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THE MANY FACETS OF STATISTICAL SCIENCE
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Abstract

There are three main functions of statisticians; observing complex phenomena, pro-
viding simple representations of the facts, and inducing conclusions of some generality
from data. Working in different fields, statisticians share a common culture and a
common set of ethical principles, along these functions, which is based on a common
discipline that orders objectivity, completeness and confidentiality.
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1. Introduction.

In the modern world one finds statisticians in many sectors, in many industries, in
many activities and with many different functions. One finds some of them in research
in the natural sciences; they then are planning experiments, or searching for appropriate
stochastic models that will fit the observed results; or still analyzing the implications of the
models. One finds statisticians in research in the social sciences; they then are planning
surveys, or analyzing large data sets, or still forecasting evolutions that will shape future
social life. One finds statisticians in manufacturing industries; they then are in charge of
quality control or human resource management. One finds statisticians in services; they
are then involved in market research or in building softwares for processing large data sets.
Last but not the least, far from that, one finds quite a few statisticians also in official
statistical agencies; then they plan censuses, sample surveys and retrieval of information
from administrative records; they organize the processing of large masses of data; they
produce and disseminate economic indices, national accounts; social indicators and the like.

Although spread in many places, working in many different environments and having
many different responsibilities, all statisticians contribute to a common science, and also
rely on this science. All statisticians share a common culture based on this science, on the
approaches that it implies and the norms of conduct that it recommends.

Knowledge of the statistical science and familiarity with the statistical culture are almost
everywhere underdeveloped. People are not used the think that many features in nature and
in human societies are quite variable, from one unit to another and through time for the same
unit. People are not used to face the consequences of this variability, in particular the fact
that it always introduces uncertainty, with which we have to cope. I may say in particular
that the statistical culture is underdeveloped in my country, France, notwithstanding the
efforts spent for it during the past half a century at least.
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In this address I cannot deal with the full range of subjects that this account of the
present situation suggests as interesting. The focus will be on three main general tasks
that have to be performed, that contribute to the progress of statistical science and whose
methodology is given by statistical science. These tasks are:

- observe complex phenomena for which variability cannot be ignored;

- provide simplified, synthetic and schematic but objective representations of the facts;

- induce from the data conclusions of some generality and then use appropriate tech-
niques developed by mathematical statistics.

In the conclusion I shall say a little more about the implications for the statistical
culture.

2. Observe Complex Phenomena

Observation is the first stage of knowledge. Collection of data on many units is required

when the facts to be known vary from one unit to another one. Then statisticians are called
on.

It would be too long to discuss here the various contexts in which such a collection of
data occurs. It is appropriate to limit attention to collection by official statistical agencies.

When I think of it in retrospect, after same 45 years of personal involvement with it, the
first comment coming to my mind is to stress the tremendous increase in the demand for
statistical data, an increase that far exceeds what I could have anticipated, an increase that
could not have been met without the technical progress in data processing and, to a more
limited extent, the technical progress also in data gathering. This explosion of demand for
statistical data has two sources.

In the first place, the needs for knowledge in a new field of investigation are commonly
underestimated. One first believes that few concepts suffice to describe the world, that
each concept has a simple definition and that data are easily accessible for measuring the
concept. But one always realizes that the first measurements that are provided fulfill only a
part of what is required and fulfill it imperfectly. They are subject to errors that one would
want to control by approaching measurement in some other way; they apply definitions that
are too loose for the level of accuracy required in some cases; they catch only one aspect of
a phenomenon and one is interested in other aspects, and so on.

In the second place, in our modern societies the world is being made increasingly com-
plex, particularly in the socio-economic field where new forms of life or of organization
appear, in which new products and new markets are created, in which new regulations
or new types of transfer are decided. Statisticians are requested to keep up with these
developments.

Faced with such a rapid increase in demand, statisticians are often found to be too slow
in answering. One does not realize that, in order to achieve the required level of accuracy,
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statistical operations have to be well accepted by those that contribute by their answers,
well planned, well controlled. Moreover a single measurement is hardly ever enough, since
one wants to compare. Hence, one has to view the setting up of a new statistical ope,ra.tion
as an investment.

Speaking of the techniques used in statistical data collection would be long if I had
to be fairly complete. Here, I shall mention only two quite different types of techniques:
probability sampling and processing of administrative data. In both types reliance on the
technique is imposed for efficiency. i.e. for having some needed information at the lowest
possible cost.

If we observe a sample rather than the full universe it is in order to save on costs
wherever this solution is possible without fully jeopardizing accuracy of the results. But in
order to be sure to achieve accuracy, one needs the sample to be representative enough of
the whole universe. Selecting the units to be observed at random. within the confines of
a well patterned sampling frame, is the only way that guarantees representativeness of the
sample.

One easily understands that this technique of random selection and of definition of
sampling frames relies on a precise methodology. Thinking about the number of questions
it raises and the diversity of the situations in which it is applied, one should not be surprised
to learn that this methodology is the subject of a whole branch of statistical science.

If we now more and more produce statistics from data found in the files of various
administrative offices, it is because direct collection of data from people or firms is costly,
both for those collecting the data and for those providing them. Once the collection was
made by an administration for its own needs, statisticians save much on costs if they also
can use these data. The solution requires not only that statisticians have access to the files,
but also that the data correspond to what statisticians are requested to measure. This last
condition is hardly ever perfectly satisfied.

As with probability sampling, one easily imagines that a methodology exists for this
statistical processing of administrative data. I do not insist on it. I just want to add a
comment of another nature, namely that, for the solution to work, a rigorous organization
is necessary, not only in the statistical office in charge of processing the data, but also in
the administration collecting the data and using them for its own purpose. Efficiency is the
joint business of both institutions.

3. Provide Simple Representations

Statisticians have to inform about facts and phenomena. They collect large quantities
of data. Directly discharging these data would not much help the users, who could not
easily make sense of them. It belongs to statisticians to extract the useful information.

Of course, what is useful may depend on the user. Statisticians have the duty to also
serve someone who needs the raw data because he wants to apply to them a particular
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treatment for his own purpose. But there is enough in common in the needs of most users
for general treatments made by statisticians to have proved indispensable.

The purpose then is to provide simple and synthetic representations of the facts. For
serving this purpose methods were found and developed. Improvements are often brought
to previously existing methods. New methods are also introduced. There is again a method-
ology, which is another part of statistical science. We may as well speak of several method-
ologies, because several kinds of operations have been found necessary in order to provide
appropriate representations. I shall briefly consider three such parts, which I may call
descriptive statistics, taxonomy and theory of indices and aggregates.

When data are available for a number of units, individuals or firms for instance, it is
often the case that one is not interested in the identities of particular units and that one
considers them as interchangeable from the point of view of the facts or phenomena to be
known. One is then only interested in what is called the statistical distribution of the data.

If only one numerical character of the units had been observed, such as the age of the
individuals, the statistical distribution would give the proportion of the units for which the
value of this character does not exceed any given quantity one may want to consider. From
this distribution one can compute the average value of the character or indicators of the
dispersion of the values of the character for the various units, such as the so-called standard
deviation of the character.

Usually statistical distributions are much more complex object because many characters
have been observed on each unit and some of these characters are not numerical but quali-
tative, such as the sex of the individual or the kind of job he or she is holding. Techniques
exist in order to deal with these complex distributions, so as to extract from the data sig-
nificant quantities or indicators, giving some useful information in the same way as is done
by average values or standard deviations. These techniques belong to the broad field often
called "data analysis”, a field that has benefited, over the last century and since the last
world war, of the work of many mathematicians.

Although not interested in the identification of the units, one often wants to be able to
classify them among relevant groups and to look at the statistical distribution within each
group. In some cases the grouping is obvious, such as when one wants to distinguish by
sex. In other cases it is not immediately given and one would like to know how to proceed.
For instance the kind of job held by an individual is defined by many features: the activity
of the establishment where he works, the qualification of the job, perhaps also the type of
employment contract and of work schedule. Moreover for each feature, such as the activity
or the establishment, there are many possible modalities. It would serve no purpose to
define groups at a greatest level of detail, because there would be too many groups.

The problem of knowing how to define useful classifications is the object of taxonomy
and has foremost importance for statisticians. There are two quite different approaches to
it, serving different kinds of needs. According to the first approach one considers the whole
available data set and one defines groups by clustering units, according to proximities in
the values taken by the various characters for the different units; the object then is to have,
within each group, units that, as far as possible, are similar with respect to these values.
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So, data analysis is used for defining classifications.

Instead of looking at the data to be summarized, the other approach considers the
needs of the users. The principle is to define classifications by trying to best fulfill these
needs and in order to do so to ask users. It is commonly the case that different users have
different needs and wishes; they request different and conflicting classifications. So, a kind
of compromise has to be found. This is the approach commonly used in official statistics,
an approach applying procedures that have been learned from experience.

The definition, production and dissemination of aggregate indices and indicators, as
well as of national economic accounts are now notorious statistical operations. They have,
involved in the past and are still involving now for their progress, three kinds of specialists:
(i) statisticians looking for the desirable formal properties of the aggregates and trying to
derive formulas that would have these properties, as well as possible; (ii) subject matter
specialists, mostly economists but also sociologists,studying what meaningful definitions
ought to be and what would be most appropriate for research on economic and social phe-
nomena; (iii) official statisticians concerned by the efficiency and accuracy of the methods
to be applied in the regular and timely production of aggregates.

4. Induce From the Data

Knowing a phenomenon is not only to have well observed past events and present struc-
tures; it is also to be able to explain at least some aspects of these events and structures; it
is to be able to make some production about the effects of occurring changes in the envi-
ronment or of deliberate actions. Knowing a phenomenon then is to have an understanding
of how it works in general and not only to have seen its manifestation in the particular
circumstances that held when data were collected.

This general knowledge is built progressively by inference from statistical observation.
An important part of statistical science is quite naturally concerned by how conclusions
with a general meaning can be drawn from data. This part is currently called mathematical
statistics, although mathematics are also used in descriptive statistics, as we saw.

Mathematical statistics is directly facing a fundamental difficulty, which has been widely
discussed in the philosophy of sciences under the name "the problem of induction”: How can
one logically draw a general conclusion from particular observations? Entering a discussion
on this logical issue would, of course, take us too far afield.

Let me simply say that mathematical statistics admits the existence of a model ruling
the phenomenon under study. The model, which of course is taken as applying to the data,
was not fully known to the statistician before he had looked at the data to be analyzed;
the values of some parameters was unknown or incompletely known; but he knew already
enough about the phenomenon to be able to write down the form of the model.

The model is not deterministic; it is not meant to provide a complete explanation of the
data or the phenomenon; it recognizes the presence of some unexplained errors. The errors
are taken as random and the model as probabilistic.
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The object of statistical inference then is to derive from the data conclusions about
the unknown parameters of the model, for instance to estimate them. The conclusions or
estimation are inevitably subject to some margins of error, which are random in the same
way as the error of the model.

Mathematical statistics has to find formulas for drawing inference from the data, for
instance formulas for estimating the parameters of the model. It has to study the margins of
error and to characterize them. It has to compare the respective performances of alternative
formulas. This has to be done for all kinds of models and for all types of inferences that
have to be considered in the various fields where statistics are used.

This explains why mathematical statistics grew so much as to become a field of its own,
with its scientific journals, with its scientific associations, with its departments in many
well known universities. Drawing on mathematics and probability theory, research is very
active in this field and is attracting excellent people. It is stimulated by many applied
inference problems: in economics, in psychology, in biology, in medicine, in agricultural and
environmental sciences, and so on.

5. The Statistical Culture

Considering how different are the functions of statisticians, it may be surprising to
learn that statisticians nevertheless share common culture. As I said at the beginning, this
culture is based both on a common discipline, which is suited for all these functions, and
on a common set of ethical principles. Let us look briefly at these two aspects of statistical
culture.

The scientific discipline concerns how to deal with facts and phenomena that are subject
to the influence of uncontrolled and variable factors. In order to grasp these facts and
phenomena, in order to overcome the variability to which they are subject, one needs to
have observations collected on many units. With few data the main tendencies would not
appear; with large sets of data they are revealed to those who correctly look at the evidence.
All statisticians have to be competent in dealing with large sets of data; they must know
how to collect them in such a way that they are informative with respect to the underlying
facts and phenomena; they must know how to process them so as to extract this relevant
information.

Such a competence requires to think in terms of probabilities. Thinking in terms of
purely deterministic causation, when facts and phenomena are subject to many uncontrolled
and variable factors, would be much too complex, hence inefficient. A probabilistic approach
is unavoidable. It is sometimes implicit, but a little reflection shows that randomness is

always admitted; a little reflection also shows that making explicit reference to the assumed
randomness helps to work correctly.

The ethical principles embodied in the statistical culture contain those that are com-
mon to all scientists. We may summarize this first group of principles under the label of

10
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objectivity: statisticians must aim at true statements and strive to prevent their subjective
evaluation to interfere.

The ethical principles of statistics also impose two, sometimes conflicting, requirements.
Statisticians must inform as completely as then can. But they must also protect the con-
fidentiality of individual data, i.e. -they must not disclose information on individual units.
In most cases the statistical information requested by the users does not create any prob-
lem with respect to confidentiality because it concerns large populations. Problems may,
however, arise with quite specific data on small geographical areas or with data concern-
ing activity in industries where only one or two large firms operate. As usual with ethical
problems, the profession then has to find appropriate rules of conduct and to make them
known.

I am conscious that this tour around the many facets of statistical science has been fast.
But I am sure that my fellow statisticians are ready to present our discipline at more leisure
to those who want to know it more deeply.

OZET

[statistik¢ilerin ti¢ dnemli iglevi vardir; karmasik olaylari gdzlemek , gergeklerin basit
temsillerini vermek ve verilerden bazi genelleyici sonuglara ulasmak. Cesitli alanlarda ¢aligan
istatistikgiler bu islevlerinde ortak bir killtiril ve ortak bir ahlaki ilkeler kimesini paylagirlar ki
bunlar objektifligi, biitinltigll ve gizliligi emreden ortak bir disipline dayalidir.

11
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Abstract

In this paper, the dual control problems for the linear estimation problems with
noises having pointwise and distributed shifts are derived.
Key Words: Estimation, filtering, smoothing, prediction, duality, control.

1. Introduction

Estimation theory is a widely used concept in engineering studies such as space
engineering, electronics, geophysics, etc. The estimation problems consist in estimat-
ing an unobservable signal process z at instant £ on the basis of observation data =z
on time interval [0,7]. Depending on the relation of ¢ and 7 the three kinds of the
estimation problems are considered: (a) filtering, if ¢ = 7, (b) smoothing, if £ < 7 and
(c) prediction, if t > .

The underlying ideas of the linear estimation were defined by Kalman and Bucy
[1,2]. In particular, in Kalman [1], the duality between the linear filtering and linear
regulator problems is obtained. This result determines the general approach for synthe-
sizing the optimal estimators through the optimal controls in the dual linear regulator
problems. This approach is used in Bashirov and Mishne [3,4] for synthesizing the
optimal filters in the linear filtering problems when the noises on the signal and the
observations have pointwise and distributed shifts.

Application of the approach, based on duality, in studying the estimation problems
requires the construction of the dual optimal control problem. The aim in this paper
is the construction of the dual optimal control problems to the linear smoothing and
prediction problems, with noises having pointwise and distributed shifts, and proving
the duality theorem.

13
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2. Notations

In this paper, the followmg notations are used:

(Q,F,P) :  complete probability space

H,X,Z : real seperable Hilbert spaces

L (H,Z) : space of linear bounded operators on H to Z

L{X )= L (X ,X)

& v :  inner product

-1 : norm

By(a,b; L (H, X)) : class of strongly measurable £ (H, X )-valued functions F'
on [a,b] with [? || F; ||2 dt < oo

B, (a,b;L (H,X)) : class of strongly measurable £ (H, X )-valued functions F'
on [a,b] with essup|| F; ||< oo

La(a,b; Z) :  space of (equivalence classes of ) Lebesque measurable
and square integrable functions on [a,b] to Z

A* : adjoint to operator 4

E : expectation

cov(z,y) : covariance operator of random variables z and y

cov z= cov(z,z)

X[a,b)(8) : characteristic function of the set [a, b]

3. Setting of Linear Estimation Problem for Shifted White Noises

Let (z¢, 2;) be a partially observed linear stochastic system
z; = Az + Pwy, t>0, =z is given, (1)

2 =Cz¢ + \I"LUH.(, t>0, zg =0, (2)

where z; and z; are the signal and observation processes, respectively, at time ¢, 4
is the infinitesimal generator of the strongly continuous semigroup U;, t > 0, C €
L(X,Z), e L(H,X), Y € L(H,Z), wis H-valued white noise process with Ew; = 0,
cov(we, ws) = Wo(t—s) in which § is the Dirac’s delta function, zo is a random variable
with Ezg = 0 and covzg = Py. We suppose that zg is independent of w and €> 0. The
system (1) - (2) can be written in the following integral form as well:

t
2 = Uizo + fu Uy dw,ds, t32 0, | (3)

L4
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¢ t
2z = L Cz,ds +/; Yw,ieds, t2>0. (4)

Let 7 > 0 and ¢ > 0 be two time moments. The best linear estimation #7 of z; on
the basis of observations z, on 0 < s < 7 is a random variable in the form

&7 =fﬂ K,z,ds; K € B2(0,7;L(Z, X)), (5)

that minimizes the error "
E o~ [ Gids|P? (6)

over all G € B3(0,7; L (Z,X)).
Lemma 1 : Under the above conditions &7, defined in (5), is a best linear estimation
for the system (3) and (4), if and only if K satisfies the following Wiener-Hopf equation

T max(0,5—¢)
K,V + / K,CA, ,C*dr + / K, N*Ur_,_ C*dr +
0 0

[ sy Kr Clr—smcNar = Aoy C” 4 Xpomg(WimseN, 0S5 <7, (7)
mun(r,s4¢
where inrid)
Ary = U, PoU* + /0 Uy WUS_do, T3>0, s>0, (8)
and _ a S
W = 8Wae*, V = TWe*, N = sWe-. (9)

Proof. By the orthogonal projection lemma (see Curtain [5]) (5) is the best linear
estimation of z; on the base z,, 0 < s < 7, if and only if

=
cov (E-g - :E{,/ G,é,d.s) =0, forall Ge By(0,7;L(Z2,X)).
0
Evaluating the above equality and using the arbitrariness of G one can obtain the equation
(7) with (8) and (9) for K and vice versa.

Note that the equation (7) is not constructive in synthesizing of K. Nevertheless,
we will use (7) in proving of the duality theorem.

15
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4. Dual Control Problem in the Case of Shifted White Noises

Consider the control problem

& = —{ u:"m“(o’f—‘)f’ 227 4% } +

0, s<T—1
(10)
max(s,t—T)
/ u;_.C*n.dr, 0< s < max(r,t),
max(0,t—7)
and
max(T,t)
J(n) = <£max{-r,t)’ PO{M(T.‘]) + j(; (€5, WE,) ds+

(11)

max(7,t) max(e,,t)

(ﬂ.n V’h) ds +2 ("hs N'es—z) ds,
max(0,t—7) max(e,t—7)

where £ is a state process, J(7) is the functional to be minimized, 7 is a control from
the set of admissible controls Ly(max(0,t — 7), max(7,t); Z), f 1is an arbitrary fixed
vector in X, N,V,W are defined in (9), U, P and € are as defined in Section 3.
Note that in the control problem (10) - (11), the cases t — 7 = 0, — 7 < 0 and
t — T > 0 are available and in fact (10) - (11) is the combination of these three cases.
Lemma 2 : Under the above conditions n is an optimal control in the control
problem (10) - (11) if and only if it satisfies the following equation

max(7,t)

Vﬂ’ * CA:nu(T,t)—r,:nnx(-r,t)-sC-n"dr +

max(0,t—7)

max(0,s—e,t—7) max(ste,7,t)
/ N'U;_,_.C*nedr + f ClUy_s—eNnpdr = (12)
s+e

max(0,t—7)
CA:,rn.a.x(*r,t)—sf + x[mlx{t.=+‘r—t).m](s)Nﬁu:—(+min(0,t-1‘)f"

where max(0,t — 7) < s < max(7,t) and A, is defined in (8).

Proof. If i) is the optimal control then J(n+ AAn)—J(n) = 0 for all real numbers A
and admissible controls A7. Evaluating the above inequality and using the arbitrariness
of n and An one can obtain the equation (12) for 7 and vice versa. Note that the proof

16
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of Lemma 2 in general case has difficulties. To overcome this, it is convenient to prove
it fort — 7 < 0 and t — 7 > 0 cases separately. The case t — 7 = 0 needs no separate
consideration since it can seen in any of the above cases.

Theorem 1 : Under the above conditions (5) is the best linear estimation for the
system (3) - (4) if and only if n, = I{'I‘:‘“(T't)_’f , max(0,t — 7) < s < max(r,t) is an
optimal control in the control problem (10) - (11).

Proof. Let 1 be optimal in the control problem (10) - (11). Then, by Lemma 2, it
satisfies the equation (12). Substituting n, = K7, (. _,f in (12), using arbitrariness
of f and taking adjoint in both sides of (12) one can obtain that K satisfies (7). So, by
Lemma 1, the best linear estimation for the system (3) -(4) has the form (5). Conversely,
if (5) is the best linear estimation for the system (3) - (4), then by Lemma 1 K in (5)
satisfies (7). Taking adjoint in both sides of (7), one can obtain that 7, = KZ,..; y_,f
satisfies (12) for all f € X. So, by Lemma 2 the control n, = K;l“(_r't)_,f is optimal
in the control problem (10) - (11).

Theorem 1 states the duality between the estimation problem for the system (3)
- (4) and the control problem (10 - (11). By this theorem synthesizing of K in (5) is
equivalent to finding optimal control as in Theorem 1.

5. Setting of Linear Estimation Problem for Shifted White and
Wide-Band Noises

In this and next section, the results of the previous sections will be modified to the
linear estimation problem (13) - (14) defined below.
Consider the partially obsered linear stochastic system

t 5
iy = U¢z0+// 00y HemsBo-swad0ds, 120, (13)
0 max(0,s—¢
t t
B = /C:r:,ds+/ Yw,ds, t3>0, (14)
0 0

where the conditions of Section 3 hold and ® € Boo(—¢€,0; L(H,X)). One can verify
that the noise .
e / By wedd (15)

max(0,t—¢)

the signal system (13) is obtained by distributed shift of the observation noise and
satisfies
=0 lt — Sl e
’ = 16
COV(!pt,w,){ £0, |t-s|<e. (16)

17
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So ¢ is a wide-band noise and one can specify the system (13) - (14) as a system with
shifted white and wide-band noises. Note that in the case of system (3) - (4) the
pointwise shift of the white noises was used.

The following result can be proved similar to the proof of Lemma 1.
Lemma 3 : £], defined in (5), is a best linear estimation for the system (13) - (14)
if and only if K satisﬁfs the following Wiener-Hopf equation

T s 0
K,V + / K,CA,,C*dr + / f K.N2U:_,,,C*dodr +
0 0 Jmax(—e,r—s)

T 0
/ / K,.CUy 34y Nydodr = (17)

max(—e¢,5—7)

max(0,s—¢)
A-g_,c‘- + Ug_,+3N9d8, 0 S 3 S T,

max(—e,s~1)

where

min(r,s) ;0 0
Ava = U Poll3 + [ / / Us—040 W aldr_pyodadodd, (18)
0

max(—e¢,0—r,) Jmax(—e,0—3)

Woo =B, W%, Noy=&WU*, V=UWT*, (19)

6. Dual Control Problem in the Case of Shifted White and Wide-Band
Noises

Consider the state process £, defined in (10), and the functional, where 7 is a control
from the set of admissible controls Lz(max(0,t — 7), max(7,t); Z) and W,N,V are as
defined in (19).

The following result can be proved similar to the proof of Lemma 2.

Lemma 4 : Under the above conditions 1) is an optimal control in control problem
(10) and (20) if and only if it satisfies the following equation

max(7,t)

Vns + (47, % C*nydr +

max(0,t—7) max(7,t)—r,max(7,t)—s

s 0
/ / NJU;_ . o C*npdodr +

max(0,t—7) Jmax(—e,r—s)
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max(T,t) p0
j j ( ) CUy—_s40 Nonpdodr = (20)

max(0,7~t—3s)

CA':.max(-r,t)—sf +[nu(—=.-—s.r——t-—a) N;u:+0—mu(0.f-—t}fda!

where max(0,t — ) < s < max(7,t) and A, , is defined in (18).

Theorem 2 : Under the above conditions (5) is the best linear estimation for the
system (13) - (14) if and only if 1 = K 4y 0)—sf » max(0,¢ — 7) < 8 < max(7,?) , is
an optimal control in the control problem (10) and (20).
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OZET

Bu c¢aligmada, Kestirim problemlerinden olan diizleme ve dngdrit problemleri ele alinmmg
ve bu problemlerin noktasal ve dagitilmig kaydirma igeren girilitiller igin giftes denetim
problemleri tretilmigtir. Kismen gozlemlenebilen dogrusal tiirel sistemi ig¢in dikey izdiistim &n
kurami ve artinm ySntemi kullanilmig ve en iyi dogrusal kestirim bulunmusgtur.
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THE UNIFORMLY BETTER UNBIASED ESTIMATOR
FOR THE SLOPE PARAMETER IN SIMPLE LINEAR
REGRESSION WITH ONE- FOLD NESTED ERROR

Bilgehan Giiven
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06531, Ankara Turkey

Abstract

Simple linear regression with one fold nested error is defined as one way covariance
classification in which the treatment effects are random. As in one way covariance
classification, there are two independent unbiased estimators of the slope parameter.
The condition for obtaining the more efficient unbiased estimator of the slope parameter
and its numerical verification are presented.

Key Words: Recovery Block Information, Uniformly Minimum Variance Unbiased
Estimator, More Efficient Estimator.

1. Introduction

Fuller and Battese (1973) introduced the following model
Yir = p+ Pxix +a; + ejk g== L 2vangid k= L2000

where Yji and zj; are dependent and independent variables respectively, 4 and  are the
unknown parameters. The terms a; and ej; are independent normal variables with zero
expectations and variances 02 and o2 respectively. This model is called simple linear re-
gression with one fold nested error.

The model can be used for an experiment on J randomly selected units with K subunits
taken on each selected unit. The term a; represents an error component associated with
units and the term eji represents an error component associated with the subunit. A
classical example of the model is two stage sampling.

Fuller and Battese described the method of generalized least squares estimation for the
unknown parameters of the model. Tong and Cornelius (1989, 1991) studied both the
estimation and the hypothesis testing of the slope parameter .

As it is explained in Section 2, the uniformly minimum variance unbiased (UMVU)
estimator for the slope parameter B does not exist when the variance components al, o}
are unknown. However there are two different unbiased estimators for 8. The main purpose
of this article is to find the conditions that an unbiased estimator of 8 obtained by combining
two unbiased estimators of # has smaller variance than any of two unbiased estimators.
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2. Uniformly Minimum Variance Unbiased Estimator
Simple linear regression with one fold nested error can be considered as one-way analysis

of covariance model in which block effects are random. Then we have two independent
unbiased estimators of § given by

s S885,(Yz) .  SS.(Yz)
b= S8um) P+ SE.m) @
where P
§Sa(aY) = K 3 (¥;. - Y.)(w5 — 2.)
i=1

J K
5Se(zY) = 3 > (Yik — Y;.)(zik — 2.)
i=1k=1
g, =YK zp/K, z. =T, TK zjx/JK. §Su(zz), SSe(z2), Y;., and Y, are defined
similarly, Ba ~ N(B,(c2 + Ko2)/SS.(zz)) and
Be ~ N(B,02/5Se(zx)).
The minimal sufficient statistic for the four unknown parameters based on JK observa-
tions is

(55.(YY),55.(YY), §54(2Y), §5(zY),Y.) (2)

and says that the dimension of the natural parameter space is five. However, the dimension

of the parameter space is four. It follows that the minimal sufficient statistic in (2) is not

complete and consequently, the Rao-Blackwell theorem can not be used for obtaining the

UMVU estimator of 3. Therefore, the theorem 1.1 in the page 77 of Lehman (1983) is used
The class of unbiased estimators of 3 is:

U= {ﬁ‘U = waa'i'(]-_'w)BG w e [0! 1]}
Then By is the UMVU estimator of 8 if

o2+ Ko? o?

E[JEU] = wm -— (1 o W)m =0

where 6§ = 3, — . is the unbiased estimator of 0. It implies that the weight function w for
the UMVU estimator of § must be:

02/5Se(zz) (3)
02/88.(zz) + (02 + Ko2)/5S.(zz)’

w=

An UMVU estimator is unique when sufficient statistics is either complete or not com-
plete (see Barankin , 1949). So it is impossible to obtain the UMVU estimator of 8 without
knowing the variance components.
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3. Uniformly Better Unbiased Estimator

When the variance components are unknown, the problem turns to be how to combine
two independent estimators G, and f3. to get a more efficient estimator of . An unbiased
estimator more efficient than both 3, and J, is called a uniformly better unbiased estimator
of B. It is well known that for any constant ¢ € [0, 1], the variance of ¢8, + (1 — ¢)g. is
greater than either Var(8,) or Var(3,) for some values of Var(f3,) and Var(8,). Therefore,
in order to get a more efficient estimator of 3, we first find an estimator  of (1) as a random
weight function.

The unbiased estimators 3, and 3, in (1) can be rewritten in the matrix forms as

R KXTPY,; . XTQy
Joemllid 5 X Y (4)
X PX XT'QXxX
where the symmetric and idempotent matrices P and Q are:
1 1
P=[I;- 31517] Q= [LQ®Uk - 71xk1%)]
and X’frv'_ = (21,2200 20 ) XT = (11> %12+« - T1K» T214+ + - TJ1 TI2s - - -1 TIK). Y3 and Y

are defined similarly. 1, is an n X 1 vector of ones. The symbol ® denotes the Kronecker
matrix product.

To estimate w, we find the unbiased estimators for 02 + Ko? and o2. Consider the
following quadratic forms,

K i(yj- —Y. - Ba(z;. —2.))? = K(Ys — BX0)TP(Ys — BaX1) (5)
j=1
J K ) ) R
SO S Yk = Vi = Be(zik — 25.))? = (Y — B.X)TQ(Y — B.X). (6)
i=1k=1

Denote (5) by S2(3,) and (6) by S2(3.). Substituting the matrix form of 3, in (4) into (5),

we get

N PX X;P
2 — TP S OdANET 7
Let u}: = (e1.4+a1,e3.+asz,...,e;. +ay) wheree;, = Ef=1 e;jk/K. Then the J x 1 vector
Y ; can be expressed as
Y = ply+ BXy +uy, (8)

where the random variable K1/2u; is distributed as a multivariate normal distribution with
zero mean vector and covariance matrix (02 + Ko?)I;. Using (8), (7) becomes

. PX;XJP
52(8e) = Kuf(P - STy, ®)

PX,XZP
J.

since P1; = 0 and (P — —x-g-ﬁl—)x.;_ =10,
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Similarly substituting the matrix form of 4. in (4) into (6), we get

3 QXXTQ
S2(B.) = YT(Q - _fTQ—X)Y (10)
where the JK x 1 vector Y can be expressed as
Y =plyk + X + (I;Q1k)a + e. (11)
Using (11), (10) becomes
2(4,) = eT(Q — IXXTQ
S2(5e) = 7(Q - e (12)

since Qlyx = 0, (I;®1x)Q = 0 and (Q — %%’;?)x 0, and where the random
vector e is dlstnbuted as a multivariate normal dlstrlbutl(}l} with the zero mean vector
and covariance matrix ¢2I;x. Note that both (P — Tﬁf—) and (Q — %}—%’?) are
idempotent since the matrices P and Q are idempotent.

From (9) and (12), it can be proved that S2(83,)/(02 + Ko2) and S2(B.)/o? are dis-
tributed as chi square distributions with degrees of freedoms

PX,;XTp
P-—L )=
B =, 1T
and

QXXTQ

Then S$2(B.)/(J —2) and S%(B.)/(J(K —1)—1) are the unbiased estimators of 02 + K o2
and o2 respectively. Consequently, the estimator % of (3) will be:

- [S2(Be)/(J(K = 1) = 1)§5,(z2)] .
[S2(82)/(J = )8 Sa(a2)] + [S2(B)/(J(K — 1) = 1)554(z2)]

w =

Let P = (P — _X};{PJ_{XLB) and Q = (Q — %{T%;?) Since the matrices P and Q are

idempotent, the qua.dra.tlc forms (9) and (12) can be rewritten as
52(B.) = KulPPu;  S%(B.) = T QQe.

Using the normal theory, it can be shown that the ra.ndom variables K1/2Puy, Qe, (3, and
B. are independent. It follows that 52(8.), 52(B.), Ba and fB. are independent.
The estimator w of (3) is of the form

1
1+rF

w =

here
) _ 33(33“)/[(1 —2)(02 + Ko?)]
52(Be)/(J(K — 1) — 1)o2
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and )
(a + Ko2)/55.(zz) _ Var(Ba)
02/55.(zz) " Var(B.)
where F is a F random variable with degrees of freedoms J — 2 and J(K — 1) — 1.
Now we first create an unbiased estimator of # and then find the condition that this

unbiased estimator is more efficient than both B. and B.. Consider the estimator Bu =
W, + (1 — w)B.. Then

E[f.] = Eg[E[B.|@]] = Ea[E[®Ba|0] + E[(1 — w)B.|d]]
= Eg[WE[B.] + (1 — @)E[B]] = 8

since W is independent of ﬂn and ,B,

We find the conditions on J and K for which 3, is more efficient than both Ba and B..
The variance of 3. is

Var(B.) = E[w(8a — B) + (1 = ®)(B. ~ B)]?
= Var(B.)E[@?) + Var(fie)E[(l - w)?]
1 r3f?

since the cross term E[(f, — 1‘5’)(;(3’e - B)] = 0. Two cases must be considered: Var(3,) <
Var(B.) and Var(B.) < Var(B,)-
If the first case holds, then 0 < r < 1 and

Var(ﬁ-) = Vﬂf(ﬁc)(E['(l:._F)z] ez [(1 -:rfFa)zl)

= Var(fa.

1+ rF?
)E[(1+ F)2]
If the second case holds, then 1 < r < co and

= Var(ﬁn

Var(B.) = Var(ﬁe)(fE[(—l“;l—ij] + E[(ltl-fFJQ])

Ifwelet a=1/rand W = 1/F, then 0 < @ < 1 and W is a F random variable with degrees
of freedoms J(K — 1) — 1 and J — 2, we get

_ 2
Var(8.) = Var(B) Bl +agpsa)

The unbiased estimator 3, is more efficient if and only if

1+ rF? 14 aW?
____(1+rF)3] <1 and JE,‘[(I*MWI;’,)2

Using the method of Graybill (1959), we find which values of J and K allow the uniformly
better estimator to exist. Let m; = J(K — 1) — 1 and mz = (J — 2) and let E[dﬁ%] be

E[ ] <1, (13)
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denoted by f(r). In what follows, it is assumed that both m; and mg are greater than 4.
We examine the derivative of f(7) at the point r = 0.

' 14 7F2 d 1+ r1F?
fn= [(1 T+ = Bl
and so ( +2)
’ - o mi my\msa
£(0) = B{F* - 2F] = —P BT Eos g (14)

Observe that f(0) = 1. Consider f (0) < 0 and then the slope of f(r)’is negative at

r = 0. Therefore f(r) must be less than 1 for some values of 7 in the neighborhood of 0.
From (14), this happens if

m1 (m2 e 2)

<2
mg(ml — 4)

Taking m, fixed, we find the values of m, such that f'(O) < 0. For the values of m; =
10,11,12,13, 14, 15,16, we get m, > 10,8,7,6,5,5,2
If we use the similar approach for E[#ﬁi’]’ we get m; > 10,8,7,6,5,5,2 for the fixed

values of my = 10,11,12,13,14,15,16. We conclude that the uniformly better estimator
exists when both m; and m, are equal or greater than 10. That implies, the uniformly
better estimator for B exists when J > 12 and K > 2. ¥

4. Numerical Verification

From (13), the uniformly better estimator of 8 exists if

14 rF? (ma/my)m™ /2
[(1 + rF)’I B('n:1/2: ma/2) (15)

oo (1 + rv)2.umz/2 1
x -/0 (14 rv)2(1 + mgv/ml)(mﬁma)/?

is less than 1 where m; = J(K — 1) — 1 and my = K — 2. The integral is numerically
evaluated for some values of J, K and the ratio r of the variances of 3, and 3.. Using the
subroutine dqagi in the CM computer library, the following table is tabulated
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(J, K) | r=0.1 | 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

(16, 2) | 0.947 | 0.899 | 0.855 | 0.815 | 0.778 | 0.745 | 0.713 | 0.685 | 0.559
(16, 3) | 0.940 | 0.887 | 0.839 | 0.796 | 0.757 | 0.721 | 0.689 | 0.659 | 0.631
(16,4) | 0.938 | 0.833 | 0.834 | 0.789 | 0.749 | 0.713 | 0.680 | 0.650 | 0.622
(16, 5) | 0.936 | 0.881 | 0.831 | 0.786 | 0.745 | 0.710 | 0.675 | 0.645 | 0.616
(18, 2) | 0.946 | 0.898 | 0.855 | 0.814 | 0.778 | 0.744 | 0.713 | 0.685 | 0.657
(18, 3) | 0.940 | 0.886 | 0.840 | 0.796 | 0.756 | 0.720 | 0.688 | 0.657 | 0.630
J (18, 4) | 0.937 | 0.882 | 0.833 | 0.789 | 0.749 | 0.712 | 0.679 | 0.648 | 0.620
f (18, 5) | 0.936 | 0.880 | 0.830 | 0.785 | 0.744 | 0.708 | 0.674 | 0.643 | 0.615
(20, 2) | 0.947 | 0.899 | 0.855 | 0.815 | 0.778 | 0.744 | 0.713 | 0.684 | 0.657
(20, 3) | 0.940 | 0.887 | 0.838 | 0.795 | 0.755 | 0.720 | 0.687 | 0.656 | 0.628
(20, 4) | 0.938 | 0.882 | 0.832 | 0.788 | 0.748 | 0.711 | 0.677 | 0.646 | 0.618
(20, 5) | 0.936 | 0.880 | 0.830 | 0.784 | 0.743 | 0.706 | 0.672 | 0.641 0.613
(22, 2) | 0.947 | 0.898 | 0.854 | 0.814 | 0.778 | 0.743 | 0.712 | 0.683 | 0.656
(22, 3) | 0.940 | 0.886 | 0.838 | 0.794 | 0.755 | 0.719 | 0.686 | 0.655 | 0.627
(22,4) | 0.937 | 0.882 | 0.832 | 0.787 | 0.747 | 0.710 | 0.676 | 0.646 | 0.617

(22,5) | 0.936 | 0.879 | 0.829 | 0.784 | 0.743 | 0.705 | 0.671 0.641 | 0.612

Table 1: The Values of Integral in (15) for Some Degrees of Freedoms J and K and the
Ratio 7 of the Variances 3, and £.

From the table, we conclude that the expectations in (13) can be considerd as a decreas-
ing function of r and a. Also, when the variances of (. and fB. are close to each other, it is
possible to get unbiased estimator whose variances is half of the maximum of the variances
of the unbiased estimators G, and f,. of 3.
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OZET

Birli katlanmig hata terimli basit regresyon modelinde egim parametresi igin iki farkh
yansiz'tahmin edici vardir. Varyanslar bilinmedigi zaman tahmin problemi bu iki tahmin edicinin
hangi agirhik katsayilariyla birlegtirilerek daha kiigtik varyansh yansiz bir tahmine ddntstilrillmesi
problemidir. Bu ¢aligmada, rasgele agirhk katsayilan elde edilerek egim parametresinin daha etkin
yansiz tahmin edicisi bulunmug ve sayisal bir 8rnekle kanitlanmigtir.
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BRANCHING PROCESSES WITH DECREASING
IMMIGRATION
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Abstract

Decomposable branching processes with decreasing immigration are considered. Some
limit theorems for these processes are provided.

Key words: Decomposable branching processes, single type branching processes,
limit theorems.

1. Introduction

We consider a non homogeneous, in general, branching process with particles of three
types Ty, T; and T3. Assume that within the interval of time (¢,% + At) , At — 0, a particle
of type T; is transmuted into a collection of particles w=(w,, ws, w3) of types T}, T3, T35 with
probabilities 6§ + p¥ (t) At + o(At) , where §f = 1forwy =1, w; =0,7%# k and 6’ =0
otherwise. We shall assume that particles of the type T; are final, that is under any change
a particle of the type T} yields exactly one particle of type 77 and a certain collection of
particles of types 72 and 75 which cannot revert back into T (Sevast’yanov 1971).

In addition we assume that particles of type T> may transmute into particles of types
T, and T3, and particles of type 73 only into those of type T35 and probabilities of these
transmutions are independent of time. This means that our process has only transitions of
the form T1 - Tg — Ta.

We denote by uf,(t) the number of particles of type T; obtained from one particle
of type T} within the interval of time (7,t) and ux; (t) = p@; (¢). The process u(t) =
(12 (t) , 13 (t)) can be interpreted as two type decomposable branching process with time-
dependent immigration.

Single-type branching processes and multi-type indecomposable branching processes
with time-dependent immigration were considered by Foster and Williamson (1971), Badal-
baev and Rahimov (1978,1982,1985), Rahimov (1986). The survey by Vatutin and Zubkov
(1985) and papers by Vatutin and Sagitov (1988,1989) contain quite a complete list of
references concerning decomposable processes.

Some limit theorems for the process u (t) will be proved in this paper, when reproduction
processes are critical and intensities of the number of "immigrants” are decreasing.

Introduce the following generating functions
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fe(,X)=D_ PY@) XXXy , X = (X1, X2, X3)

with fi (¢,X) =0 for X; = X2 = X3 =1 and for any t € [0,00). In our assumptions these
generating functions can be represented in a form

fH (2, X) = X19(t, X2, X3), f (£, X2) = f2(X2,X3), f3(t, X) = fa(X3).
Introduce the generating functions
F7(t,X) = 3 P{pha (t) = w1, u; (1) = wa pfs (1) = w3} X7 X372 X3°
and put H (¢, X2, X3) = F?(t,1, X3, X3). By the same arguments as Sevast’yanov (1971)

it can be obtained that

H (t,X3,X3) = exp {/g(u,Fg(t —u, X)F5(t — u,X))du} . (1)
0

We shall assume that, at the points X2 = X3 = 1, the functions f; (X) and f3(X) have
all derivatives up to order three and denote

Ok i i giq , 2Lk
3:!:_,; X=1= Gk; » BXJZ

We also put for k,j =2,3

=by , b, 7 =2,3.

ag (ts XQ’
00X

9%g (¢, X3, X3)

X

= Br; (1)
and assume that

sup o (t) < o0, sup Br; (t) < oo. (2)

2. Asymptotics of the Probability P (u(t) # 0).

First we shall investigate the probability P (u(t) # 0), 0=(0,0). It is known from Savin
and Chistyakov (1962) that

P {p2a (t) + paa (t) > 0} ~ %,t—»oo (3)

where o3 > 0. Using same arguments of Polin (1976) we obtain that

_ az3
= 2V babs
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in our case.
We assume that ag (t) , £ =2,3 vary regularly ast — oo and

P22 (t)Int —» 0, B () = 0,7+ j # 4. (4)
Theorem 1. If ago = a3z =0,b2 >0, b3 > 0, condition (4) is satisfied and as t — oo

az (1) vVt — ¢z , az(t)Int — c3 , ¢; € [0,00) (5)
then

P= lim P(u(t)#0)=1—exp {—2#(:21/&23— - -22} ;
t—+o0 b2b3 b3

It follows from Theorem 1 that P = 0, if max (cz,¢c3) = 0 and it can be shown that P = 1,
if max (e2,¢3) = oo.

Proof. Consider relation (1) with X; = X3 = 0. Expanding the function g (u, F3, F3)
in a neighborhood of the point F3 = F3 = 1, we get

InP{u(t)=0}= -—gjzjag(u)(l—F‘-(t—u,O))du-!-

3t (6)
1 _Ezgﬁ,—‘j(u,t)(l — F;(t — 4,0))(1 - F; (t — »,0)) du
1,7=
where 0 < ﬁ‘-,j (u,t) < B;,j(u) for any t € [0,00).
Let ¢; > 0. Using (3) and condition (5), we obtain that as t — oo
t=Int
[ a2(u)(1— F;(t —«,0,0))du ~ 2¢cp0; arcsin /1 — l:%.t s
0
t
f ag(u)(l——Fg(t—u,O,[]))du—rO,
t—Int
and , consequently,
t
lim [ a; (v)(1 = Fp(t - u,0,0))du = cp0o2m. (7
0
Since the 33 () is a simple one dimensional critical branching process,
§ e TSR Y e, 00 (8)
bat

Using (8) and condition a3 (u) ~ c3/Int it can be shown that the second summand of the
first sum in (6) has limit -2¢3/b3 .

It remains to find the limit of the second sum in (6). First we use estimations of the
functions )ét'..f (u,t) < Bij (u) . Using (3) in the summand with ¢ = j =2 , we obtain that it
is less than

const f B2z (u) dv

t—u
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for some 2o > 0 . But under condition (22 (¢)Int = o(1) , this integral is an infinitesimal.
Relating to other summands, if we use (3) and (8), we obtain for them estimations of the
following form :

const/ﬁu(u)—jﬁ i+j#4,

where o > 0 and « is equal to either 1/2 or 1. If 8;;(¢) = 0 ,% — 00 ,i+j # 4, then these
integrals are also infinitesimal. Hence the limit of the second sum in (6) is equal to zero.
The theorem is proved for ¢; > 0 . In the case when ¢; = 0 it can be proved by similar
arguments.
Now we consider the case

az (1) Vi~1y(t) ,as(t)lnt ~ I3(t) (9)

where [; () — 0 and are slowly varying functions as ¢ — oo. It follows from Theorem 1 that
P =1lim P (u(t) # 0) = 1 in this case.
We also need the following condition

Baz2 (t)Int = o(L(t)) , Bij(t) =0o(L(2)) ,i+j#4,t— 0 (10)
where L (t) = I3 (t) + I3 (t).
Theorem 2. If a2 = a3z = 0, ba, b3 > 0, conditions (9) and (10) are satisfied, then

213 (1)

P(u(t) # 0) ~ 2m [ 72l (1) + =5 =

y 1 — .
babs e

Proof. Since P =0, we have

P(p(t) # 0) = 1 — P20} ~ 1n P {u(2) # 0}

Consider relation (6). Since [;(t) are slowly varying functions, there are the functions
Al (t) — oo as t — oo such that for any function
(), 1< A(t) < A ()

L@/A@) _
Jim e (11)

(See Badalbaev and Rahimov (1978)).
Using the same arguments, as in the proof of Theorem 1, we obtain that as t — o0

az(u) (1 — F;(t — u,0,0))du ~ 203l (t) arcsin ( ) } T
l2
t/ A1, ()

Let § > 0 such that 1/2+6§ < 1. Then it is clear that

sup {u‘slg (u)} =0 (tslg (t)) , t — oo.

0<u<t/ A, (t)
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Therefore using (3), we have

t/ A, (t) t/ A, (1) d
j az (u) (1 = F2 (¢ - 4,0,0)) du = O | t31,(2) Wmu—ts/—-;—j

for some € > 0. It is easy to see that

‘/Alg (‘)

/ s )
ul/2+6. [t —y =@ 3
and consequently,
t
/az (u) (1 = F (t — u,0,0)) du ~ 7asla (). (12)

o
Using (8), by the same arguments by Rahimov (1986) it can be shown that

t
Jas @ (1= Fs (¢ = w,0) du~ @ (13)
3
0

It remains to estimate the second sum in (6). It is clear that we have the same estima-
tions as in proof of Theorem 1 for summands of this sum. But under conditions (10) these
estimations are o(L(t)). Theorem is proved.

In the case azz = 0 the process u;2(t) is a one-dimensional critical branching process
with time dependent immigration in which intensity of the number of immigrants is a3(t).
Asymptotical behavior of the probability P {u12(¢) > 0} was considered, for example, by
Badalbaev and Rahimov (1978). It is interesting to compare asymptotics of probabilities
of "non-extinction” for processes u (t), p12(t), p13(2).

Theorem 3. If a2 = a3z = 0, bz,b3 > 0 and conditions (4) and (5) are satisfied, then

: 2 2
‘ILIE:P {p13(t) > 0} =1 - exp {—- ::2\/@— -523

Now we present an analogy of Theorem 2. We need the following conditions.

az (t) ~ L(t)/VE , as(t) Int = o(la(2)) (14)

where [3(t) — 0 and slowly varies as t — o0 ;

B2z (t)Int = o (I3(2)) , Bi; (t) = o(l2(2)) ,i+7 #4. (15)
Theorem 4. If a3 = azz = 0, bz, b3 > 0, conditions (14) and (15) are satisfied , then

P {ma(t) > 0} ~ ?l’i—’:m\/@ .

Proofs of this theorems are similar to proofs of Theorems 1 and 2
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3. Limit Theorems

We shall start from the case

az (t) ~ I(t) /vt ,t — o0 (16)

where [3(t) — oo and varies slowly as t — oo . In this case

P = Jim P{u(t) # 0} = 1

as it was noted already.
Theorem 5. If az; = azz = 0, az3, bz, b3 > 0, conditions (2), (4) and (16) are satisfied ,
then

2m3(t) o £
53023':!% (t) ?

as t — 0o, where £ has a stable distribution with exponent 1/2 and density function

P(X,b) = exp {-4/b3X} ,X>0.

2
ngV X
Consider the case, when [3(t) = const. in (16).

Theorem 6. If az; = azz = 0, az3, bz, b3 > 0, conditions (2) and (4) are satisfied and

t
az () VI ¢, fa3 (u)du — e3 , ¢; € [0,00) (17)
0

then 213 (t) /bat — £ , where
T (A) 4/ e~ = (14 A)~20/b3 exp {_4623/‘123 AfceiE 1 i ’\} .
2

Now we shall describe some properties of the limit random variable. It can be verified
easily, that

; ’ _
,\linow (A) = -0 .

Consequently F£€ = co .
It is obvious that £ has the gamma distribution, if c2 =0 ,¢3 >0 .
Let now ¢ =0, ¢z > 0 . In this case

lim @ ()= exp {--——-—2’”’2“ “23} A
A—co0 b2

From well-known relation between distribution function and Laplace transform (Feller
1968, p.418) it follows that the limit distribution has an atom of the mass A at the point
zero. This is connected with the fact that under conditions of Theorem 3
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Jim P{ms(t)=0}=A

It must be noted that if ¢; > 0, i=2,3 the limit distribution has no atom, that is the
”presence” of immigration of T3 type "splits” the atom A .

In order to find a nonsingular limit distribution for p13 () under conditions of Theorems
2 and 4, we shall consider conditional distributions of the process.First we use the event
{p13 (t) > 0} as a condition.

Theorem 7. If az; = azs = 0, ba,b3 > 0, and conditions (14) and (15) are satisfied,
then

lim P{M<X|pla(t)>0}:F(X) ,

T 2 [ A
—AX _1_ 4 ;

fe dF (X)=1 - arcsingfo—— .

0

We find another limit distribution, if we use the event {u (¢) # 0} as a condition.
Theorem 8. If az; = aszs = 0, by, b3 > 0, and conditions (9) and (10) are satisfied and

lg(t)
ek [0,00) ,
then
Yim P{M <X |u@ ;eo} =T(z) ,
where

o0 4./a - X

arcsin T
fe"‘xdT(X) e L
: Tyt g

4. Proofs of Limit Theorems

Proof of Theorem 5. The density function P (X,b;) corresponds to the Laplace
transform exp{—éh/X/bg}, Feller (1968, Chapter XIII). Hence it suffices to show that

H(t,1,X5(t)) — exp {-4\/3/1:2}

as t— oo, where X3 (t) = exp [-—2A/b3a23t12 (t)] ,A>0.
Consider relation (1) with X; = 1, X3 = X3(¢). Expanding the function g(u, F, F3)
in a neighborhood of the point F; = F3 =1, we get

In H (t,1, X3) = —i/a; (w)(1 — F: (t — u, X)) du + €(t,A) (18)

i=2]
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where X = (X2, X3) and €(¢, ) is less than the second sum in relation (6). It follows from
proof of Theorem 1 that under our conditions e(t,A\) - 0ast — 0o, A > 0.

It remains to find the limit of the first sum in (18) . It is known, Chistyakov (1970),
that the function R = 1 — F, can be represented in the form

Ra (2,1, Xs) = 2, (1) - 28 [\/}23 -/ 9(u)du] , (19)

forallt >0,y =2/b3(1 - X3) > 79 > 0, where

8(t) = exp{—wﬁﬁ (\/E‘ 1) e (‘“ (1 * %))}

and Z, (t) satisfies the inequality
1/2
@23
Lelt) [t + 'T]

forallt>20,7 27 >0,2,(0)= 2[“23/527]1/2 .
First we shall consider the following integral :

t t
_ [ 2az(u) az3 ]l”2 __/
Il_nf = du—ntpt(u)du.

con.st.
t+

(20)

since I(t) is a slowly varying function, there is the function Ay (t) — oo as ¢ — oo such
that for any function A(¢) , 1 < A (%) < A1 (2)
‘E%I(t/,\(t))ﬂ(t)= 1 (21)
Then

t

/ wt(u)du ~ m

!!.\1

as t — ooand since v ~ ag3tl?(t) /A,t — oo. Last integral is equal to

Fick) / \/'u(t—u.+‘y)

. X 1/2 ~ 1/2
2 arcsin [t T ‘T] |:/,\~ 2 [f\/ﬂzaf (t)]

From the following estimation

t/M t/ 2

/ @t (u) du < const. / az (u)t~?du ,

o 0
we have that

lim Iy = 4x/2/b,. (22)
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It can be shown by similar arguments that

t
_ [ az(u)du
12—'.0/_—_1—11-{—7 0,t— oo. (23)

Now we shall consider the integra.l

Ia—-/a (u) ———= 29(1—&) ((023)1;2 7uﬂ(a:)d:c) B du

We use the following estimations of the function 8 (u), 0 < u < t, Chistyakov (1970) :

_ azg)'/? v, u
ﬂ(u)_exp{—2(7) u}[1+0(?+?)] , (24)
t
yau=1 /2 (1 - expl_2 ()"
Ofﬂ(u)du =3Vam (1 exp{ 2( S ) t}) + O(1) (25)

as t — oo, ¥ ~ tl2(t)az3/). By the same arguments as in estimation of the integral I,
using (24) and (25) we find that

t
lim sup /3 < lim sup {const.ﬁﬂ f ¥, (u) du}
t—co t—+00 \/E
0

where

U, (u) = \%exp{—? (%)l/g(t—u)} ; 1 3 0

Let L(t) — oo, L(t) = o(t), a function such that a3 (¢) L(t) — oco. Using

t—t/L(t)

U, (u) du < const.exp {—2./azs/c2 (t) L(£)} V1 ,

t—t/L(t)
¥, (u)du < conat.\/?/L(t) ,

we obtain that
lim I3 = 0. (26)
t—co

Since

t
fﬂz(U)Rz(f -u,1,X3)du-NL| <+ I3,
(4]
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it follows from relations (22), (23) and (26) that the summand with {=2 of the first sum in
(18) has the limit -44/A/b; .
The summand with ¢ =3 in this sum is an infinitesimal because of the following inequality

t
/u;;(u) Ry (t — u, X3 (8)) dv < sup as (8) £ (1 — X5 (1))
o u
Theorem is proved.
Proof of Theorem 6. Consider the relation (18) with X; = 1, X3 = X3(¢t) =
exp {—f;-\;} . Under condition (4) €(¢,A) — 0 as t — oo for any A > 0.
First we consider the following integral from the proof of Theorem 5 :

t

- 21‘12 (‘u) aaa ]1,2
£xi= _/ b t—u+7v an

where

-2 %
" ba(1 — Xa) A
Using the same arguments as in the proof of Theorem 5, obtain that

lim I) = Marcsin —a ,A>0.
t—+0o by 1+

Next, it is easy to see that

¥ in this case.

t t
1
I; = /ag (u) t—d—t:‘-i-,\h 2 con..st.?fag (u) du
0 0
that is I, — 0 as t — 0o. Using estimations (24) and (25), we obtain that I3 — 0 as t — oo,

where I3 is the same as in proof Theorem 5.1t follows from (19) that

SI2+I3'|

T
fag(u) Ra(t —u,1,X3)du— I,
0

and, consequently ,

¢

A
lim fag (u) Rz (t — 4,1, X3)du = deay/azs arcsin . (27)
t—+c0 A bg 14+ A

Consider the summand with ¢=3 in (18). It is easy to see that

t t
Iy = f&a (1.&) Ra (t - u, X3) du = f03R3 (t - U, Xs) du+
v g (28)
+(J;R3 (t — u, X3) d(ue(u)) = Ry + Rz,
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where

U
a(u) %/aa (X)dX — cs.
0
It is known from Sevast’yanov (1971) that for critical processes the generating function
F3(t,X3) — 1,t — o0 and F3(t+ 7, X3) > F3(t,z3). If integrate by parts, we have

R3 = ue(u)Ra(t — u, X3) |§ — f e(u)uR3(t — du, X3) . (29)
0

Since € () — 0 by condition (17) for any € > 0, there is T' > 0, that |e (z)| < € for u > ¢.
Therefore

t X t
f ¢ (u) uRs (¢ — du, X3) < / ¢ (u) uRs (t — du, X3) + ¢ _[ uRs (t — du, Xs)
1] 0 T
But last integral is less than

f(Ra (0, X3) — R3 (t - T X3)) = O(l)

as t — oo for fixed T.
First integral is an infinitesimal as ¢ — oo for any fixed T. Consequently

:li"olo Ry=0, (30)
By similar arguments it can be shown that
. _ 2c3

tl-i-nolo R]_ = "E;-l.l'l(l -+ A) v (31)

Theorem is proved.
Proof of Theorem 7. Consider the following relation :

B [exe {2535 a0 > o} =1 - B )

where X3 = X3 (&) = exp {— a‘}.
Since
1> H(t1,X3)> H(¢1,0)

and H (t,1,0) — 1 as t — oo under the conditions of Theorem 7,

l1-H=1-e"H & _InH ,t - 0,

therefore we need to consider relation (18) with X3 = X3(t). It follows from the condition
(15) that €(¢,A) — 0 ast — oo for any A > 0.
By the same arguments as in the proof of Theorem 5 we obtain that
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t

_ [202(u) [__a2s ]”“ 4y/am -
I = 0-/ by o du ba I3 (t) arcsin

T+ (33)

Using relations (19) and (20) we find from (33) that

t
fcz; (u) Rz (t — u,1, X3)du ~ ﬁgi; (t) arcsin T i X (34)

0

Since F3(t,X3) is the generating function of the critical branching process, using the
following inequality

t t
faa(ﬂ)Ra(f ~ 4, Xs)du < [ ag(u) Ra (t - u,0) du
(0] [¢]

we have that the summand with ¢ = 3 in (18) is 0 (I3 (t)) as ¢t — oo.

Hence
_  4/azs < A
1- H(t,1,X3) ™ I3 (t) arcsin T+ X

as t — co. We have that proof of Theorem 7 from relations (32), (35) and from Theorem

Theorem 7 is proved.

Proof of Theorem 8. Proof of this theorem is similar to the proof of Theorem
7. Namely, consider relation (32) with P {u(t) # 0} instead of P {u13(¢) > 0}. Under
conditions of Theorem 8, by similar arguments as in the proof of Theorem 7 we obtain that

L 2
14+ A bs

Using asymptotic of P {u(t) # 0} from Theorem 2 it is not difficult to find that

2 [ {2280} 1o 0] -1 - s

1 — H (8,1, X3) ~ 5;‘@:, (¢) ascsin In(1+ A) (35)
2

Theorem is proved.
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OZET

Tek ve gok tipli dallanma stiregleri igin zamana bagimh go¢ etkisi altinda limitte davramg
bzellikleri pek ¢ok arastirmac: tarafindan incelenmigtir. Bu ¢aligmada, azalan gd¢ igeren
aynigtirilabilen dallanma siiregleri ele alinmig ve bu tiir olasilik stiregleri i¢in bazi limit teoremleri
tanitlariyla birlikte sunulmustur, '
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Abstract

This study attempts to show that it is possible to get a class of criteria with good
properties to test several hypotheses by using a sequence of functionals , that we call
" distance sequence of distribution functions”, which characterize the proximity of two
distribution functions. Choosing an optimal criterion among the said class of criteria
is shown. Distance sequence of distribution functions are based on confidence intervals
that are built with the help of order statistics . Asymptotic properties are proved for
statistics which are obtained by using distance sequence of distribution functions . It is
presented that useful criteria, derived from these statistics, in goodness of fit problem
is achievable.

Key Words: Distance measure, goodness of fit test, consistent criteria.

1. Introduction

Let X1, X2,...,Xn be a2 sample from a population with unknown distribution function
(d.f.). Consider the hypothesis Ho = {Xi,X3,..., X, has d.f. P} and the alternative hy-
pothesis H; = {X;, Xa2,..., X has d.f. Q € §,Q # P}, where S is some class of continuous
d.f.. On the basis of constructing statistical criteria to check simple hypothesis Hy against
the composite hypothesis H;, there usually lies the consideration of how far the empirical
distribution of Xi,X32,..., Xn is from the distribution in some sense of distance d(P, Q).
This distance functional has the desirable properties d(P,Q) > 0 and d(P,Q) = 0, if and
only if P = Q; and the property of continuousness in neighborhood of points so that small
deviations do not result in large deviations in distance. There exist many classical sta-
tistical goodness of fit tests and their modifications based on distance measures, such as
Kolmogorov-Smirnov, Wilcoxon, Cramer-Von-Mises and Moran tests, among others. In this
paper we consider a different approach for the construction of goodness of fit tests based
on the, so called, distance sequence for distribution functions (d.s.d.f.). Distance between
distribution functions is an important subject of stiudy in statistical inference. For instance,
classification of a data item to one of several populations is a problem that requires some
distance measures.( See , Hajek and Sidak (1965), and Kendall and Stuart (1979)). _

Let{W™} __ be the class of criteria for testing the hypothesis Ho against the alternative
H, with

lim P{X € Wr/Hot=1—a,m=0,1,2,..
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Definition 1. If for V Q (u) € ¥, there exists a number mg = mo(Q ), such that

P {(X1,X2, .., Xn) € WI® | Q(u)} = Pymo (Q) — 1, as n — o0

then the class of criteria W*, m = 0,1,2, ..., is called consistent for checking hypothesis Hp
against the composite hypothesis H;.

Suppose that X;, X3, ..., X;m, Xm+1 are continuous i.i.d. random variables with d.f. Q(x)
and Y3,Y3,...,Y,» are continuous i.i.d. random variables with d.f. P(u); then

m—1
P{Xm-i-l € (X(l),X(m))} =T

where X(;) = min(X,, X3,..., Xm), X(m) = max(X,, X3,...,Xm) . That is; (X(1), X(m))
is an invariant confidence interval containing the main distributed mass (see Bairamov,
Petunin,1990). Also consider the extreme order statistics Y{;), ¥{,n) obtained from random
sample Y7,Y3,...,Y,,. Then one can write

P{Xm+1€ (Ya), Y} = 1= [ (P)™ + (1 - P(u))"]1dQ(w).

Now the absolute value of difference of these probabilities is obtained as the expression
|P {xm...l € (X), X(m) } = P{Xms1 € (Ya), Yem)) }|
f (P(u))™ + (1 — P(u))™]dQ(u) — m+1\

Below, there is a theorem which states that under the given features we receive d.s.d.f.’s.
Let P~'(u) = inf {z : P(z) > u} be the inverse function of P.

Let . be the class of continuous d.f.’s and S, be the class of all continuous d.f.’s that
are symmetric about number a. &, C ¥, .Consider

d3)(P,Q) = Lf (P(u))"dQ(u) — mil ym=0,1,2,... (1)
d3(P,Q) = U (1 - P(w))"dQ(u) - — + —| m=012... (2)

m=0,1,2,.... (3)

dD(P,Q) = L [ (P@)™ + (1 - Pa)™dQ(w) - —2

Theorem 1. The sequences {dﬁ:'.)(P,Q)}:_O, i = 1,2,3 defined in (1), (2),(3) satisfy
the following conditions:

1)d(‘)(PQ)>0 m=0,1,2,..;i=1,2,3.

2) d¥(P,Q) = 0 if and onlyIfP Q,P,QeS. i=1,2 dZ(P,Q)=0if and only if
P=Q,PQE€S,;,acR.
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(Note that we will call a sequence of functionals of d.f.’s {d(P, Qo P, Q €  with
properties 1) and 2) a distance sequence for distribution functions for class $ (d.s.d.f.)).
Proof. It is clear that d%)(P,Q) > 0 and d¥)(P,Q)=0if P = Q, i = 1,2, 3. Note that

dﬁi’(P, Q),i = 1,2,3 may be written as

1
dB(P,Q) = |m [(Q(P~}(w)) -~ wyu™dul, (4)
0
1
dB(P,Q) = |m [(QPI(w) - w)(1 - w™idu, (5)
0
1
d® (P, Q) = m/(Q(P“(u)) —u)(uw™ ! = (1—w)™ Vdu|, m=0,1,2,.... (6)
0

Consider (4). According to Stone-Weierstarass theorem (see Rudin,1964); the set of func-
tions 1,u,u?,u3,... is closed in the space of all continuous functions Cjgy on [0,1]. If

d3(P,Q) =

=0,m=0,1,2,..., then

m [(Q(P-1(w)) - wyum=1du
0

1
/(Q(P"l(u)) —uw)u™du =0, m=0,1,2,....
0

Hence Q(P~*(u)) —u=0,u € [0,1] and Q(u) = P(u),u € R.

Consider (6). It is clear that without loss of generality we may take a = 0. In fact,
considering the random variable X* = X —a with d.f. Q:1(2z) =Q(z+a)and Y* =Y —a
with d.f. P;(z) = P(z + a) one can see that Q4(z) and P;(z) are symmetric about zero and

P{Y(1) < Xnt1 < Yim } = P{Y{i) < Xpp1 < Y3 }-

Let P and Q be symmetric about zero. Now suppose dq(,?)(P,Q) =0,m=0,1,2,.. Then
from

mfl(Q(P‘l(u)) —u)(u™ ! = (1 = u)™)du|=0,m =0,1,2,... ,

one can ¢::bta.i1.1.0
j(Q(P"(")) —w)u™ ldu = _/I(Q(P“(l - u)) = (1 - w)u™ du,m=0,1,2,... (7)
0 0

Denote ¢(t) = Q(P~1(t)) — t. Then (7) may be written as

1
f@(z) — (1 = t))t™dt = 0,m = 0,1,2, ... (8)
[1]
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From (8) we have ¢(t) = (1 —t),t € [0,1];Q(P-1(2)) -t = Q(P~'(1 -1))— (1 —-1),
t € [0,1]. Next using 1 — P(t) = P(~t) and 1 — Q(¢) = Q(—t) we have Q(z) — P(1) =
Q(P-1(P(—1))) — (1 — P()) = @(—1) —(1 - P(t)) = 1 - Q(£) - 1+ P(t) = P(t) — Q(z) and
Q(t) = P(t),t € R.

Remark (Counter example). Denote by U, ;(z) the d.f. of uniform distribution on
[0,1]. It is easy to see that if we take P(z) = Upa(z) and Q(z) = Up(z) then dP(P,Q) =
0,m=0,1,2,.... That is d3(P,Q) = 0,m = 0,1,2, .... is not a d.s.d.f. for class . .

2. Asymptotic Normality of Statistics Obtained by d.s.d.f.

Let X;,X2,...,Xn be a random sample from general set with d.f. Fp, Let F be the
empirical d.f. of the sample X, X3,..., X,. Here we consider some examples of statistics
obtained by the d.s.d.f.. Consider for example

i (Fo, Fy) = | [ (Fo(w))™dFs(u) - 77| = |3 Tha(Fo(X))™ - 3

|J‘ TEAUM =y

where U;,U;,...,U, are ii.d. r.v.s with d.f. Up:(z). It is clear that EU;™ = ;!;_—1 5

Var(U™) = 'i?n'l-ﬁ - m = o). Using the law of large numbers, central limit theo-

rem and Glivenko-Cantelli Theorem (one can see Fergusson 1996, Gaensler, Stute 1987,
Borovkov, 1984 among others) we can give the following theorems:

Theorem 2. Let Q be some continuous d.f. Then
di)(Q, Fy) — d)(Q, Fo), a.s.
for every integer m, as n — oo.
Denote

1

I]_(X]_,Xg, '"an) = dg)(FO! F;) = m+1

Z(FG(X:))

l"‘l

L]

(X1, X2, ey Xp) = d3)(Fo, F2) =

Fo( X:))™ - mil’,

1—1

Iy(X1, X2, ..., Xp) = dSN(Fo, F2) =

+ (1= (R(X)™ = 5|

:—1

It is easy to verify that
o = Var [(Fo(X))™ + (1 — (Fo(X))™] = Var(U™ + (1 - U)™)

T + I d) G ()
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Theorem 3. For every finite integer m, it is true that

N 2 f’ _
PLY—i( X1, X2, Xp) < 2 p — —— dt
{a,[,;) ( X1,X2 )<=z o g

0

o

nli'n&osgp =0,:=1,2,3.

2.1. Separability of Distributions

Now we investigate the behavior of d,,(P, Q) in (3) for large m.

dm(P,Q) = f (P (u)™]dQ () — 735 dQ(w)+ [ dQ(u)+

{u:P[u):O} {u:P(u)=1} (9)
(P (u))™ + (1 - P(u)"]d@Q (v) - m+1‘

{u:0<P(u)<1}
Letting to limit in (9) ,as m — oo, we obtain
lim dm(P,Q) = i [ dQ)+ [ dQ(u)
IR {u:P(u)=0} - {u:P(u)=1}
Definition 2. Let F(u) and Q(u) be distribution functions corresponding to ran-

dom variables X and Y. Denote A9 = {u: F(u) =0},4; = {u: F(u) =1}, Q(4o) =
P{Y € Ao} = [ dQ(u),Q(41) = P{Y € 41} = [ dQ(u)- If Qo) + Q(41) = 1, then we
say that F a.nd Q are separated.

It is easy to see that if the supports of distributions F' and Q are noncrossing, then F
and @ are separated.

= d(P,Q).

Theorem 4. Let X; X3,...,X, be i.i.d. random variables with distribution function
F(u) and Y4,Y2, ..., Y5, Ya41 be i.i.d. random variables with distribution function Q(u). If

P {(X(l)!X(n]) N (Ya), Y(m)) = 0} =1, n=2,3,..

then distributions F' and Q are separated.
Proof. One can write

P {Yn-l-l € (X)), X(n)) U (Y(l);}’(n})} =P r’nﬂ € (X(l)!x(n})}

(10)
L2 {Yn+1 € (Y1), Y(n))

Using (10), we have
1> P{Yn+1 € (X(1), X(n)) U (Y(2), ¥(n))
= 3+ [1- T (R + (- P14 = 54+
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5 {1_- {f dQ(n)+fdQ(u)+ f [((F(u))™ + (1 = F(u))"] dQ(u),]'} (11)
Ao Ay

0<F(u)<1
Letting to limit as » — oo in (11) we obtain [ dQ(u)+ [ dQ(u) = 1. Hence
Ag A

f dQ(u)+ f dQ(u) = 1.
Ao Ay

Theorem is proved.
It should be noted that d,,(P,Q), for large values m , approaches to 1 if the overlap of
supports of d.f.’s P and @ becomes sufficiently small.

3. Class of Criteria Defined by d.s.d.f.’s

Suppose that d.,(P, Q) has the from dn(P, Q) = |Gm(Q) — Gm (P)| where

Gm(@) = h( [ gm (2))4Q (=) where g (), m = 0,1,2, ..
are some sequences of Borel functions, and h(z) is a continuous function.

Theorem 5. Let {d.(P,Q)}>_, be the d.s.d.f defined as in (1), (2) and (3). Then,
class of criteria WI* = {6:“ da(P, F7) > Ia} ,m=0,1,2,... is consistent for checking Hg
against H;.

Proof. By Theorem 3 we have

lim P {gd,ﬂ(f’, P > z,,/ﬂo} =l-a=1-&z.)

—
n—oo m

where Pp is the empirical d.f. of X, X3,..., Xn. Consider

P {aﬁdﬂ.(f’, P)>za | Q (’-)} =% {% [Gal )~ Gmlld i z"} .

where

Gm(@ = | [ (P@™ + (1= P@)™4Q =) - 7]

Gm(P2) = | [ (P (@)™ + (1 - P@)™1dP; (2) -
and Gy, (P) = 0. Letting to limit in (12)

5
m+1

lim Pg {]Gm(P,;‘) — G (P)| > %aﬂ,} -
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= lim P {IGm(P2) = Gm (P)| > CT (n)},C™ (n) — 0,n — oo (13)

since G (P}) — Gn(Q), almost sure, and since P # Q there exist an mg, such that

|Gmo(Q) — Gmo (P)| = dm, (P,Q) > 0.

Hence from (13) we obtain

lim P {|Gmo(P2) = Gimo (P)] > 0} =1

Thus, the class of criteria

2
m+1

w3t = {(Xl;XQ-: vy Xn) : a—f Z:‘: [(P(X:)™ + (1 - P(X:))™] -

> a:c,}
is consistent for testing Hp against composite H;.
Analogously, we may define the class of criteria by dg)(P,Q) and dSE}(P, Q). It is clear
that the statistics following from d'Y)(P, Q) and d{?(P, Q) has similar properties.
Let P = {P} be some class of d.f.’s.

Ho = {X1,X32,..., Xn has d.f. P} and Hy = {X1,X3,...,Xnhas d.f. P,P€ P — {P}}.

Let {dm(P,Q)}=o be ad.s.d.f.’s . Then there exist mg = mo(Q), such that for VQ € P

m=0

and Q # P, dmo(-PD)Q)> 0.
Definition 3. We say that d.s.d.f. has a property (A) for Py and class P = {P} if there

exist an mg such that , for VQ € P and Q # Po dm,(Fo,Q) > 0 (mq independent from Q ).
Denote Mg = {mg : dmo(Fo,Q) > 0,Q # Pp,Q € P}. Let

W:" = {(Xl,Xg, ...,X“) : dm(Po., P,:) > C’u}

be class of criteria with asymptotic level @ and depend on parameter m for testing hypothesis
Hyo against alternative H;, and {dm (P, Q)}rr— has the property (A) for P, and P = {P}.
Then for any mo € Mp (if Mp contains more than one element) the criteria W7 is consistent
for testing Ho against H,. Therefore, with property (A), we have the class of consistent
criteria for testing Ho against H;.

Definition 4. Criteria W" is called the best criteria in class W if mj is selected
according to

inf dn,(Fo, = dm:(Fo,Q.).
L mo(Fo, Q) :(Po,Q.)

The following examples illustrate some applications of the ideas that we presented above.
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Example 1. Consider the d.s.d.f. expressed by (1) . Let P, (z)=1—-e%,22>20;P =
{P(z)=1-¢%,220,6=1,2,3,4,..},Q(z) e P and Q # R,

d(P,Q) =

T (Po(u)mdQ (w) -

= ‘0 { (1—e=*)"e % dg — i I

It is clear that

m!e!

oo 1
a/ —_ =T\ =z ] / L _ 6-1 = m et
/ (1-e")"edz =0 / y"(1-y)" "dy =6B(m +1,6) (m + 8)!

We obtain
mg'B! 1

(mo+6)! mo+1

So dSﬁ?,(P, @) has the property (A) for class P , and P, . Here My = {mg : mo = 1,2, 3,...}.
It is easy to show that

d)(P,Q) =

>0formo=1,2,..

dnf, d()(Po, Q) = d{})(Po,Q2)

where Qx = 1 —e~% £ > 0,k = 2,3,4,...and

. 1
sup inf d,(,,ltg(Pg,Q) = dgl)(Pu,Ql) = dgl)(Poan) = =
moEMQEP - 6

This concludes that the best test is reached by choosing m3 = 1 or 2.

Example 2. Consider the d.s.d.f.’s given by (1) . Let Py (z) = Up1(z)
P= {Qb (2) : Qulz) = Uap(z), 2<b< 3} . For Q@ € P, we have

d,,,(P,Q):I}dQ(z)—,—n-Q_-T 22 b<3
2

So , inf dm(Po, Qs) = - 43|
Therefore the best test is received for a very large value of mg.

=|1_

i
m+1

5. Close Alternatives

Now we investigate the behavior of criteria defined by (3) for any fixed m for close
alternatives, which converge to each other at the rate of é; Consider F'(z) = Fo(z) +
j;P(x) , where P (z) is some continuous function with appropriate properties , such that
() Is d.L.;

Let Ho = {X]_,XQ,...,Xn has d.f Fo (E)]‘ and Hl = {X],X-;, seey X,-; has d.f F(.T.)} . Now
we intend to claim and prove that using a statistic I3(X1, X2, ..., X,) in testing Ho against
H, under criteria WJ*, close alternatives are distinctively identified.
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Theorem 6. It is true that
dim P{X € WJ'/H:} = lim Pp{I3(X1,X32,...,Xn) > Za} = P{In+ Pm| > za}, where

P =;'1‘_f (1 = F(a))™* = F™~' (z)) P(2)dF (z) and

P{n<z}= A= | e %dt (om =)
Proof. Consider -
P{X € Wg‘/ﬂl} — P{ﬁI:i(xl!X?,"-!Xn) > xa/HI} =
= P{ )___: [(Fo (X:)™ + (1 = Fo (X:))™)] -
Im i3
n
- PF {: =1

Z [(Fo (X:))™ + (1 — Fo (Xa)™] - mi 1| > za} -
= Py {:r/—f |f [(F(u) = iﬂp(u))m + (1 =R+ iﬂp(u))m] dF} ()~ == 1| > x,} -
= Pp {éﬁ (JICF @)™ + (1 = F ()™ dF; (u) - 537)
+Xf E 1— F(u)+ §-P(u)) ~ (1= F(w)"] V/AdF; (u) (14)

+3 [ [(F(w) = 22P ()™ = (F ()] VAdF; (u) > zal}
where F (u) is the empirical d.f of sample X, X3, ..., Xy. Denote,

o @) = [(Fw - ZzP@) " - F @] var[(1- Fey+ =Pw) " - - Fam] va

2
m+ 1, = z"fﬂl} -

and lim @™ (z) = (™) (z). (14) may be written as

P{X € Wp/H;} =

= {3& (FIF (@)™ + (1 = F(w))™]dF3 (v) = 737) + 7= [ o™ (w)dFz (v)  (15)
>z4}

Considering the absolute value of differences, we get

|7 ¢85 (2) dF3 (2) - [ o™ () dF ()|
|1 > (X + (e (2) — @™ (2) dF (z) - [ @™ (z) dF (z)|

L3 o) - 2 3 Bl (X + [ (o4 (2) — 0™ (2) dF @) (16)

!-——1 ::1
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Lemma. 1. Let H (z),z € R, be a real valued differentiable function; F'(z) and P (z)

some continuous functions; and b, a sequence of real numbers which converge to zero , as
n — 0o . Then

Jlim o= (H (F(2) + b.P (2)) = H (F (2))) = H'(F(2)) P (=)

Proof. Consider h(y) = { y (H(F (;_), ?-Fy():z); Hy(z E;:)) ¥ #0
It is clear that A (y) is continuous at point y = 0 and b, P (z) — 0. We have slﬂ-(H (F(z) + b, P (z)))
-H (F(:l:)) = h (b, (P (z))). Letting to limit we obtain

lim — (H (F(z)+ bo P (2)) — H (F(2))) = hm h(b.(P(2))P(z))h(0)P(z) =

n—oo

= H'(F (z)) P(z). This concludes the proof of Lemma 1.
By Lemma 1 for H (z) = z™, we have

¢ () = —m (F (2))™ P() + m(1 - F(2))""* P(2).
Consider [ @5 {m) (z) dFz (z) . By Glivenko-Canteli theorem; Fy; (z) — F'(z),almost sure (See
Gaensler, Stute). It is clear that [ ™ (z)dF;(z) = gl ™ (X;) and [ o™ (z)dF (z)

= Eot™(X,). Here o™ (X)), 7™ (X3), ..., 5™ (X») are i.i.d.random variables. It is clear
that

f (4™ (z) — ¢t™ (2)) dF (z) = 0 as n — co,m = 0, 1,2, ... (1n)

And now we consider the differencesl ): o™ (X:)—- E Ep™(X;) in (16)

Lemma 2. It is true that
n 1 n o
%; E o™ (Xi) - = Z Eel™(X;) 5 0, as n — oo.
= =1

Proof. -
Denote E :,aS.“"(x.-) = yn ,n=1,2,.... Obviously , Ey, = n [en (u)dF(u) .n =

2
1,2,... .We have E Z (p('")(X,-)) = Ey2 =

i=1

> E(ex0) 42 3 B (Xl (X)) =5 B(ek(x0)’

=1

+2(n(n—1)/2) (E(‘P(m)(xx))) = nE (M (X0)” +n(n - 1) [E (o8 x0)]

Hence var(y,) = Ey2 — (Eyn)2 =nJ (qu.'") (:))2dF (z) - (nfcp&'") (z)dF (::))2 +
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m 2 m 2 m
+n(n = 1) (B (#£7(X1)))" = n [ (87 @) dF (2) = n (f 0§ (2) dF ()
Denote 1y, = ¢, . E¢, = LBy, = f¢£;m} (z)dF (z) and
var(C) = var(ya) = 1 [ (9™ (2)) dF (2) - 1 ( (¢4 (2)) dF (2))”
By Chebyshev inequality, for Ve > 0
P{lt & emox -4 £ o] > o < 2=

t= i=1

=3 [H (#57 (2))" aF (z) - 1 (J ™ () dF () 2]

So, it can be easily shown that, 1 [({™ (2))2dF (z) — L (f o™ (2)dF (2))” — 0 as
n — 0o.
Thus
1 o 1 & »
m 2o P (X)) = = 37 Ee{™ (X:) B o (18)
i i=1 B i=1
This concludes the proof of Lemma 2.
Using Lemma 1 and Lemma 2, if we insert (16), (17), (18) in (15) and let to limit as
n — oo, we obtain ;
Jim  P{X € W*/H,} =lm  Pp{If, (X1, X2,...,X0) > 2a} = P{|n+ Pn| > za.},

where
Pn=2 T (1= F(@)"' - F™~1(2)) P(2)dz , P{n < 2} = S ] e Far.

This proves the theorem.
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OZET

Bu g¢ahsmada, dagihm fonksiyonlarinin uzakhik fonksiyonelleri kullanilarak gesitli
hipotezlerin testleri igin iyi ozelliklere sahip olan bir olgit simifinin elde edilebilecegi
gosterilmistir. Dagilim fonksiyonlarinin uzaklik dizisi, sira istatistikleri yardimiyla elde edilen
glven zrahklarina dayandirilmig, bunlar1 kullanarak gikarilan istatistiklerin asimptotik &zellikleri
sunulmustur.
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Abstract

The number of nonconforming items contained in a manufacturing lot determines
"the lot quality”. The probability distribution of the lot quality is referred to as the
"]ot quality distribution” (LQD). In an autocorrelated (dependent) process it is assumed
that the quality of the item produced at any time interval t depends upon the quality
of the item(s) produced at previous time interval(s). In this study we assume that lots
are formed from items sequentially produced by an autocorrelated process, and use first
order Markov Chain with two states (” conforming,” ” nonconforming”) to describe such
a process. The model, in the context of manufacturing, assumes that the quality of
the (k+1)th item is positively correlated with the quality of the (k)th item. The result
of this study is a probability function, that describes the lot quality distribution for a
first order autocorrelated process, which can be an integral part of Sequential process

control (SPC).
Key Words: Lot quality distribution, Markov chain, dependent process.

1. Introduction

Most of the techniques in the statistical quality control area consider the continuous
manufacturing process as an independent process. However, use of advanced manufacturing
technology, e.g., use of automated process control (APC), etc., may cause autocorrelation
in the process which then the independence assumption would be violated (Montgomery
and Mastrangelo (1991)). The failure to take autocorrelation into account may lead to
erronous conclusion about the process status (Holmes and Gordon (1992), Dodson (1995),
and Runger and Willemain (1995)). If the manufacturing process is an independent process,
the quality of an item produced at a given time is independent of the quality of the item
produced at the previous time, and the lot quality distribution would be the Binomial
distribution. However, not all the empirical lot quality distributions seem to be of the
Binomial type (Wetherill (1977)). This paper describes some of the empirical lot quality
distributions by assuming existence of an autocorrelated process (i.e., dependent process)
which is modeled as a first order Markov Chain. Knowing the true nature of the process
will lead to better use of acceptance sampling procedures.
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The existence of autocorrelation, which is mainly due to the increasing use of high tech-
nology in processes, is an emerging problem for many SPC practioners. In this paper we
discuss the probability function for the number of nonconforming items in lots (i.e., lot
quality distribution) of items produced sequentially by a dependent process. This proba-
bility function has been used in several different applications. Mergen and Holmes (1986),
for example, used this function to approximate the lot quality distribution of a subassem-
bly of an aircraft jet engine, and the result was very close to the empirical distribution.
Deligonul and Mergen (1987) used this probability function to show the dependence bias in
p-charts when the production process is not independent and proposed a way to correct this
bias. Mergen (1981), and Holmes and Mergen (1988), again by employing this probability
function, derived a new measure called expected average outgoing quality (EAOQ) as an
alternative to average outgoing quality limit (AOQL) to evaluate the performance of accep-
tance sampling plans in terms of outgoing quality. The advantage of the EAOQ over AOQL
is that the former incorporates the lot quality distribution into the process of determining
the outgoing quality and as a result the status of the process becomes an integral part of the
selection of the sampling plan. Using the EAOQ approach, the sampling plan decision is
made based on the expected value rather than the maximum value of the outgoing quality
level. This leads to smaller sample sizes which in turn lower inspection costs.

2. The Model

When the manufacturing process is described as a first order Markov Chain, the process
can be represented in matrix form as follows:

(k+1)th item

g b
g z l—2
k*® item
' b Y 1-y

Table 1. First Order Markov Chain Matrix.

Where,

g = conforming,

b = nonconforming,

z =probability that the (k+1)th item is conforming given that the (k)th item was
conforming,

1 — z = probability that the (k+1)th item is nonconforming given that the (k)th item
was conforming,

y = probability that the (k+1)th item is conforming given that the (k)th item was
nonconforming,

1 — y = probability that the (k+1)th item is nonconforming given that the (k)th item
was nonconforming.
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If the process described by this matrix continues for a sufficient period of time, the
steady state probability of nonconformance, II, (i.e., the fraction nonconforming) can be
shown to be:

l—z

~ This fraction defective will be used as a starting point for developing the distribution of
lot qualities. Thus when the process starts to form a new lot, the first item will be either a
conforming one or a nonconforming one, with probability 1 — IT and II respectively. Now,
let (d,g) and (d,b) be two states with (d) number of nonconforming items given that the
last item lotted was conforming and nonconforming, respectively; and also let p(d : g,n)
and p(d : b,n) denote the probabilities of (d) number of nonconforming items in a lot size
of (n) if the last (nth) item produced was conforming and nonconforming, respectively. For
example, if the lot size (n) is determined as two, then the probability that there will be no
nonconforming item after the second item is lotted would be

II

p(0:2)=p(0:9,2)p(0:9,2)=(1- Mz

The probability that there will be one conforming item in the lot is

p(1:2)=p(0:g,2)p(1:5,2)+p(1:5,2)p(1:9,2)=(1~1)(1~-z)+Ily

The probability that there will be two nonconforming items in the lot is

p(2:2)=p(1:5,2)p(2:5,2)=1(1-y)

The lot quality distribution for lot size two will be

p(0:2)=(1-1)=z

p(1:2)=Q1-M)AQ—-=z)+ 1y

p(2:2)=NI(1-1y)

=1.0

To generalize this for any lot size n, the following Markov matrix may be used to describe
the process.

The transition matrix in Table 2 will be referred to as Matrix T". For example, the state
description (2,b) means that in the lotting process there are presently two nonconforming
items and the last item generated is nonconforming. Thus the state (0,b) is a nonexistent
state since one cannot have both no nonconforming items in a lot and the last item in the
lot be nonconforming. After the first item is produced and lotted, the initial state vector
would be as follows:

(019) (l,b) (119) (2'5) (“19)

w=_0Q-1, II, 0, 0; = 0)

The state vector after the second, third, ..., nth item is produced and lotted would be
respectively,

Vo =W.T,Va=WV.T,...... Vi =Vaiad =
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kk+1|0g|1b|1lg|2b |2, |3,b]|3,g]|4,b n,g ||
0,g X 1-x | 0 0 0 0 0 0 0
1,b 0 0 y 1-y | 0 0 0 0 0
1,g 0 0 x 1-x |0 0 0 0 0
2,b 0 0 0 0 y 1-y | O 0 0
2,g 0 0 0 0 X 1-x |0 0 0
3,b 0 0 0 0 0 |0 y 1-y 0
3.8 0 0 0 0 0 0 b'e 1-x 0
4,b 0 0 0 0 0 0 0 0 0

| n,g 0 0 0 0 0 0 0 0O |...]10

Table 2: Transition matrix

An appropriate combination of the elements of the n state vector will give the probabili-
ties of the number of nonconforming items in a lot of size n (i.e., the lot quality distribution).
To obtain the general solution for the lot quality distribution, the following difference equa-
tions can be written from Matrix T':

p(d,n)=p(d:b,n)+p(d:g,n) (2)
where
pd:b,n)=1~-2)p(d-1:9g,n-1)+(1-y)p(d—1:b,n—1), (3)
p(d:g,n)=czp(d:g,n—1)+yp(d:b,n—1) (4)
forn>d>1 and
p(0:b,n)=0, (5)
p(0:g,n)=2p(0:9,2—1) (6)

These equations can be solved recursively for given z,y and n values. Details of the so-
lution procedure are found in Mergen (1981). The results of the solution gives the following
probability function (i.e., LQD):

min(n—d,d—1) S S | . i ] r
p(d!n)= ‘g ( 2—d—i )zn_d_‘(l_z) ly‘(l_y)d 1[af]jl (7)
it (1 — o) [
ford=1,2,...,n—1,
where
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(;)=0ifrgo,q<o, &)
(232 )a-orez(42h)a-aa-n+ (2472, )a-r

a; =

l—-z+4+4y » (9)

~ 2( nn__dz_dl )"-‘(1—z)+ ( n;fz_dl)(d—l)z(l—y)+ ( :_"2‘;'_11 )y(l-—x)
T l-z+y ’

(10)

n—1
. = (] n—1 _ yz
p(0:n) = (1-Mat = 2,

_ -1 _ (1-2)Q -y
p(n,n) =1II(1 — z) = T :

As a point of interest Mergen (1981) showed that the above lot quality distribution for
dependent processes reduces to Binomial distribution (as it should) for the independent
process situation where transition probabilities are equal (i.e., z = y).

For the case where z and y are not equal, the lot quality distribution given in equation
(7) does not reduce to any known distribution (because of the assumption of dependence).
Thus an exact convergence for the case where z is not equal to y could not be found,
even though some approximate results were obtained through Beta and Compound Poisson
distribution (Mergen (1981)). It could very well be the case that this equation might not
converge to any known distribution. It is believed that it could be the subject for another
research paper.

The Beta distribution could be a good approximation for the lot quality distribution of
the dependent process for large lot size n (Mergen (1981)). The reason behind this stems
from the fact that as the lot size increases, the effect of dependence disappears, and in turn,
Beta approximation improves. However, when the lot size is small, large peaks in the tails
are observed. Naturally, these can not be handled by the Beta approximation, because Beta
distribution describes an independent process.

While the virtue of Beta distribution is that it is mathematically simple, the virtue of
the first order Markov Chain model is that it is based on a plausible process description
(Mergen and Holmes (1986)). In other words, Beta distribution assumes independence in
the process. However, by assuming an independent production process, there is no way of
getting some of the lot quality distributions which are encountered in practice. Thus, first
order Markov Chain model is a more realistic approach, because it describes the process
conditions first and then derives the corresponding lot quality distribution for it. Also to
our knowledge, there is no underlying process model which gives rise to Beta distribution.
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3. Lot Quality Distribution For Acceptance Sampling

The following example demonstrates how the LQD discussed in this paper is applied
to acceptance sampling in terms of determining the outgoing quality of the lots passed
through inspection. The proposed measure, as mentioned above, is called the expected
value of average outgoing quality (EAOQ) (Holmes and Mergen (1988)). EAOQ would be a
better measure than the average outgoing quality limit (AOQL), because EAOQ describes
the typical average outgoing quality, whereas AOQL represents the worst average outgoing
quality. The way to calculate EAOQ is to use the LQD in determining the average outgoing
quality, namely:

EAOQ = ¥ 0p. (6) 2 (6) (1)
where # = fraction defective in the lot, i.e., d/n '
p(0) = the probability distribution of @ (i.e.,LQD)
Pa (8) = probability of accepting a lot which has @ fraction defective for a given ac-
ceptance sampling plan. The table below (Table 3) displays EAOQ and AOQL values for

various acceptance sampling plans. The transition probabilities of x and y are also listed;
these are used to derive the LQD by using equations (7)-(12).

z = 0.95 y=0.15 Acceptance number used in the sampling plans=0
LOT SAMPLE

SIZE SIZE EAOQ AOQL

40 4 0.0515 0.0719

40 5 0.0392 0.0670

40 6 0.0307 0.0566

40 7 0.0246 0.0490

40 8 0.0201 0.0430
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50 5 0.0426 0.0670
50 6 0.0334 0.0567
50 7 0.0267 0.0500
50 8 0.0217 0.0432
50 9 0.0180 0.0388
50 10 0.0150 0.0349
z = 0.95 y = 0.15  Acceptance number used in the sampling plans=1
LOT SAMPLE '
SIZE SIZE EAOQ AOQL
40 4 0.1251 0.1974
40 5 0.1004 0.1596
40 6 0.0817 0.1337
40 7 0.0674 0.1153
40 8 0.0563 0.1013
50 5 0.1086 0.1595
50 6 0.0888 0.1339
50 7 0.0734 0.1153
50 8 0.0613 0.1014
50 9 0.0518 0.0904
50 10 0.0442 0.0814

Table 3. EAOQ and AOQL Values for Various Accettance Sampling Plans.

As one expects, the EAOQ values are smaller than the AOQL values. This implies that
a desired average outgoing quality can be maintained by using smaller size samples if we
integrate the knowledge of the process (i.e., LQD) into the evaluation of the performance
of the sampling plan. This, in turn, leads to lower inspection costs.

4. Conclusion

The increasing appearance of autocorrelation (i.e., dependence) in manufacturing pro-
cesses necessitates a different approach to model the lot quality distribution. In this paper
the derivation and various applications of a probability function for the number of noncon-
forming items in lots of items produced sequentially by a dependent process is discussed.
This function, based on a model of a production process, has the ability to fit a number of
empirical lot quality distributions (LQD). The LQD’s in this paper reduce to the Binomial
for an independent process. Thus the probability model discussed in this paper may be
considered as a generalization of the Binomial. As is discussed above, this LQD (or LQD’s
like this one) can be made an integral part of the acceptance sampling procedure to main-
tain the desired protection level with minimum sample sizes. This lot quality distribution
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can also be used to correct the potential bias on the p-control chart limits in the case of
presence of autocorrelation as shown by Deligonul and Mergen (1987). The presence of
positive autocorrelation in practice leads to the width of the area between control limits
of a p-chart generally being underestimated. In such cases, the control limits erroneously
give more frequent out-of-control signals (i.e., large Type I (alpha) error) than so warranted
under its appropriate statistical model. Grant and Leavenworth (1980) note that this has
adverse effects on the implementation of quality control procedure since it causes operating
personnel to discredit the use of control charts. The lot quality distribution discussed in
this paper is used to fix this problem by integrating the variance of this distribution in
calculating the control limits of the p—chart (Deligonul and Mergen(1987)).
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OZET

Bir tiretilmis mallar 8beginde yer alan aranan niteliklere uygun olmayan mallar o Sbegin
kalitesini belirler. Obek kalitesi igin olasihik dagilm obek kalite dagihmi (LQD) adim alir.
Teknolojik geligmelere baglh olarak, fretilen mallarin kalitesi zaman iginde degigiklik gdsterir.
Bu, bir tiretim siirecinin otokorrelasyon 8zelliginin dikkate alinmasm gerektirir. Bu ¢aligmada bir
tiretim stirecinin Markov Zinciri &zelligine sahip oldugu varsayilarak Bernoulli dagiliminin
genellestirilmis hali olan bir LQD elde edilmigtir.
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