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Abstract 

This research presents a new approach for obtaining numerical solutions of Coupled Klein Gordon equation using the 

collocation method which based on cubic B-spline base functions and finite element approximation. The main 

advantage of the collocation method is that the structure of the method is simple and the computational cost is low. It 

also provides an easy and simpler procedure for solving various problems involving differential equations that model 

real-world phenomena. In the current research, the temporal and spatial partial derivatives are discretized with using 

approximate solution which is formed linear combination of B-spline basis and time dependent parameters. With the 

help of the idea that approximate solution satisfy the PDE at collocation points, a new numerical scheme is constructed. 

The newly obtained numerical scheme tested on a model problem. Numerical results are compared with exact solution 

with the aid of the error norms 
2L  and L

 presented via tables. Additionally, graphical simulations of numerical 

solutions are presented. 

 

Keywords: Coupled Klein Gordon equation, Collocation, cubic B-spline basis, Finite element method 

 

 

Öz 

Bu çalışma, kübik B-spline baz fonksiyonları ve sonlu eleman yaklaşımına temellenen kollokasyon yöntemi kullanılarak 

ikili Klein-Gordon denkleminin nümerik çözümlerini elde etmek için yeni bir yaklaşım sunmaktadır. Kollokasyon 

yönteminin başlıca avantajı, yöntemin yapısının basit ve hesaplama maliyetinin düşük olmasıdır. Ayrıca, gerçek dünya 

olgularını modelleyen diferansiyel denklemleri içeren çeşitli problemlerin çözümünde kolay ve daha basit bir prosedür 

elde edilmesini sağlar. Mevcut çalışmada, zamansal ve konumsal kısmi türevler, B-spline bazların ve zamana bağlı 

parametrelerin doğrusal birleşiminden oluşan yaklaşık çözüm kullanılarak ayrıştırılır. Yaklaşık çözümün kısmi 

diferansiyel denklemi kollokasyon noktalarında sağlaması fikrinin yardımı ile yeni bir sayısal şema oluşturulur. Yeni 

elde edilen şema bir model problem üzerinde test edilir. Sayısal sonuçlar 
2L ve L

 hata normları yardımı ile tam 

çözümlerle karşılaştırılır ve tablolar aracılığı ile sunulur. Ayrıca sayısal çözümlerin grafik benzetimleri sunulur. 

 

Anahtar kelimeler: İkili Klein Gordon denklemi, Kollokasyon, Kübik B-spline bazları, Sonlu eleman yöntemi 
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1. Introduction 

 

It is necessary to utilise mathematical modelling 

to understand the nature, science and to improve 

engineering. The models allow us to predict future 

behaviours or unseen results of the natural 

phenomena. Most of process in the scenario of 

real-life are formulated by partial differential 

equations and with the aid of the solutions science 

are developed. Thus, for centuries many 

academics and practitioners have focused on 

solving PDEs which are important for theory or 

applications with numerous methods including 

numerical and exact solution techniques. 

However, encountering large-scale computational 

problems arising in science leads to the 

development of computer and efficient 

computational algorithms. Finite element method 

is one of the foremost techniques for 

computational solution of the PDEs. The basic 

principle lying under finite element approach is to 

divide problem domain into assembled several 

elements and uses an piecewise approximations 

with basis functions to the solution function. 

 

Our main interest here is coupled Klein Gordon 

equation (Alagasen et al., 2004; Doha et al., 2014) 

which reads as: 

 
3= 2 2

4  =

tt xx

t t x

u u u u uv

v u u v

  


                                      (1) 

 

and the boundary-initial conditions pertaining 

with the equation are ; 

   

   

       

   

0 0

1 1

, = , , = ,

, = , , =

,0 = , ,0 =

,0 = ,t

u a t u v a t v

u b t u v b t v

u x f x v x h x

u x g x

                     (2) 

 

The coupled Klein Gordon equation is one of the 

vital important equations seen in theoretical 

physics, solid state physics, nonlinear optics and 

optical solitons (Malomed et al.,2005; Mihalache, 

2012). In the literature, there are some study on 

the coupled Klein Gordon equation. One can find 

knowledge in (Porsezian et al., 1995; 

Khusnutdinova, 2003; Liu et al., 2004; Biswas et 

al., 2014). 

 

The objective of the present paper is to present a 

new perspective to obtain numerical solutions for 

coupled Klein Gordon Equation using a 

combination of collocation method and finite 

element approximation. For this study, cubic B-

spline basis functions are chosen as piecewise 

approximation. In order to demonstrate the 

handiness of collocation method numerical 

experiments are discussed and the the error norms 

2L  and 
2L  are calculated and presented by tables. 

Additionally simulations of numerical results are 

provided with graphically.  

 

2. Collocation Finite Element Formulation for 

Coupled Klein Gordon Equation 

 

To begin constructing collocation finite element 

scheme, let the interval [ , ]a b  be partitioned by 

 

0 1 1= < < < < =a x x x x b  

 

with a uniform mesh discretaization 

 

 1= = 0,1,2, ,i ih x x i   

 

where  
=0i i

x  denotes nodal points of 

subintervals. Assume that we denote approximate 

solutions by    , , ,h hu x t v x t  and the exact 

solutions by    , , ,u x t v x t , respectively. The 

approximate solution can be defined using cubic 

B-spline basis (Kutluay et al., 2016) over the 

interval by 
 

     

     

1

= 1

1

= 1

, =

, =

h j j

j

h j j

j

u x t x t

v x t x t

 

 












 

 

where j  is the number of nodal points or we can 

say "edges of our elements",  j t  and  j t  are 

shape parameter functions and  j x  are cubic B-

spline basis functions (Dag et al., 2005; Prenter, 

2008; Esen et al., 2015). Constructing the FEM 

formulation which is easier and using a systematic 

procedure , we make moving to a local coordinate 

system by  = , 0mx x h    . Now, we can 

denote all elements by a emblematic element such 

as  1, .m mx x   Transformed cubic B-spline basis 

rewritten follows as 

 

 

      
 

3 3

1

2 33 2 3

3 2 2 3 3

1

3 3

2

= / ,

= 3 3 3 / ,

= 3 3 3 / ,

= / .

m

m

m

m

h h

h h h h h h h

h h h h

h

 

   

   

 









     

  

                                                                            (3) 
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Thus, we get the approximate solution with local 

coordinate given as 

 

           
2 2

= , = .

= 1 = 1

m m

u t v tj j j jh h
j m j m

       

 

 
   

                                                                            (4) 

 

Evaluation of 
hu  and 

hv ,its necessary derivatives 

seen in the Eq.  1  at nodal points 
ix  in terms of 

 t  and  t  parameters as follows: 

 

 

   

   

1 1

1 1

1 12

= 4

3
=

6
= 2

h m m mm

'

h m mm

''

h m m mm

u

u
h

u
h

  

 

  

 

 

 

 



 

                           (5) 

 

and 

 

 

   

1 1

1 1

= 4

3
= .

h m m mm

'

h m mm

v

v
h

  

 

 

 

 


                                 (6) 

 

On substituting the approximate solutions into 

their places 
hu , 

hv  from Eqs.  5  -  6  and for 

linearization taking = mu z  at the Eq.  1 ,  yields  

 

 

   

   

     

6
4 = 2 41 1 1 1 1 12

2
2 4 2 41 1 1 1

3
4 4 4 =1 1 1 1 1 1

m m mm m m m m m
h

z zm m m mm m m m

zm m mm m m m m m
h
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     

       

           

        

          

 

 

where   and   denotes first and second order 

derivative respect to time parameter, respectively. 

Then, if the central difference formula for  , 

Crank-Nicolson formula for   and ,  at the 

forward finite difference approximation for   and 

  are used, respectively 

 

 

 

1 1 1

2

1 1

1

2
= =

= =
2

=
2

n n n n n

n n n n

n n

tt

t

    
 

   
 

 


  

 



  



 





 

 

 

and the terms are collacted, we get the following 

differential equations given in terms of parameters 

  and   

 

           

      

3 1 6 3 12 2 2 2 22 1 2 1 2 1 1 1
1 4 2 4 1 41 1 12 2 2

2 2

3 1 62 2 21 2 2
= 2 8 2 41 12 2

2

n n n n n
t z t z t z z t z tm m m m m m mm m m

h h h

n n
z t t z t zm m mm m

h h

    

 

    
                    


            

          
          
          

     
     
     

 

     

 

3 12 2
2 12

2

2 1 1 1
4 21 1 1 1

3 3 31 1 1 1 1 1
4 16 4 1 4 1 = 4 4 11 1 1 1 1 1

2 2 2
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h
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z z z zm m m m m m mm m m m m m m

h h h

 

     

         

     

  
         

       
               

   
   
   

     
     
     

3
4 11 1

2

tn n n
m m

h
 


  


















   
  



 (7) 

 

 

where =
T

t
n

  is time step and =
b a

h
N


 is space 

step. Also, values of mz  at nodal points are 

1 1= 4 .n n n

m m m mz       

 

Therefore; a linear differential equation system 

including  2 2N   equations and  2 6N   

unknown parameters  andj j   is obtained for 

= 0,1,2, ,m N  . For a solvable system, we need 

to eliminate four unknown parameters from Eq. 

 7  using boundary conditions as 
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 

 

 

 

1 0 0 1

1 1

1 0 0 1

1 1

= = , 4

= = , 4

= = , 4

= = , 4

N N N N

N N N N

u a x t

u b x t

v a x t

v b x t

  

  

  

  



 



 

 

 

 

 

 

 

with the help of the elimination of the parameters, 

the above system reduces to  2 2N   equations 

and  2 2N   unknown parameters. Before 

starting to solve the reduced system, an initial 

vector should be get. For this situation, initial 

conditions of the problem and approximate 

solution will help us. Using values of initial 

conditions  ,0u x  and  ,0v x  together with 

approximate solution 
hu  and 

hv  at the initial time  

 

= 0,t  we get  

 

 

0 0 0

1 1

0 0 0

1 1

,0 = 4

,0 = 4

m m m

m m m

u x

v x

  

  

 

 

 

 
                                (8) 

 

after elinating 1 1 1, , N      and 1N   from the 

 8 .  

 

Now we have a solvable system again. Then, 

firstly we can obtain initial vector 0

j  and 0

j  

parameters solving  8 ,  then 1n

j   and 1n

j   

unknown parameters can be obtain with the help 

of n

j  and n

j  known parameters solving  7  via 

any algorithm ,  iteratively. 

 

However, when we check the system of 

differential equations given in Eq.  7 ,  we 

encounter an imaginary time given as 1.j   In 

order to deal with this imaginary time, we are 

going to use the initial condition given with the 

fist derivative respect to time together with centrel 

difference formula for first derivative such as 

 

   
1 1

,0 = ,0 = .
2

n n

t hu x u x
t

  


 

 

Thus, using the above calculations yields to 

express time step 1

j   in terms of 1

j  at initial time 

= 0.t   

 

3. Numerical Results for Coupled Klein 

Gordon Equation 

 

In the previous section, we have obtained a new 

numerical scheme for the coupled Klein Gordon 

equation with the aid of collocation finite element 

method. Now, we are going to obtain numerical 

results for the problem. As the exact solution is 

known, it leads to calculate absolute and 

maximum errors i. e. 
2L  and L

 with given 

formula 

 

 

 

2

2 2
=0

0

= = ,

= = .max

N

N j N j
j

N j N j
j N

L u U h u U

L u U u U 
 

 

 


                (9) 

 

Consider the coupled Klein Gordon equation 

given in  1  with initial-boundary conditions  1 . 

In equation  2 ,  

 

   

 

1 2 2= sech = sech ,
0 01 12 21 1

1 2 2= sech = sech
1 11 12 21 1

1 2 2= sech = sech
1 12 21 1

1

1
= sech

2 21 1

c a ct c a ct
u v

c cc c

c b ct c b ct
u v

c cc c

c x c y
f x h x

c cc c

c
c

xc
g x

c c

      
   
        

      
   
        

    
   
        


 

 


 

tanh
21

x

c

 
  
  

  

        (10) 

 

and exact solutions of the such equation are  

 

 

 

2

2

2

1
, = sec

1 1

2
, = sec .

1 1

c x ct
u x t h

c c

c x ct
v x t h

c c

  
 

  

  
 

  

 

 

 

The domain of the problem is given as  0,1x  

and final time is =1.T  The error norms 2L  and 

L  are presented for various values of space step 

and time step and = 0.5c  in Tables 1-4 

respectively. The first and the second tables are 

prepared for  , ,u x t  and the others are for  ,v x t

. In tables from 1 to 4, the comparisons of 

numerical values with exact ones are shown for 

different partition numbers varying from = 2N  to 

100  and time step size for from = 0.05t  to 

0.001 . It is observed from the error norms 

presented in tables that numerical results are 

matching with exact results. As a result of using 

collocation method, increasing of collocation 

points leads to improved convergence. Together 

with decreasing of time step the best solutions can 

be obtained when =100N  and = 0.001t . 
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Table 1: The error norms 
2L  of ( , )u x t  for various values of t  and h   

t             0.05       0.025          0.01        0.001 

2 2.1117483
210  2.1426286

210  2.1650394
210  2.180175

210  

4 5.549822
310  5.631996

310  5.753750
310  5.855224 

310  

8 2.504682 
310  1.827506 

310  1.577408
310  1.534394 

310  

10 2.325349
310  1.472896

310  1.086567
310  9.89403 

410  

20 2.205067
310  1.166034

310  5.40442 
410  2.57481 

410  

40 2.193843
310  1.131230

310  4.70152 
410  8.2750

510  

80 2.191563
310  1.124399

310  4.60123
410  5.1228 

510  

100 2.191318
310  1.123533

310  4.59071
410  4.9008 

510  

 

 

Table 2: The error norms L
 of ( , )u x t  for various values of t  and h   

t             0.05       0.025          0.01        0.001 

2 2.9864630
210  3.0301350

210  3.0618280
210  3.083234

210  

4 7.867893
310  8.272647

310  8.588344
310  8.803457

310  

8 4.352221
310  2.930330

310  2.288971
310  2.175901

310  

10 4.141703
310  2.580601

310  1.647240
310  1.385919

310  

20 3.869133
310  2.054752

310  9.58485
410  3.66860

410  

40 3.804672
310  1.938773

310  8.11771
410  1.36876

410  

80 3.800903
310  1.915686

310  7.77534
410  9.0673

510  

100 3.802503
310  1.913958

310  7.73942
410  8.5674

510  

 

 

Table 3: The error norms 
2L  of ( , )v x t  for various  values of t  and h   

t             0.05       0.025          0.01        0.001 

2 10.3601227
210  10.5591671

210  10.6966514
210  10.7875384

210  

4 29.279325 
210  7.241041 

310  3.2369624
310  3.3519732 

210  

8 1.2139186
210  8.449216 

310  8.137684
310  8.985218 

310  

10 1.1747715
210  6.680046

310  5.184316 
310  5.759141 

310  

20 1.2597028
210  6.411526 

310  2.545129 
310  1.377738 

310  

40 1.3153466 
210  6.863859 

310  2.749699 
310  3.52275

410  

80 1.3370683 
210  1.0113778 

210  2.882678
310  2.68306 

410  

100 1.3407588 
210  7.062596

310  2.902427
310  2.76644 

410  

 

 

Table 4: The error norms L  of ( , )v x t  for various values of t  and h   

t             0.05       0.025          0.01        0.001 

2 14.65143
210  14.93292

210  15.12735
210  15.25588

210  

4 4.0917020
210  1.2582690

210  4.7002710
210  5.0253780

310  

8 2.3677950
210  1.5536220

210  1.2350990
210  1.4263810

310  

10 2.0550620
210  1.2550750

210  7.819947
310  9.439125

310  

20 2.3965290
210  1.2097710

210  4.611566
310  2.274541

310  

40 2.5724430
210  1.3491740

210  5.399549
310  6.62613

410  

80 2.6256080
210  1.7316930

210  5.701815
310  5.12884

410  

100 2.6373460
210  1.3948110

210  5.741665
310  5.42177

410  
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Additionally, 3D graphics of u  and v  are 

exhibited in figure 1 for parameters 

= 0.1, =100t N  and = 0.5c . The plotting 

domain of the problem is chosen as [ , ]  . 

Initially, the peak of the waves related with 

( , )u x t , ( , )v x t  is 1.732051 and 2.0 , 

respectively. Over time, each wave moves toward 

to right side of the x  axis with a negligible 

reduction for u  and a negligible raise for v  . At 

time = 1T , the waves are located at nearly 

= 0.502656x  and = 0.565488x  with their peak 

points are 1.715227  and 1.984599 , respectively. 

 

 
a)  ,hu x t  

 

 
b)  ,hv x t  

Figure 1: Numerical solutions of u  and v  values 

 

4. Conclusion 

 

As a conclusion, in this study a numerical 

technique is outlined for obtaining the numerical 

solutions of coupled Klein Gordon equation. The 

approximate solutions are produced using cubic 

B-spline piecewise basis functions and collocation 

finite element method. The newly calculated error 

norms and figures of numerical resul show that 

collocation FEM is quite suitable, admissible and 

efficient tool for solving such problems. It also 

has wide applicability to different partial 

differential equations arising in various fields of 

science and engineering. 
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