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Abstract: This work is shown below, the algebraic sum of the two fumiselected from clasSof univalent functions which is a
subclass of this clasa of functions f(z) satisfy the conditions analiytic in the open unit disk= {z€ C: || < 1} normalized with
f(0) =0 andfs(0) = 1is not univalent.
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1 Introduction

A single-valuable function f is saide to be univalent(orlsxtt) in a domairD c C if it never takes the same value twice;
that is ,if f(z1) # f(z) for all pointsz; andz in D with z,.z,. The functionf is said to be locally univalent at a point
7 € D if it is univalent in some neighbornhood af. For analytic functiond, the conditionf’(zp) # 0 is equivlent to

local univalence aty. An analytic univalent function is called a conformal mampibecause of its angle-preserving

property.

We shall be concerned primarily with the cle&sf functionsf analytic and univalent in the unit didk = {z: |7 < 1},
normalized by the condition§(0) = 0 andf’(0) = 1. Thus eacH € Shas a Taylor series expansion of the form

f(2) =z+ a2+ asl+au? +...,|7 < 1.
In view of the Riemann mapping theorem, most of the geom#tgorems concerning functions of cle&8sare readily
translates to statements about univalent functions irtrarlgisimply connectes domains with more than one boundary
point.
Definition 1. The leading example of a function of class S in the Koebeiimct
k(2 =2(1-2) 2=2+22+32+...,

the Koebe function maps the disk D onto the entire plane nthreupart of the negative real axis fromz—l1 to infinity. This

is best seen by writing
1/1+2\* 1
2=13 <1Tz) "2

and observing that the function

maps D conformally onto the right half-plane Rex.
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Examples of functions i,
(1) f(z) =zthe identity mapping,

(2) f(2) = z(1—2)~* which mapD conformally onto the half-planRe w> —

(3) f(2) = z(1—2)~%, which maps D onto the entire plane minus the two half I|§|@<SX <ocand—oeo < x< —
4 f(9 = % [E *iﬂ which maps onto the horizontal strip-J < Imw< Z;

(5) f(z2 = =3 [1 (1-2 },Wmch mapD onto the interior of cardioid.

Theorem 1.(Rouche’s Theorem) Let f and g be analytic inside and on afiedole Jordan Curve C, withg(z)| < |f(2)]
on C. Then(f 4+ g) have same number of zeros, counted according to multilioide C.

Proof.Acarg f +g) = Acargf + Acg(1+g/f) = Acargf. If a squencd f,} of functions analytic in domaiB converges
uniformly on each compact subsetBfto a functionf, thenf is also analytic irD. This is easily proved with aid of
Cauchy integral formula. Hurwitz's theorem establishesoaec connection between the zerosfadind the zeros of the
function f,.

Theorem 2. (Hurwitz’s Theorem) Let,fbe analytic in a domain D, and supposgZ) — f(z) as n— o, uniformaly
on each compact subset of D.Then eithér) = 0 in D, or every zero of f is a limit-point of a squence of zerokthe
function f,.

Proof. Suppose (zy) = 0 but f (z) # 0. Itis enough to show that every neighborhoodydfontains a zero of some function
fn. Choosed > 0 so small that diskz— zp| = 6. Letm be the minimum of f(z)| onC. Then for alln > N,

[fn(2) = f(2)] <m< (2|

onC. Thus by Rouche’s theorenf, has the same number of zeroed afoes inside€C. In other words fn(z) must vanish
at least once insidé whenevern > N.

A function f analytic in a domairD is said to be univalent there if it does not take the same valige: f(z) # f(z)
for all pairs of distinct pointg; andz, in D.

Theorem 3.Let f, be analytic and univalent in a domain D, and suppog&)f— f(z) as n— o, uniformaly on each
compact subset of D. Then f is either univalent or constabtin

Proof. Suppose, on the contrary, thiz;) = f(z) = a for some pair of distinct poirt; andz, in D.Then if f(z) # a,
that forn > N the funct,onf,/(z) — o vanishes in prescibed neighborhoods of mtandz. This violetes the univience
of frsof(z)=a.

Alternatively; the theorem can be proved by direct appedRtoaiche’s theorem. It should be remarked that the limit
function can actually be constant. For examplefjéz) = 2

Theorem 4.(Riemann Maping Theorem) Let D be a simply connected donfdaihvs a proper subset of complex plane.
Let Z be a given point in D. Then there is a unique functionf whiclpsna conformally onto the unit disk and has the
properties {{) =0and f({) >0

Proof. The hypothesis thdDd not be whole plane is essential because of Liouville’s theothat every bounded entire
function is constant. The unigueness assertion is easigbkshed. Indeed ifj is another mapping with the given
properties, the functioh = go f~1 is a conformal mapping of the unit disk onto itself and is ¢ere linear fractional
mapping of the form displayed. Bat0) = 0 andhr(0) > 0 ,soh is the identity. Thus = g and the mapping is unique.
We now turn to the proof of existence. Consider the fani#y of all functions f analytic and univalent irD, ith
f({)0,f/({) > 0and|f(z)| < 1forallze D. This is the family of all normalized conformal mappings®fnto the unit
disk . According to Montel’'s theoren® is a normal family. To see tha¥ is nonempty, choose a finite poiat¢ D and
consider the functiog(z) = (z— a)¥2. SinceD is simply connectedj has a single-valued branch.

This functiong is analytic and univalent B, andg(z;) # —g(z) for all pointsz; andz in D. Thus becausg assumes
all values in some disfv— g({)| < € it must omit the entire diskw+ g({)| < €. Let ¢ be the linear fractional mapping
of the regionw+g({)| > € onto the unit disk withy(g({)) = 0 andy’(g({)) > 0. Thenyoge .F
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Now letsuprez f'({) =M < o, and choose a squence of functidas .% for which f7,({) — M. Since.# is a normal
family, some subsequence converges uniformly on compégtteean analytic functiorf which is either univalent or
constant. The limit function has propertié&/) = 0 andf/({) =M > 0. In particularM < o andf is not constant, so
fez.

The extremal functiorf is actually the required conformal mapping@fonto the unit disk. If not, theri omits some

point we D, some branch of
B 1/2
F(z) = f(z)_ w
1-wf(2)

is analytic and single-valued . FurthermoreF is univalent inD and|F(z)| < 1 there. The function

Gz =e ¥ = 7':(2);':(5)
1-F(OF(

where€® = F/(2)/|F'(Z)|, therefore belongs t&?. However, a straightforward calculation gives aud3({) > /(7).
This contradiction to the extremal propertyfo§hows thaff cannot omit any pointin the unit disk. The proofis complete.

)

Theorem 5. (Bieberbach’s Theorem) If € S, then|ay| < 2, with equality if and only if f is a rotation of the Koebe
function.

Proof. A square-root transformation and an inversion appliect8 fill produce a function
0@ = {f(1/A)} P =z—(a/2)z + ...
of classz.
Thus|az| < 2, by the corollary by the corollary to the area theorem. Hijuaccurs if and only ifg has the form
92 =z—-€Y%/z
A simple calculation shows that this is equivalent to
f(Q)=q(1-€%0) % =e"%k(€%),
a rotation of Koebe function.

As a first application of Bieberbach’s theorem, we shall noavp a famous covering theorem due to Koebe. Each
function f € Sis an open mapping witli(0) = 0, so its range contains some disk centered at the origin.

Theorem 6.For each fe S,

zt"(z  2r?
f'(z  1-r2

4r
<
“1-r

5, |Zl=r<Ll (1)

Proof.Givenf € S, fix { € D and perform a disk automorphism to construct

f(25)-10

ThenF € Sand a calculation gives

w0 = 5 { @ P e -2t

But Bieberbach’stheoren;({)| < 2. Simplifying this inequality and replacing by z, we obtain the inequality (1). A
suitable rotation of the Koebe function shows that the estignis sharp for eache D.
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Theorem 7.(Main Theorem) fz) = % [z(lf 2) 2+ z(1+z)’2} is the average of two functions in S but is not univalent

Proof. If
g(2)=z(1- z)’2 andh(z) =z(1+ z)’2

lets form the following sum

NI =

f(2) =

Firstly g(z) = (1722),2 € using Koebe function

[9(2) +h(2)].

z+ inz‘:z+222+3z3+4z4+... ©)

g(0)=0,9/(0)=1andg(z) € A
Let’s see if g(z) function is univalent. i} # z then,g(z1) — 9(z) # 0 in the event of g(z) function is univalent. If
21 — 2 # 0 then,

00

7)) — z:z+mn2“—z— nz
9(z) - 9(z) 1nZz1 ZnZZZ

=z-2+5n4-Y nZ
=2+ 2Z2+38+44+.. 2B +38 - 44— ...

=2 -2+22-25+32-3B+44 44+ ...
—2-2+2F-3)+3F-3)+..

=z -24+2a-2)(a+n)+3zn-2) B +un+s) +..
=(a-2)[1+2a+2)+3Z+2uz+2)+..] £0.

Sog(z) function is univalent. Now let’s find out where the image o finctiong turns.

z z
w=g(z) = 127 721 = WZ - 2WZ+ W=7z,
WZ — 2wz+w—z=0

wZ — (2w+1)z4+w=0.

Therefore, we obtain

—b+VA 2w+1+VAw+1

A2= "0 2w
VAW+1— \/Au+iv)+1=+4bdu+4div+ 1
Qu+4iv+1>0
. 1
=>0.
u+w+4_0
Then
u+}>0:¢u>—}
4= - 4
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Thus,g(2) function in unit disk is maps to Re> 7411 andh(z) = ﬁ using Binom expansion
1 o (221°% (=2)(=3)17%2  (-2)(-3)(-41°F (-2)(-3)(-4)(-51°7
1+22 Sl TR 21 + 3! + 21
=1-22+32-42+58+ ...
2(1?12)2 =72(1- 22432 -4 +58+..)=2—-22+3F -4 +5° + ... =2+ i(l)”lni‘, (4)

h(0) =0,h(0) =1, andh(z) € A. Let's see ifh(z) function is univalent.
If z1 # 7, thenh(z;) — h(z) # 0 in the event oh(z) function is univalent.

if zz —2,# 0 then
h(z) —h(z) = z+ i(—l)”lnf—z— i(_l)"lnz“
—2 22438 4Lt~ 2B 3B+ 4D 5B ...
=222 +2Z+35+33 44 +44...
=21-2-2Z-%)-3Z+3) - 4(..)
= (a-2)[1-24-2)-3F.] #0.

Soh(z) function is univalent.
Now let’s find out where the image of the functibrurns.
z z

(14272 T 212211
wZ + (2w—1)z4+w=0.

w=h(z) = — WZ +2Wz+w=2

Thus

—btVA —2w+1+yV—dw+1
2a 2w

1
=—-u—v+-2>0
+4_ )

z0= — V-Aw+1=vV-4u—4iv+1=— —4u—4iv+1>0

we look reel part=u < 711, Thus, h(z) function in unit disk is maps to Re< %1.
We proved thag(z) andh(z) € Aand functiong, h is univalent therg(z),h(z) € S.
Now we replace (3) and (4) ifi(z) function

f(2)==[9(2) +h(@)] = % (2z+ 62+ 10z5+...) — 2432450+ ...

NI =

Corollary. f(z) is odd fonksiyon.
Now, let us take this statement

f(—2)=-2-32-52+..— —f(—2) =2+32+52+...
f(2)=2z+32+52+...
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So—f(—z)=f(2).

If we take the derivatives of (z), thenf/(z) = 14 922+ 257* + ..., (0) = 0 andf/(0) = 1. This means thaf(z) is an
analytic function and (z) € A. We try to prove functiorf (z) is an univalent function,

f(2) =z+32+52+..=z+ ;(2n+ 1)72mD),
n—

If z7 — z # 0 thenf(z1) — f(2z) # 0 in the event off (z) function is univalent.

If z7 — 2z # 0 then

[«

flz)—f(zz)=z+ 22(2”+ 1)2(12n+l) 7 ZZ(ZrH 1)zé2n+l)

(o)

=721—2+ Z (2n+ 1)2(12n+1) _ ZZ(Zn"— 1)2é2n+1)
n=2 =

—2-2%+38+55+..-38-55— ...

—2—2+33-38+52—-55+...

—2-2+3Z-3)+5Z-23)+..

=(z—-2) {14—3(2314-2122-{-2%)—}—5 {(21—22)4—52122 (z1+2) — 102122...” + ...

(z1—2) #0andthe equatio[mlwL 3(ﬁ+ 22+ Z%) +5 [(21 - 22)4 —5212 (z1+ ) — 102122...} } + ... may not always be
zero. This is not always the ca$éz ) — f(z) # 0. So f(2) is not univalent function. This completes the proof.
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