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Abstract 

The vibrational response of single-walled carbon nanotubes (SWCNTs) is studied in this 

paper. To take size effects into account, Eringen’s nonlocal elasticity equations are 

incorporated into the Donnell shell theory. The Rayleigh-Ritz method is employed in 

conjunction with the polynomial series as modal displacement functions to solve the problem. 

Four commonly used boundary conditions namely as simply supported-simply supported, 

clamped-clamped, clamped-simply supported, and clamped-free are considered. The 

fundamental frequencies of SWCNTs with various values of aspect ratios and nonlocal 

parameters are obtained. To propose the proper values of nonlocal parameter, the results of 

nonlocal shell model are matched with those of molecular dynamics (MD) simulations for 

armchair and zigzag SWCNTs through a nonlinear least square fitting procedure. The 

appropriate values of nonlocal parameter corresponding to each type of chirality and 

boundary condition are then derived. It is found that the results obtained via the presented 

nonlocal shell model with its proposed proper values of nonlocal parameter are in excellent 

agreement with those of MD simulations. 
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1. Introduction 

 

After the discovery of carbon nanotubes (CNTs) by Iijima [1], the applications of these 

attractive nanostructures have been increasing in recent years due to their outstanding 

physical, mechanical, and electrical properties. They have provided new building block in 

various emerging fields of nanoscience and nanotechnology [2-7]. 

As the results predicted by the classical continuum models are independent of the 

influence of small scale of nanostructures, they become controversial to implement for the 

analyses of such nanoscale systems. Hence, the extension of the continuum mechanics to 

accommodate the size dependence of nanostructures becomes a topic of major concern. To 

incorporate the size effects that exist at nanoscale into the classical continuum theory, it is 

needed to refine the classical model. Modified continuum models are widely applied in 

nanomechanics due to their computational efficiency and the capability to produce accurate 

results which are comparable to those of atomistic models. The use of nonlocal elasticity for 

nanostructures was applied for the first time by Peddieson et al. [8]. After that, nonlocal 

continuum model has gained much popularity among the researchers because of its efficiency 

as well as simplicity to analyze the behavior of various nanostructures.    

Ghorbanpour-Arani and Zarei [9] studied surface and small scale effects on free transverse 

vibration of a single-walled carbon nanotube with Y-junction at downstream end conveying 

viscose fluid based on the nonlocal Euler-Bernoulli beam theory. Hu et al. [10] investigated 

the transverse and torsional wave in SWCNT and DWCNT using nonlocal single and double 

elastic cylindrical shells. They found that the van der Waals interaction has little effect on the 

phase difference of transverse wave. Niknam and Aghdam [11] obtained a closed form 

solution for both natural frequency and buckling load of nonlocal functionally graded beams 

resting on nonlinear elastic foundation. Adhikari et al. [12] introduced the idea of nonlocal 

normal modes arising in the dynamic analysis of nanoscale structures. Ansari et al. [13] also 

developed a nonlocal finite element model which accounts for the small scale effects on free 

vibration of multi-layered graphene sheets. There are so many other research works in which 

the behaviors of nanostructures under various loading conditions have been predicted based 

on nonlocal elasticity continuum models [14-25]. 

The Rayleigh-Ritz technique is one of the well qualified numerical methods which has been 

employed in many studies. An investigation of the literature shows that there are many works 

in which the Rayleigh-Ritz technique has been applied to predict the vibrational behavior of 

various structures. Zhou [26] applied Rayleigh-Ritz method using a set of Timoshenko beam 
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functions to analyze the free vibration of Mindlin rectangular plates with uniform edge 

constraints. Al-Obeid and Cooper [27] developed the Rayleigh-Ritz method using polynomial 

functions to study the vibration properties of composite laminates plates.  

Continuing with the vibration problems, Roufaeil and Dawe [28] investigated the flexural 

vibration of isotropic rectangular plates including the presence of membrane stress system 

based on Rayleigh-Ritz technique of analysis. Recently, Lee and his coworkers [29] analyzed 

the effect of thermal vibration on the resonant frequency of transverse vibration of scanning 

thermal microscope using the Rayleigh-Ritz technique to solve the vibration problem of the 

probe nanomachining.  

In the present work, the Rayleigh-Ritz technique is employed to predict the vibrational 

response of SWCNTs with four common sets of boundary conditions. The components of 

displacement are represented as functions of polynomial series to implement the Rayleigh-

Ritz method to the governing equations of nonlocal shell model. To obtain the appropriate 

values of nonlocal parameter corresponding to each boundary condition, MD simulations 

results for various SWCNTs are matched with those of nonlocal continuum model. To this 

end, a nonlinear least square fitting procedure is established in which the nonlocal parameter 

is set as the optimization variable. It is observed that the present nonlocal shell model with its 

proper values of nonlocal parameter has the capability to predict the free vibration behavior of 

SWCNTs with an excellent accuracy which is comparable with the results of MD simulation.   

 

2. The Nonlocal Elastic Shell Model for CNTs 

 

2.1. Donnell Shell Equations based on Nonlocal Elasticity 

The theory of nonlocal elasticity was first considered by Eringen [30]. In the nonlocal model, 

in contrast to the classical elasticity, the stress at a reference point x in an elastic body depends 

not only on the strains at x, but also on strains at all other points of the body [30]. The 

nonlocal constitutive equation is given by [31] 

(1 − 휇∇ )훔 = 퐭 (1) 

where μ is the nonlocal parameter used in nonlocal continuum; t is the macroscopic stress 

tensor at a point. In the limit when the characteristic length goes to zero, the nonlocal 

elasticity reduces to the local elasticity. The stress tensor is related to strain by generalized 

Hooke’s law as 

풕 = 푺: 휖 (2) 
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here 푺 is the fourth-order elasticity tensor and ‘:’ denotes the double dot product. Hooke’s law 

for the stress and strain relation is thus expressed by 
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(3) 

Figure 1 shows the cylindrical shell of length L, radius R and thickness h with its 

coordinate system(푟, 휃, 푥) as x-axis is along the length of the shell.  

Based on Donnell shell theory [32], the displacements 푢, 푣, 푤 and the rotations 휓 , 휓  can 

be expressed in the following form  

푢 (푥, 휃, 푧, 푡) = 푢(푥, 휃, 푡) + 푧휓 (푥, 휃, t) (4-a) 

푢 (푥, 휃, 푧, 푡) = 푣(푥, 휃, 푡) + 푧휓 (푥, 휃, t) (4-b) 

푢 (푥, 휃, 푧, 푡) = 푤(푥, 휃, 푧, 푡) (4-c) 

which yields the following kinematics relations for normal strains ε  and ε  and shear 

strains 훾 , 훾 , and 훾  as  

     

From equations (3-5), the nonlocal force and moment resultants according to the coupled 

Donnell shell theory become 
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                                                            (6-c) 
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푀 = ∫ 푧휎 푑푧/
/         푖. 푒.            푀 − 휇∇ 푀 = 퐷(1 − 휐) +   

                                         (6-f) 

푄 = ∫ 휎 푑푧/
/             푖. 푒.           푄 − 휇∇ 푄 = 퐺ℎ + 휓    

                                                            (6-g) 

푄 = ∫ 휎 푑푧/
/            푖. 푒.           푄 − 휇∇ 푄 = 퐺ℎ − + 휓   

                                                   (6-h) 

where 퐷 = 0.85 푒푉 denotes the bending rigidity of the shell.  

The governing equations on the basis of the Donnell shell theory can be given as [32] 

    + = 퐼 푢̈ + 퐼 휓̈                                                                                          (7-a)     

                                                                                                            

    + + = 퐼 푣̈ + 퐼 휓̈                                                                                         

(7-b)                                                                                                 

    + − = 퐼 푤̈                                                                                                (7-c) 

                                                                                                             

    + − 푄 = 퐼 푢̈ + 퐼 휓̈                                                                                (7-d)    

                                                                                              

    + − 푄 = 퐼 푣̈ + 퐼 휓̈                                                                                 (7-e)  

                                                                                      

2.2. Field equations for vibrations of SWCNTs 

Substituting equations (6) into (7) yields the field equations corresponding to nonlocal 

Donnell shell model as 

     

푢, ±
( )

푢, + +
( )

푣,   
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+
1
푅

휐퐸ℎ
1 − 휐 푤, = 퐼 푢̈ + 퐼 휓̈ − 

휇 퐼 푢̈, + 푢̈,  + 퐼 휓̈ , + 휓̈ ,                                                                           

(8-a) 
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(8-b)                                                                                                                                                                                 
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휇 퐼 푣̈, + 푣̈,  + 퐼 휓̈ , + 휓̈ ,                                                                           

(8-e) 

                                                                                                                                                                   

    It is worth mentioning that the above field equations reduce to the classical Donnell shell 

theory by setting the nonlocal parameter 휇 equal to zero. 

 

3. Implementation of the Rayleigh-Ritz Technique 

 

One of the most important matters to apply the Rayleigh-Ritz method in an appropriate way 

is to describe the components of displacement and rotation as suitable analytical functions 

which have the capability to predict the behavior of the structure with better convergence 

and higher accuracy. In the literature, many types of the displacement functions have been 

implemented with various degrees of success. In the present work, to approximate the 

vibrational mode shapes of the nonlocal shell corresponding to the various boundary 

conditions, the functions of polynomial series are utilized to represent the components of 

displacement as 

    푢(푥, 휃, 푡) = 푈(푥) sin(푛휃) sin(휔푡)                                                                                        

(9-a)                                                                                          

    푣(푥, 휃, 푡) = 푉(푥) cos(푛휃) sin(휔푡)                                                                                       

(9-b)                                                                                        

    푤(푥, 휃, 푡) = 푊(푥) sin(푛휃) sin(휔푡)                                                                                      

(9-c)                                                                                 

    휓 (푥, 휃, 푡) = 훹 (푥) sin(푛휃) sin(휔푡)                                                                                    

(9-d)                                                                                     

    휓 (푥, 휃, 푡) = 훹 (푥)cos (푛휃)sin (휔푡)                                                                                    

(9-e)                                                                                   

where 

    푈 (푥) = 퐴 푥 (푥) (퐿 − 푥) = 퐴 푈                                             

(10-a) 

    푉 (푥) = 퐵 푥 (푥) (퐿 − 푥) = 퐵 푉                                              

(10-b) 
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    푊 (푥) = 퐶 푥 (푥) (퐿 − 푥) = 퐶 푊                                          

(10-c)                           

    훹 (푥) = 퐷 푥 (푥) (퐿 − 푥) = 퐷 훹                                       

(10-d) 

    훹 (푥) = 퐸 푥 (푥) (퐿 − 푥) = 퐸 훹                                       

(10-e) 

The values of 푛 , 푛  , 푛 ,  푛 and 푛  corresponding to different boundary conditions are 

given in Table 1. 

The cylindrical shell used in the nonlocal Donnell shell model is assumed to be symmetric 

about its mid-shell and its material is linear elastic. The total potential energy functional of 

SWCNT can be expressed as 

    Π(푢, 푣, 푤, 휓 , 휓 ) =   Π (푢, 푣, 푤, 휓 , 휓 ) + Π (푢, 푣, 푤, 휓 , 휓 )                                        

(11) 

in which 
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푅 + 휓 푑Ω 푑푡                                                           (12) 

and 
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Π (푢, 푣, 푤, 휓 , 휓 )

=
1
2 퐼 (푢̇) + 퐼 휓̇

− 휇 퐼 푢̇ 푢̇, +
1

푅 푢̇, + 퐼 휓̇ 휓̇ , +
1

푅 휓̇ , + 퐼 (푣̇) + 퐼 휓̇,

− 휇 퐼 푣̇ 푣̇, +
1

푅 푣̇, + 퐼 휓̇ 휓̇ , +
1

푅 휓̇
, + 퐼 (푤̇)

− 휇퐼 푤̇ 푤̇, +
1

푅 푤̇,

+ 퐼 (푢̇) + 퐼 휓̇ 퐼 휓̇ − 휇퐼 휓̇ , +
1

푅 휓̇ , + 퐼 (푣̇) + 퐼 휓̇

− 휇 퐼 푣̇ 푣̇, +
1

푅 푣̇,

+ 퐼 휓̇ 휓̇ , +
1

푅 휓̇
, 푑Ω 푑푡                                                     (13) 

Using the Rayleigh-Ritz technique, we have 

    Π = Π = Π = Π = Π = 0                                                                     (14)                                                                 

Equation (14) leads to 5 × 푀 linear algebraic equations. By solving the resulting 

eigenvalue problem, the fundamental frequencies of SWCNTs can be obtained and the 

associated eigenvectors yield the corresponding mode shapes. 

 

4. Numerical Results and Discussion 

 

The successful application of the nonlocal continuum shell model to free vibration analysis of 

SWCNTs needs strongly the appropriate values of Young’s modulus and effective thickness. 

In the current study, the thickness of nonlocal shell modeled is assumed to be equal to the 

spacing of graphite (ℎ = 0.34 푛푚). Also, the in-plane stiffness (퐸ℎ)of SWCNTs can be 

calculated from the variation of the potential energy with the value of applied compressive 

axial strain that provides the value of Young’s modulus.  

According to the above procedure, the values of Young’s modulus for both armchair and 

zigzag SWCNTs are obtained which are approximately the same and are equal to 

1170.39 퐺푃푎 and 1169.72 퐺푃푎 respectively. Moreover, the value of density used in the 

nonlocal shell model can be calculated easily as 

    휌 = ℵ = ×                                                                                                                            

(15)                                                                                                                           
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where ℵ is the mass of the nanotube which is equal to 푛 atoms with the mass of 푚. 푉, D and 퐿 

are the volume, diameter and length of the nanotube, respectively. In addition, the Poisson’s 

ratio 휈 = 0.3 is considered in the analysis.  

Determination of the proper value of nonlocal parameter used in the nonlocal continuum 

models is an important matter in predicting the response of nanotubes under various load 

conditions using nonlocal elasticity. The efficiency of the nonlocal continuum shell model 

developed in section 3 is quite dependent on the recognition of the appropriate value of 

nonlocal parameter for it. 

In the current study, through a nonlinear least square fitting procedure, the appropriate 

values of nonlocal parameter are derived corresponding to different boundary conditions, as 

the fundamental frequencies obtained from the two numerical methods namely as  MD 

simulation and Rayleigh-Ritz technique are matched together in which the value of nonlocal 

parameter is set as the optimization variable. The MD results are taken from [33]. The 

consistent values of 휇 are given in Table 2 for various boundary conditions and chiralities. It 

is found that chirality does not have an important role on the proper values of nonlocal 

parameter. However, the boundary conditions make a significant influence on the values of 휇 

proposed from the fitting procedure of the results. 

Figures 2-5 illustrate the comparison between the fundamental frequencies obtained from 

MD simulation and those of nonlocal continuum shell model related to different boundary 

conditions. The value of nonlocal parameter is changed from zero (local model) to the proper 

ones obtained through fitting procedure. It can be observed that there is an excellent 

agreement between the results of developed nonlocal continuum shell model with its proposed 

proper values of nonlocal parameter and those of MD simulations. Furthermore, it is clearly 

seen that the local shell model (휇 = 0) tends to overestimate the frequencies of SWCNT, 

especially when its aspect ratio decreases. As the aspect ratio increases, resonant frequencies 

tend to decrease and the effect of small length scale diminishes so that the frequency 

envelopes tend to converge. This observation means that the classical continuum model would 

give a reasonable prediction in the study of nanotubes of high aspect ratios for which the 

whole structure can be homogenized into a continuum. 

 

5. Conclusion 

 

In this work, the vibrational behavior of SWCNTs was studied on the basis of nonlocal 

continuum elasticity. The Donnell shell theory was employed with Eringen’s nonlocal 
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elasticity equations for considering small scale effects. The Rayleigh-Ritz technique was also 

used to solve the problem corresponding to four commonly used boundary conditions. The 

fundamental frequencies of SWCNTs with various aspect ratios and nonlocal parameters were 

calculated. 

To obtain the proper values of nonlocal parameter, MD simulations results were 

employed. It was found that in contrast to the chirality, the boundary conditions have a 

considerable influence on the appropriate values of nonlocal parameter. Also, it was observed 

that the present nonlocal continuum shell model with its proposed consistent values of 

nonlocal parameter has an excellent capability to predict the vibrational response of SWCNTs 

which is comparable to the results of MD simulation.  
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Table 1: Values of 푛 , 푛  , 푛 ,  푛 and 푛  for different boundary conditions 

Boundary 

Conditions 

푛  푛  푛  푛  푛  

Simply supported 

end 

0 1 1 0 1 

Clamped end 1 1 2 1 1 

Free end 0 0 0 0 0 

 

 

 

 

 

Table 2: Consistent values of nonlocal parameter corresponding to different boundary 

conditions and chirality 

(8,8) armchair SWCNT 

Simply supported-Simply supported 0.88 

Clamped-Clamped 0.59 

Clamped-Simply supported 0.56 

Clamped-Free 0.86 

(14,0) zigzag SWCNT 

Simply supported-Simply supported 0.88 

Clamped-Clamped 0.59 

Clamped-Simply supported 0.56 

Clamped-Free 0.86 
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Figure 5: comparison of the fundamental frequencies obtained by local and nonlocal models 

with those of MD simulations corresponding to clamped-free boundary conditions 
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Figure 2: comparison of the fundamental frequencies obtained by local and nonlocal models 

with those of MD simulations corresponding to simply supported-simply supported boundary 

conditions 
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Figure 3: comparison of the fundamental frequencies obtained by local and nonlocal models 

with those of MD simulations corresponding to clamped-clamped boundary conditions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: comparison of the fundamental frequencies obtained by local and nonlocal models 

with those of MD simulations corresponding to clamped-simply supported boundary 

conditions 
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Figure 5: comparison of the fundamental frequencies obtained by local and nonlocal models 

with those of MD simulations corresponding to clamped-free boundary conditions 

 

 


