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Abstract

This research presents a new approach for obtaining numerical solutions of Coupled Klein Gordon equation using the
collocation method which based on cubic B-spline base functions and finite element approximation. The main
advantage of the collocation method is that the structure of the method is simple and the computational cost is low. It
also provides an easy and simpler procedure for solving various problems involving differential equations that model
real-world phenomena. In the current research, the temporal and spatial partial derivatives are discretized with using
approximate solution which is formed linear combination of B-spline basis and time dependent parameters. With the
help of the idea that approximate solution satisfy the PDE at collocation points, a new numerical scheme is constructed.
The newly obtained numerical scheme tested on a model problem. Numerical results are compared with exact solution
with the aid of the error norms L, and L_ presented via tables. Additionally, graphical simulations of numerical

solutions are presented.
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Bu ¢aligma, kiibik B-spline baz fonksiyonlart ve sonlu eleman yaklasimina temellenen kollokasyon yontemi kullanilarak
ikili Klein-Gordon denkleminin niimerik ¢oziimlerini elde etmek ic¢in yeni bir yaklasim sunmaktadir. Kollokasyon
yonteminin baslica avantaji, yontemin yapisinin basit ve hesaplama maliyetinin diisiik olmasidir. Ayrica, gercek diinya
olgularint modelleyen diferansiyel denklemleri iceren cesitli problemlerin ¢éziimiinde kolay ve daha basit bir prosediir
elde edilmesini saglar. Mevcut ¢alismada, zamansal ve konumsal kismi tiirevler, B-spline bazlarin ve zamana bagh
parametrelerin dogrusal birlesiminden olusan yaklasik ¢oziim kullanilarak ayristrihr. Yaklasik ¢oziimiin  kismi
diferansiyel denklemi kollokasyon noktalarinda saglamasi fikrinin yardimi ile yeni bir sayisal sema olusturulur. Yeni
elde edilen sema bir model problem iizerinde test edilir. Sayisal sonuglar L,ve Ll hata normlart yardimi ile tam

coziimlerle karsilastirilir ve tablolar araciligy ile sunulur. Ayrica sayisal ¢oziimlerin grafik benzetimleri sunulur.
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1. Introduction

It is necessary to utilise mathematical modelling
to understand the nature, science and to improve
engineering. The models allow us to predict future
behaviours or unseen results of the natural
phenomena. Most of process in the scenario of
real-life are formulated by partial differential
equations and with the aid of the solutions science
are developed. Thus, for centuries many
academics and practitioners have focused on
solving PDEs which are important for theory or
applications with numerous methods including
numerical and exact solution techniques.
However, encountering large-scale computational
problems arising in science leads to the
development of computer and efficient
computational algorithms. Finite element method
is one of the foremost techniques for
computational solution of the PDEs. The basic
principle lying under finite element approach is to
divide problem domain into assembled several
elements and uses an piecewise approximations
with basis functions to the solution function.

Our main interest here is coupled Klein Gordon
equation (Alagasen et al., 2004; Doha et al., 2014)
which reads as:

U, =u, —U+2u®+2uv
vV, +4uu, =V,

D)

and the boundary-initial conditions pertaining
with the equation are ;

uga,t;:uo, VEa’t)):VO’
u(b,t)=u,, v(b,it)=v,
u(x,0)=f(x), v(x0)=h(x) ()

u,(x,0)=g(x),

The coupled Klein Gordon equation is one of the
vital important equations seen in theoretical
physics, solid state physics, nonlinear optics and
optical solitons (Malomed et al.,2005; Mihalache,
2012). In the literature, there are some study on
the coupled Klein Gordon equation. One can find
knowledge in (Porsezian et al., 1995;
Khusnutdinova, 2003; Liu et al., 2004; Biswas et
al., 2014).

The objective of the present paper is to present a
new perspective to obtain numerical solutions for
coupled Klein Gordon Equation using a
combination of collocation method and finite
element approximation. For this study, cubic B-
spline basis functions are chosen as piecewise
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approximation. In order to demonstrate the
handiness of collocation method numerical
experiments are discussed and the the error norms
L, and L, are calculated and presented by tables.

Additionally simulations of numerical results are
provided with graphically.

2. Collocation Finite Element Formulation for
Coupled Klein Gordon Equation

To begin constructing collocation finite element
scheme, let the interval [a,b] be partitioned by

a:X0<X1<“'<X¢:—1<Xﬁ =b
with a uniform mesh discretaization

h=x,,-% (i=012,...,0)
where  {x}_, denotes nodal points of
subintervals. Assume that we denote approximate
solutions by u, (xt),v,(xt) and the exact
solutions  byu(x,t),v(x,t), respectively. The

approximate solution can be defined using cubic
B-spline basis (Kutluay et al., 2016) over the
interval by

o (%)= 36,05, (1)

(+1
(x0)= 35 () (1)

=
where j is the number of nodal points or we can
say “edges of our elements”, &, (t) and o (t) are
shape parameter functions and ¢, (x) are cubic B-

spline basis functions (Dag et al., 2005; Prenter,
2008; Esen et al., 2015). Constructing the FEM
formulation which is easier and using a systematic
procedure , we make moving to a local coordinate

system by &=x,—x,(0<&<h). Now, we can
denote all elements by a emblematic element such
as [X,.X,.]| Transformed cubic B-spline basis
rewritten follows as

Boa=(h=&) 11,
¢, = (14307 (h=&)+3n(h =)' =3(h-&)") /17,
By = (N +30°E +30E° —35°) Ih°,
¢m+2 zéalhs'
3
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Thus, we get the approximate solution with local
coordinate given as

ERS IRTERORREES AEHTO)

(4)

Evaluation of u, and v, ,its necessary derivatives
seen in the Eq. (1) at nodal points x; in terms of
5(t) and o (t) parameters as follows:

W

—
[

0, ,+45,+0,.4

(W), = £ (8= 3irs) ®)
(u,), = h—62(5m1 ~28,+6,.1)
and
(Vi) = s +do, +00
. (6)

On substituting the approximate solutions into
their places u,, v, from Egs.(5) -(6) and for

linearization taking u = z,, at the Eq. (1), yields

2(3 1 2( 6
[1—(At) (F—2+z%)j5§f_i+(4+(m) (F+2—4z%D§gﬂ+

2/ n n o n n-1 n-1 .n-1
+Zm (At) (Um—l +doy + 6m+1) - (‘Sm—l -20, "+ ‘5m+1)

n+l n+l n+1 n+1

where At = T is time step and h= % IS space
n
step. Also, values of z,, at nodal points are

z,=0,,+48, +6,

m+1*

Therefore; a linear differential equation system
including (2N +2) equations and (2N +6)

O e e B O g

3At n+1 3At
4Zm§m—l +1620m ~ + 4Zm§m+l +| 1+ E Om_t dop T+ 1= E

b3 o 6 ~ ~ ~ ~
Om1 *+40m + g = h*2(5m71 =20y + ém+1) - (ém—l +40m + ém+1)

+ 22r2n (5m—1 + 45m + ‘5m+1) + 22m (O'm—l + 4o-m + Um+1)
(‘.’mfl +46y + dm+1) +4zy (Smfl + 46 + 5m+1) = %("mﬂ - "mfl)

where 6 and & denotes first and second order
derivative respect to time parameter, respectively.
Then, if the central difference formula for &,
Crank-Nicolson formula for 6 and &, at the
forward finite difference approximation for ¢ and
o are used, respectively

B 5n+1 _ 25n + 5n—1 ) Gn+1 _ Gn
5= - c=—
( At) At
5_ 5n+l_6n o= O_n+l+o_n
At 2
6 B 5n+l + 5n
2

and the terms are collacted, we get the following
differential equations given in terms of parameters
o and o

n+1

(2 (30)° o = (2 . (At)z(% % Z;D(s;_l . [a (At)2(3[+ 2- 4z§,D5;; + [2 +(a) (FSZ - % + zfnjjgn"m

(7)

n+1

3At 3At
_ n n o .n n n n
oty = 4z (5m71 Lo+ 5m+1) + (1+ E)o’m{LAO'm + (17 Ejgm“

unknown parameters (5;ando;) is obtained for

m=0,1,2,...,N . For a solvable system, we need
to eliminate four unknown parameters from Eq.
(7) using boundary conditions as
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5, =u(a=x,t)-48, -4,
Sy =U(b =Xy, t) =6y, —46,
o,= v(a = Xo,t)—40'0 -0

Onn =V(b=xy,t) -0y —4oy

with the help of the elimination of the parameters,
the above system reduces to (2N +2) equations

and (2N +2) unknown parameters. Before

starting to solve the reduced system, an initial
vector should be get. For this situation, initial
conditions of the problem and approximate
solution will help us. Using values of initial

conditions u(x,0) and v(x,0) together with
approximate solution u, and v, at the initial time

t=0, we get
u(x,0) =0, +46; +6;

m+1 8
v(x,0)= oy, +40, + o, ®)

m+1

after elinating 6,,0 ,,6,,, and o, from the
(8).

Now we have a solvable system again. Then,
firstly we can obtain initial vector 5] and o]
parameters solving (8), then & and of"
unknown parameters can be obtain with the help
of 5] and o known parameters solving (7) via
any algorithm, iteratively.

However, when we check the system of
differential equations given in Eq. (7), we
encounter an imaginary time given as &;". In
order to deal with this imaginary time, we are
going to use the initial condition given with the

fist derivative respect to time together with centrel
difference formula for first derivative such as

5n+1_§n—l
u (x,0)=u,(x,0)= BECYvI

Thus, using the above calculations vyields to
express time step &;* in terms of &; at initial time

t=0.

3. Numerical Results for Coupled Klein
Gordon Equation

In the previous section, we have obtained a new
numerical scheme for the coupled Klein Gordon
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equation with the aid of collocation finite element
method. Now, we are going to obtain numerical
results for the problem. As the exact solution is

known, it leads to calculate absolute and
maximum errors i. e. L, and L, with given
formula

N 2
L, =u-Uy|, = hzuj_(UN)J"

9)

Consider the coupled Klein Gordon equation
given in (1) with initial-boundary conditions (1).
In equation (2),

Uy = JEEC sech| 222
0 \1i-¢ -2
u, = ’h—csech b-ct v, = —2C sech2 b-ct
17 Y1-¢c h_c? 1 1-¢ 1_c2
1+c X —2C 2 y
f(x)= f—sech h(x)=—=sech
( ) 1-c {'1—02] () 1-c [ 1—02]
1+c
c /7
—C sech

o= =5 [ﬁ}“h[h% ]

and exact solutions of the such equation are

u(x’t): Jﬁsech(ﬂ}
1-c V1-¢?
2C X—ct

v(x,t)=—=sech? .

(x1)= s S5

The domain of the problem is given as x[0,1]
and final time is T =1. The error norms L, and
L, are presented for various values of space step

and time step and c¢c=0.5 in Tables 1-4
respectively. The first and the second tables are

prepared for u(x,t), and the others are for v(x,t)

. In tables from 1 to 4, the comparisons of
numerical values with exact ones are shown for
different partition numbers varying from N =2 to
100 and time step size for from At=0.05 to
0.001. It is observed from the error norms
presented in tables that numerical results are
matching with exact results. As a result of using
collocation method, increasing of collocation
points leads to improved convergence. Together
with decreasing of time step the best solutions can
be obtained when N =100 and At =0.001.
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Table 1: The error norms L, of u(x,t) for various values of At and h

2.1117483x1072 2.1426286 x1072 2.1650394 x1072 2.180175x107
4 5.549822x107 5.631996x10°° 5.753750x107° 5.855224 x107
8 2.504682 x107° 1.827506 x107° 1.577408x107° 1534394 x107°
10 2.325349x1072 1.472896x107° 1.086567 x107 9.89403 x10™*
20 2.205067 %107 1.166034x107° 5.40442 x107* 257481 x107
40 2.193843x1072 1.131230x107° 4.70152 x107* 8.2750x107°
80 2.191563x107° 1.124399x10°° 4.60123x10™ 51228 x107°
100 2.191318x107° 1.123533x10°° 459071107 4.9008 x107°

Table 2: The error norms L, of u(x t) for various values of lues of At and h and h

2.9864630 x10‘2 3.0301350 x10‘2 3.0618280x107° 3.083234x107
4 7.867893x107 8.272647x107 8.588344 x107 8.803457x107

4.352221x10°° 2.930330x107° 2.288971x107° 2.175901 %107
10 4.141703%x10°° 2.580601x107° 1.647240x107° 1.385919x107°
20 3.869133x107° 2.054752x107° 9.58485x107* 3.66860x107*
40 3.804672x107 1.938773x107° 8.11771x107™* 1.36876x107*
80 3.800003x107° 1.915686 x107° 7.77534x107 9.0673x107°
100 3.802503x107° 1.913958x107° 7.73942x10™* 8.5674x107°

Table 3: The error norms L, of v(x,t) for various values of At and h

10.3601227 x107°

10.5591671x107°

10.6966514 x1072

10.7875384x1072

29.279325 x107?

7.241041 x107

3.2369624 x10°°

3.3519732 x107?

1.2139186 x107

8.449216 x10°°

8.137684x107°

8.985218 x1072

1.1747715x107°

6.680046 x107

5.184316 x107

5.759141 x107°

1.2597028 x1072

6.411526 x107

2545129 x107

1.377738 x10°°

1.3153466 x1072

6.863859 x107°

2.749699 x107

3.52275%x10™

1.3370683 x1072

1.0113778 x107°

2.882678x107°

2.68306 x107*

100

1.3407588 x1072

7.062596 x107°

2.902427x107°

2.76644 x107*

Table 4: The error norms L, of v(x,t) for various values of At and h

14.65143x107 14.93292x107 15.12735x107 15.25588 x107
4 4.0917020x107° 1.2582690 x1072 4.7002710x1072 5.0253780x1073
8 2.3677950x1072 15536220 x107 12350990 x107 1.4263810x1072
10 2.0550620 X107 1.2550750 x1072 7.810947x10°° 9439125107
20 2.3965290 1072 1.2097710x107 4.611566x107 2.274541x1073
40 25724430107 1.3491740 x1072 5.399549 x 10~ 6.62613x10™*
80 2.6256080 X107 1.7316930 x1072 5.701815x10°° 5.12884x10™*
100 2.6373460x1072 1.3948110x1072 5.741665x107° 5.42177x107*
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Additionally, 3D graphics of u and v are
exhibited in  figure 1 for parameters
At=0.1,N=100 and c¢=0.5. The plotting
domain of the problem is chosen as [-7z,7].
Initially, the peak of the waves related with
u(x,t), v(x,t) is 1732051 and -20,
respectively. Over time, each wave moves toward
to right side of the x axis with a negligible
reduction for u and a negligible raise for v . At
time T =1, the waves are located at nearly
x =0.502656 and x =0.565488 with their peak
points are 1.715227 and —1.984599, respectively.

b) v, (x,t)

Figure 1: Numerical solutions of u and v values
4. Conclusion

As a conclusion, in this study a numerical
technique is outlined for obtaining the numerical
solutions of coupled Klein Gordon equation. The
approximate solutions are produced using cubic
B-spline piecewise basis functions and collocation
finite element method. The newly calculated error
norms and figures of numerical resul show that
collocation FEM is quite suitable, admissible and
efficient tool for solving such problems. It also
has wide applicability to different partial
differential equations arising in various fields of
science and engineering.
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