st∈E3(G)

1√
(d(s) × d(t))

+
∑

st∈E4(G)

1√
(d(s) × d(t))

+
∑

st∈E5(G)

1√
(d(s) × d(t))

R− 1
2
(G) =(8)

( 1√
4 × 6

)
+ (20n − 20)

( 1√
4 × 9

)
+ (8)

( 1√
6 × 6

)
+ (8)

( 1√
6 × 9

)
+ (8n − 12)

( 1√
9 × 9

)
R− 1

2
(G) = 20

3
√

6
+ 38n − 30

9
.

�

The graphical comparison of general Randić indices is depicted in Figure 3.

Figure 3. Comparison of general Randić indices, for α ∈ {1, −1, 1/2, −1/2}, in
2D structure of Face-centred cubic lattice FCC(n) . The colors red, blue, yellow
and green represents R1(G), R−1(G) R 1

2
(G), R− 1

2
(G), respectively. We can see

that in the given domain R1(G) is more dominating and all the indices behave
differently.

Theorem 2.2. Consider the Face-centred cubic lattice FCC(n), then its atomic bond
connectivity ABC is equal to

ABC(G) = 24 + (10n − 10)
√

11
3

+ 4
√

10
3

+ 8
√

13
3
√

6
+ 32n − 48

9
.

Proof. Let G be a the grpah of Face-centred cubic lattice FCC(n). Then from the edge
partition of FCC(n) based on degrees of end vertices of each edge with their frequencies
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which is given in Table 1, the ABC index can be calculated by using Table 1 and Equation
1.3 in the following equation.

ABC(G) =
∑

st∈E(G)

√
d(s) + d(t) − 2

d(s) × d(t)

ABC(G) =
∑

st∈E1(G)

√
d(s) + d(t) − 2

d(s) × d(t)
+

∑
st∈E2(G)

√
d(s) + d(t) − 2

d(s) × d(t)

+
∑

st∈E3(G)

√
d(s) + d(t) − 2

d(s) × d(t)
+

∑
st∈E4(G)

√
d(s) + d(t) − 2

d(s) × d(t)

+
∑

st∈E5(G)

√
d(s) + d(t) − 2

d(s) × d(t)

ABC(G) =(24)
√

4 + 6 − 2
4 × 6

+ (20n − 20)
√

4 + 9 − 2
4 × 9

+ (8)
√

6 + 6 − 2
6 × 6

+ (8)
√

6 + 9 − 2
6 × 9

+ (8n − 12)
√

9 + 9 − 2
9 × 9

.

After some easy calculations, we get:

ABC(G) = 24 + (10n − 10)
√

11
3

+ 4
√

10
3

+ 8
√

13
3
√

6
+ 32n − 48

9
.

�

Theorem 2.3. Consider the Face-centred cubic lattice FCC(n), then its GA index is
equal to

GA(G) = 48
√

6 + 32
5

+ 344n − 162
3

.

Proof. Let G be the graph of Face-centred cubic lattice FCC(n). The above result can
be proved by using Table 1 and Equation 1.4 in the following computation. The GA index
is computed as below:

GA(G) =
∑

st∈E(G)

2
√

d(s)d(t)
d(s) + d(t)

GA(G) =
∑

st∈E1(G)

2
√

d(s)d(t)
d(s) + d(t)

+
∑

st∈E2(G)

2
√

d(s)d(t)
d(s) + d(t)

+
∑

st∈E3(G)

2
√

d(s)d(t)
d(s) + d(t)

+
∑

st∈E4(G)

2
√

d(s)d(t)
d(s) + d(t)

+
∑

st∈E5(G)

2
√

d(s)d(t)
d(s) + d(t)

GA(G) =(24)2
√

4 × 6
4 + 6

+ (20n − 20)2
√

4 × 9
4 + 9

+ (8)2
√

6 × 6
6 + 6

+ (8)2
√

6 × 9
6 + 9

+ (8n − 12)2
√

9 × 9
9 + 9

GA(G) =48
√

6 + 32
5

+ 344n − 162
3

.

�
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Figure 4. Comparison of atomic bond connectivity ABC and geometric arith-
metic index GA in 2D structure of Face-centred cubic lattice FCC(n) . The
colors blue and green represents ABC and GA respectively. We can see that in
the given domain geometric arithmetic index GA is more dominating and both
indices behave differently.

The graphical comparison of atomic bond connectivity ABC and geometric arithmetic
index GA is depicted in Figure 4.

Theorem 2.4. Consider the Face-centred cubic lattice FCC(n), then its first and second
Zagreb index are equal to:

M1(G) = 476n + 52.

M2(G) = 1692n − 72.

Proof. Let G be the graph of FCC(n). The above result can be proved by using Table
1 and Equation 1.5, Equation 1.6 in the following computation. The first Zagreb index is
computed as below:

M1(G) =
∑

st∈E(G)
(d(s) + d(t))

M1(G) =
∑

st∈E1(G)
(d(s) + d(t)) +

∑
st∈E2(G)

(d(s) + d(t)) +
∑

st∈E3(G)
(d(s) + d(t))

+
∑

st∈E4(G)
(d(s) + d(t)) +

∑
st∈E5(G)

(d(s) + d(t))

M1(G) =(24)(4 + 6) + (20n − 20)(4 + 9) + (8)(6 + 6) + (8)(6 + 9) + (12n − 8)(9 + 9)
M1(G) =476n + 52.

The second Zagreb index is computed below:
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M2(G) =
∑

st∈E(G)
(d(s) × d(t))

M2(G) =
∑

st∈E1(G)
(d(s) × d(t)) +

∑
st∈E2(G)

(d(s) × d(t)) +
∑

st∈E3(G)
(d(s) × d(t))

+
∑

st∈E4(G)
(d(s) × d(t)) +

∑
st∈E5(G)

(d(s) × d(t))

M2(G) =(24)(4 × 6) + (20n − 20)(4 × 9) + (8)(6 × 6) + (8)(6 × 9) + (12n − 8)(9 × 9)
M2(G) =1692n − 72.

�
The graphical comparison of first Zagreb index and second Zagreb index is depicted in

Figure 5.

Figure 5. Comparison of first Zagreb index and second Zagreb index in 2D struc-
ture of Face-centred cubic lattice FCC(n) . The colors red and blue represents
M1(G) and M2(G) respectively. We can see that in the given domain M1(G) is
more dominating and both indices behave differently.

Theorem 2.5. Consider the graph of FCC(n) , then its first and second Zagreb coindices
are equal to,

M1(G) = 504n2 − 108n + 12.

M2(G) = 1568n2 − 1034n + 174.

Proof. Let G be the graph of FCC(n). Then by using Equation (1.9) the first Zagreb
coindex is computed as below:

M1(G) =
∑

st/∈E(G)
(d(s) + d(t)

M1(G) = 2|E(G)|
(
|V (G)| − 1

)
− M1(G)

= 2(28n + 8)(9n + 5 − 1) − (476n + 52)
= 504n2 − 108n + 12.
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Now, by using Equation (1.10) the second Zagreb coindex is computed as below:

M2(G) =
∑

st/∈E(G)
(d(s) × d(t))

= 2|E(G)|2 − 1
2

M1(G) − M2(G)

M2(G) = 2(28n + 8)2 − (476n + 52)
2

− (1692n − 72)

= 1568n2 − 1034n + 174.

�
The graphical comparison of first Zagreb coindex and second Zagreb coindex is depicted

in Figure 6.

Figure 6. Comparison of first Zagreb coindex and second Zagreb coindex in 2D
structure of Face-centred cubic lattice FCC(n). The colors red and blue represents
M1(G) and M2(G) respectively. We can see that in the given domain M2(G) is
more dominating and both indices behave differently.

The Table 2 shows partition of edges of the graph Face-centred cubic lattice FCC(n)
depending on the sum of degrees of the neighbouring vertices of end vertices of each edge.
The next Theorem shows the exact value of Sanskruti index of FCC(n).

Theorem 2.6. Consider the graph G ∼= FCC(n), then its Sanskruti index FCC(n) is
equal to

S(G) = (8)
( 33 × 33

33 + 33 − 2

)3
+ (8)

( 24 × 33
24 + 33 − 2

)3
+ (16)

( 30 × 33
30 + 33 − 2

)3

+(24)
( 36 × 53

36 + 53 − 2

)3
+ (16)

( 30 × 53
30 + 53 − 2

)3
+ (8)

( 33 × 53
33 + 53 − 2

)3

+(8)
( 53 × 53

53 + 53 − 2

)3
+ (8)

( 53 × 56
53 + 56 − 2

)3
+ (8n − 28)

( 56 × 56
56 + 56 − 2

)3

+(20n − 60)
( 36 × 56

36 + 56 − 2

)3
.
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Table 2. Degree based partition of edges of FCC(n), of end vertices of each edge
for n ≥ 2.

(Su, Sv) Number of Edges Edge Sets
(33, 33) 8 E1(G)
(24, 33) 8 E2(G)
(30, 33) 16 E3(G)
(36, 53) 24 E4(G)
(30, 53) 16 E5(G)
(33, 53) 8 E6(G)
(53, 53) 8 E7(G)
(53, 56) 8 E8(G)
(56, 56) 8n-28 E9(G)
(36, 56) 20n-60 E10(G)

Proof. Let G be the graph structure of FCC(n). Then by using Table 2 and equation
(1.11) the Sanskruti index S(G) is computed as follows.

S(G) =
∑

st∈E(G)

(
Ss × St

Ss + St − 2

)3

S(G) =
∑

st∈E1(G)

(
Ss × St

Ss + St − 2

)3
+

∑
st∈E2(G)

(
Ss × St

Ss + St − 2

)3
+

∑
st∈E3(G)

(
Ss × St

Ss + St − 2

)3

+
∑

st∈E4(G)

(
Ss × St

Ss + St − 2

)3
+

∑
st∈E5(G)

(
Ss × St

Ss + St − 2

)3
+

∑
st∈E6(G)

(
Ss × St

Ss + St − 2

)3

+
∑

st∈E7(G)

(
Ss × St

Ss + St − 2

)3
+

∑
st∈E8(G)

(
Ss × St

Ss + St − 2

)3
+

∑
st∈E9(G)

(
Ss × St

Ss + St − 2

)3

+
∑

st∈E10(G)

(
Ss × St

Ss + St − 2

)3

S(G) =(8)
( 33 × 33

33 + 33 − 2

)3
+ (8)

( 24 × 33
24 + 33 − 2

)3
+ (16)

( 30 × 33
30 + 33 − 2

)3

+ (24)
( 36 × 53

36 + 53 − 2

)3
+ (16)

( 30 × 53
30 + 53 − 2

)3
+ (8)

( 33 × 53
33 + 53 − 2

)3

+ (8)
( 53 × 53

53 + 53 − 2

)3
+ (8)

( 53 × 56
53 + 56 − 2

)3
+ (8n − 28)

( 56 × 56
56 + 56 − 2

)3

+ (20n − 60)
( 36 × 56

36 + 56 − 2

)3
.

�
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3. Conclusion
In this paper, we study a well reputed lattice namely, Face-Centred Cubic Lattice

FCC(n) and we determined the topological indices namely, Randic index, atomic bond
connectivity index, Zagreb types indices, Sanskruti index for Face-Centred Cubic Lattice
FCC(n). Also the topological properties of Face-Centred Cubic Lattice FCC(n) are an-
alyzed by the comparison of these topological indices using 2D plotting.
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