{statistik, Journal of the Turkish Statistical Association
1998, Vol.1, No. 2, pp. 1 - 8

A SIMPLIFIED SOLUTION OF THE
CENTRAL LIMIT PROBLEM IN HILBERT
SPACE*

V.V. Sazonov
Steklov Mathematical Institute
Moscow, Russia
sazonov@genesis.mi.ras.ru

Abstract

A new simpler solution of the Central Limit Problem for rowwise indepen-
dent arrays of a Hilbert space valued random variable is given. By its form this
solution is a direct generalization of the classical solution of the Central Limit
Problem for real random variables.
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1. Introduction

The aim of the present paper is to give a more simple and close (noun) to the
classical in form solution of the Central Limit Problem for arrays of uniformly asymp-
totically negligible (uan) rowwise independent random variables (r.v.’s) with values
in a Hilbert space. The pioneering work in solving this problem in a Hilbert space
setting was made by Varadhan (1962) (see also a more accessible book [2], containing
a complete exposition of Varadhan’s results in [1], which will be used below for ref-
erences). Later Gihman and Skorohod (1980) gave a solution which is closer to the
classical one (for a more detailed proof of their result see also [4]). A drawback of
the Gihman-Skorohod solution is a complicated and not constructive choice of nor-
malizing shifts. In what follows we show that these shifts can be chosen by a direct
generalization of what is usually done in the classical case of real random variables.
This leads to what may be called a proper solution of the Central Limit Problem in
a Hilbert space. The proof we present here is based on the important information
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already contained in Varadan’s compactness type results and this is why it is rather
short. A direct (but considerably longer) proof like in [3] (or [4]) can also be given.

2. Notation and the Main Result

Let H be a real separable Hilbert space with inner product (.,.) and norm |.|.
Measurability in H will be understood as the Borel measurability and all measures in
H considered below will be Borel measures, i.e. defined on the o-algebra B of Borel
subsets of H. P and M will denote the set of all probability measures and all finite
measures in H respectively, M° = {y € M : 4({0}) = 0}. Furthermore, S will stand
for the set of all linear bounded nonnegative symmetric operators S with finite trace
trS in H. Recall that a sequence (Sn)n>1 in S is called compact if

sup trS, < co  and (2.1)
lim sup > (Spej,e;) =0 (2.2)
N—eoo n =N

where (e;);>1 is a complete orthonormal basis in H (actually if (2.2) is true in some
basis then it is true in any basis in H). Recall also that a P in P is infinitely divisible
if and only if its characteristic function

P(y) = fH exp{i(z, y)}P(d:r), y € H has the form

P(y) = exp{ila,) = 5(S0,0) + [ K(e,0)u(da)} = p(a, 5, 59),

where a € H,S € §, H®° = H\{0},

_ i) _ 1 Hzy) Y14 2]
K(z,y) (e 1 1+|$|2) ME

and p € u°. This representation of P is unique, i.e. a,S and p are defined uniquely
(see [3], Ch. VI, §3; an equivalent form of this formula was obtained earlier in [1]).

Let {Xnr:n=1,2,...,,k=1,...,k,} be an array of H-valued rowwise indepen-
dent random variables satisfying the uan (uniform asymptotic negligibility) condition:
for any € > 0

1 > =] €) =
A, max P(| Xk 2 €) = lim max Pu(B;) =0,

where Py is the distribution of X,x, B. = {z € H : |z| < €} and E° is the complement
of aset £. Fix a 7 > 0 and denote

kn
il = ] 2P,(dz). a. = Z ki
Br k=1
2
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Furthermore, denote the distribution of X,r — anx by Qnr and define

kn
; T
n = ————Qni(dz);
% =48 +,§;fgl+|zx2Q H(de)
also define Sy, s, in S by

i) = [ B Guda), Su= 3 Suly € B
nklY,Y a1 i |$|2 nk 3 n = nk\Y )

and g, in M as

fe 1 Jaf
JH) =Y | lds) (AeB).
() = [ T pOnele) (A€ B)
Finally let P, = ]_[i';l P,; (in the sense of convolution) be the distribution of Ei;l Xoks
n=1,2,...and 6,,u € H,6, € P be such that §,({u}) = 1.

Theorem 2.1 The sequence (P,),>1 converges weakly in P if and only if

(4) |an — a| = 0 as n — oo for an a in H;

(1) (Sny,y) — (S'y,y), as n — oo, for an 5" in § and all y € H, and (Sp)n>1 1s
compact;

(#43) (fn)n>1 converges weakly to some ' in M.

Moreover, if conditions (i) - (447) are satisfied, then the limiting distribution P of
(Pn)n>1 is infinitely divisible with the characteristic function

P(y) =¥(a,S,m;y) (y € H),
where S is defined by

Su.9) = (S0 - [, S i) e

and = ' — w({0})bo.
3. Proof
Sufficiency. We will divide the proof into a few steps

1. The uan condition implies that for any 7' > 0

lim sup max |Par(y) — 1] =0 (3.1)

o0 Jy|<T 1SkS
(see [2], p. 190 or [4], Lemma 7.8.1), and also

lim max |an.x| =0 (3.2)
n=>00 1<k<kn

3
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([2], Ch. VI, Lemma 6.1). From (3.2) it easily follows that an array ot random
variables with distributions Qni(-) = Puk(- + ank) is also uan and hence (cf. (3.1)).

Jim up. T |@ne(y) — 1| =0. (3.3)

2. For any T' > 0 and all large n(n > ng, where ng depends only on 7 and on the
array (Ppx) under consideration)

an(dz)- (34)

sup |O, —1 SCT,T/
|y|51f)1"|Q k(y) | ( ) o1+ |z|?

Indeed, for |y| < T we can write (omitting the subscripts)

QW) —1 < |[, (9~ 1-i(z,1))Q(do)

+|[_@v)Qs)|+2Q(B: - a) = i + T2+ Jy

Furthermore, since |a| < 7,

J1<“:?— |3’|2Q(d$)
i 2 ElS
< 0+ert) [ Q)
and also | |2
14472 g
Bt<ag) —0m8 —— ;
AB; S0 < o T Q)
so that

J3 = ‘./B,(m —a,y)P(dz)

< |(@y) = (a,y) [, P(d)
< 7TQ(B: - a).

Thus J, + J3 < (24 7T)Q(B: — a)

SC(T,T)/c_GIL: 7Q(de).

The above inequa.litiesltogether with (3.2) imply (3.4).
3. Observe that (3.4) together with condition (22) of the theorem gives

sup sup Z

n>moly|<T 4=

an(y)—1|<CT3T)SUP Z/ ank )

4
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= ¢{r, T)lrS; < 00, (3.5)
ermore, (3.3) implies that for all y : |y| < 7' and all large enough n log O,k (y)

Furth :
- well defined and using (3.5) we have
15
kn N R kn . 2
sup | (log Qui(y) — (Qur(y) — 1))| <sup Y |Qnr(y) — 1|
IyIST k=1 [YIST k=1
A kﬂ A
< sup mex |Qni(y) — llkg Qui(y) = 1| > 0 as n — oo, (3.6)

4 gince pn(y) = exp {z(aL,y)} Ht‘;l Qﬂ.k(y): we can write

log B(y) = i(alyy) + 3 (Qnk(v) — 1) + Ralv),
k=1

() = Tk (log Qui(y) — (Qui(y) — 1)). Moreover, in the notatiq, ¢ the

ere R
_:f;orrern we have ' kn
t(an, y) + D (Qni(y) — 1)
k=1
2
= i(an,y) — %(Sny,y) + _/:q (K(:r,y) + %%) pn(dz). (3.7)

hat the integrand in the right hand side here is a bounded continuoyg ¢, tion

t s :
te ofine it as zero at the origin. Hence (3.6) and conditions (z) - (iii) F the

we d
lim Po(y) = v(a, S, p59)

rmly overy: ly| < T for any T > 0. Note that S is indeed in S. To g w this

enough to prove that it is nonnegative, the other properties being obyi . . But

_ 0 is such that u'{z : |t = ¢} =0, then '

HO IQ:I ( ) Bg\{o} BE

<ol W(BAO+ i, [, 525Quu(ee)

| < w2 W(BA{O}) + (S, ),
nce, by the definition of S
O (Suy) 2 Iy (BAO);

ins to let ¢ — 0.
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5. To finish the proof of the sufficiency it is enough to prove now that the sequence
(Pn)>1 is shift compact (see [2], Ch. VI, Theorem 4.5). Note that the exp of (3.7) is
the characteristic function of the infinitely divisible distribution

kn

I, = H e(@nk) * bar . (3.8)
k=1
where .
o(Que) = b0+ Que+ Tk 4.

By Theorem 6.2, Ch. VI in [2] it is enough thus to prove the shift compactness of
(In)n>1. This, according to Theorem 5.2 and Remark after Theorem 5.3, Ch. VI in
(2], will be proved if we prove that

(a) the restriction of !, = "k, Q.x to the complement of any neighbourhood of
the origin is weakly conditionally compact;

(b) the sequence of operators (S,),>1 in S defined by

(Sww) = [ @9 u(da), t>0, (39)

i1s compact.

But by (742) (gn)n>1 converges weakly, hence is tight and uniformly bounded (in
the sence that u,(H), n > 1, are uniformly bounded). Then of course its restriction
as well as the restriction of (p! )a>1 > 1  (dul, = (1 + |z|?)/|z|?)dp,) to the com-
plement of any neighbourhood of the origin is also tight and uniformly bounded and
hence weakly conditionally compact. This proves (a). To prove (b) observe that

2
AZY)

and it remains only to apply condition (z'i) of the theorem.

Necessity. By Theorem 4.5 and 6.2, Ch. VI in [2] the convergence of (P, ).>1 to
a limit P implies the convergence of (I,),>1, defined in (3.8), to the same P. The
characteristic function of I, may be written as

(v) = expli(an,y) + [, K'(z,y)ui(do)},

where _
K'(z,y) = @Y — 1 —i(z,y)/(1 + |z|?).

Applying Theorem 5.2 and Remark after Theorem 5.3, Ch. V in [2] we see that
1. the restrictions of u/,n > 1, to the complement of any neighbourhood of the
origin is weakly ocnditionally compact and hence the same is true for u,,n > 1, since
dhn = (Jo2/(1+ [2]?))dt,,
2. the sequence (S),)n>1 of operators defined in (3.9) is compact.
6
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It follows that
(a) (#n)n>1 is weakly conditionally compact. Indeed

pn(H) = pa(Bi1) + pa(By)

< fBi |2|* i (dz) + pr,(BF)

= trS, + i (BY),

so that sup, 5, un(H) < 00, and together with Lemma 6.3, Ch. VI in [2], this implies,
by Prohorov’s theorem,the weak conditional compactness of (fn)n>1;

(b) (Sn)n>1 is compact. Indeed, trS, = pn(H), so that sup,s, trS, < co. Further-
more, if (€;);>1 is an orthonormal basis in H and foran zin H  |z|}, = =2 n(z, €;)?,
then for any ¢t > 0

oo 2
z|
sveney= [y [
S (Suene) = [, i) = [+ ],

< [, leli i (de) + pn(BY). (3.10)

Taking ¢ large enough we can make the second summand in (3.10) arbitrary small
uniformly in n > 1 (by the tightness of (yn)n>1) and for a fixed ¢ > 0 the first
summand in (3.10) is arbitrary small for all large N and alln > 1 (by the compactness
of (St)u31)

Represent now I,(y) as

1) = oxp {itam) — S+ [ (Ke) + 358 )@} 2

and choose a subsequence (n’) of (1,2,...) such that along this subsequence p,: con-
verges weakly to a %' in P and (Swy,y) — (Sv,y),y € H, where S is in S (the
existence of such a S follows e.g. from the compactness of (5;)n>1 and Lemma 5.1,
Ch. VIin [2]). Letting in (3.11) is bounded and continuous (when defined as zero at
the origin), we see that the limit of exp{:(a.,y)} exists for all y € H and is contin-
uous at the origin. This implies that (a,,y) converges for all y in H, and since H is
weakly complete there is an @ in H such that (a.,y) — (@,y) for all y in H. Thus in
the limit as n’ — oo (3.11) becomes

Ply) = exp(i@y) — (w9 - [, ELg (o) + [ K(wu)(do)).

|z[?
This shows that P is infinitely divisible and from the unicity of representation of the
characteristic function of an infinitely divisible distribution it follows that a, - a =3a
weakly, (S,y,y) — (S'v,y),y € H, with §’ = §', and for any two limiting points
7
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7y i’ of (ptn)n>1 we have @' —m({0})éo = i’ — fi'({0})8o. The sequence (y,)n>1 indeed
converges to u' = . To prove this it is enough now to prove that p,(H) converges.
But for any positive integer N

N-1
in(H) = i (H)| = [irSo = trSo| < 3 |(Saes5) = (Sueir )
*‘j?i(ﬁskejaej)+—(5hejaej)) (3.12)
=N

and the compactness of (S,).>1 and the convergence (S,y,y) — (S'y,y),y € H
imply that (un(H))n>1 indeed converges.

To finish the proof it remains only to show that a, — @ in norm. Observe that
for any T > 0 uniformly iny : |y| < T

L(y) - I(y) = P(y) (3.13)
(Sny,y) = (Sy,y) (3.14)
]H (K(a:,y) + %(T;’l’;)g) pn(dz) — jH (K(z,y) + %%) W(de).  (3.15)

Indeed (3.13) is a general property (see e.g. Theorem 4.4, Ch. VI in [2]), (3.14)
follows easily (cf. (3.12) from the convergence of (S,y,y) to (S'y,y) for each y in H
and the compactness of (S,)n>1, and (3.15) is a corollary of the uniform boundedness
and equicontinuity at all z in H of the integrands when |y| < T (see Theorem 6.8,
Ch. Il in [2]). Now (3.13) - (3.15) together with (3.11) imply (a,,y) — (a,y) as
n — oo uniformly in y : |y| £ T', and this finishes the proof of the theorem.
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OZET

Hilbert uzayindaki bagimsiz satir rasgele degiskenleri i¢in Merkezi Limit Probleminin daha
basit bir .6ziimii verilmistir. Cziimiin bu formu reel degerli rasgele degiskenler igin verilen ¢oziimiin
direkt olarak genellestirilmesidir.
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Abstract

Scientists are afraid that the impact of human activity on nature may cause
a change in nature. This apprehension precipitated the launching of the world
project to study important hydrological and meteorological series. The con-
tribution of the Czech Republic consisted in two projects directed by the re-
searchers of the Czech Hydrometeorological Institute. Statistical methods that
have been applied to decide whether hydrological and meteorological are sta-
tionary are called change-point methods. Applying these methods we realized
that the dependence between neighboring observations affects considerably re-
sults of statistical tests. The paper uses theoretical results and results obtained
by simulations for suggestions how to adapt procedures for i.i.d. random vari-
ables to the dependent observations.

Key Words: Change-point detection, statistical tests, time series

1. Introduction

Few years ago I cooperated with researchers of the Czech Hydrometeorological
Institute. In the scope of two projects

e Analysis of long hydrometeorological series

e Analysis of hydrological observations in the Czech Republic
we studied hydrological and meteorological series to decide whether they can be
supposed to be stationary or whether some changes can be discovered that might be
caused by human activity.

Before applying statistical methods to make such decisions statistical properties
of the studied series have to be established. One of the most typical features of hydro-
logical and meteorological data is the dependence between neighboring observations
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caused by a certain persistance in the behavior of nature. Monthly averages usually
exhibit strong dependence but annual averages may be also dependent, see the auto-
correlation functions of the water discharges of several Czech rivers in Figure 1. The
dependence has a great impact on decision whether a series is stationary or not.

0.8f 4 oab
0.6} i 061

04f 1 0.4

I i 1

oo ) T

ACF of Svitava (Bilovice), ACF of Luznice (Bechyné),
average runoff 5.2 m3/s average runoff 23.7 m?®/s

Tt L1 ] ‘, .

0.2

ACF of Morava (Kroméiiz), ACF of Otava (Pisek),
average runoff 52.0 m?/s average runoff 2.9 m?®/s
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ACF of Metuje (Hronov), ACF of Jizera (Vilémov),
average runoff 23.4 m?/s average runoff 4.9 m®/s

Completed dams or water reservoirs may cause an abrupt change in the behavior
of a series. In that case the time of change as well as the extent of change is usually
known. The increase of human economic activity changes series gradually. The
detection of gradual change (almost unobservable at the beginning but more and
more apparent later) is very important.

2. Mathematical Formulation

In the scope of mathematical statistics the decision whether a series changed is
usually based on hypothesis testing. In the case that we expect an abrupt change we
test the null hypothesis Hy against the alternative A:

Hg:
A:

X{=ﬂ+€i, i‘—'l,...,‘.’l,

Jk € {0,..,n—1} suchthat (1)
X‘i = i + €4 1= 11 sininy k!

X§=p2+6g, i=k+l,...,n, #1#}1.2.

The errors {e;} are supposed here to be i.i.d. with Ee; = 0, Ee? = 07 and Elei|** <
oo for some § > 0. Supposing ¢ is unknown the most frequently applied test statistic
T(n) is the maximum of the absolute values of two sample ¢—test statistics

11
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1<k<n 1<k<n

T(n) = max |Tx| = max \J ((n nk)k)pi';: - Xi| - -81:, (2)

where  x -
v Z:j:l J vk E?:k-l-l J
Xk _ k ) Xk - n—k ’
51 = /(X = X2 + (X — X))/ (n - 2).

For n large critical values may be calculated using the asymptotic distribution of
T'(n) derived by Yao and Davis (1986):

Jim P (%:bﬂ > r) =1—exp (_3?) ; (3)

where a, = (2loglogn)~/2 and b, = a;! + (a,/2) - loglog logn.

In the case we expect that the series might change gradually and after the change
point it increases (or decreases) linearly we test the null hypothesis Hy against the
alternative A:

Ho: Xi=up+e, t=1,..,n,

A: 3Jk € {0,....,n—1} suchthat (4)
Xi=p+e, 1=1,...,k,
Xi=p+b-(i —k)+e, t = k41, .0n, BEQ.

For unknown ¢? the test statistic has the form

Ul

T(n) = jax |Tk| = max ————==/n—2 (5)
1sk<n 2/ BSS — U
where
% n v XN
Uj; i Z::k-{-l(Xf X)(Z k) , k=1,,”,n_1
\/{K—k)(n—k+;}(2n——2kﬂl _ {n-k]ﬂan—k+1)3

and RSS is the residual sum of squares under the null hypothesis. For n large critical
values may be calculated using the asymptotic distribution

lim P (m > a:) =1 —exp (_\/ge-z) , (6)

n—oo an 2

where @, = (2loglogn)~1/? and b, = (2loglogn)'/2. It is well known that the con-

vergence in (2) and (6) is slow. For moderate values of n we recommend to use the
critical values that we obtained by simulations:

12
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n | 5% critical values | 1% critical values
50 3.15 3.76
100 3.16 3.71
200 3.19 3.72
300 3:21 3.73
500 3.24 3.73

Table 1. Several examples of 5% and 1%
critical values of the statistic T'(n).

n | 5% critical values | 1% critical values
50 2.62 3.27
100 2.63 3.21
200 2.65 3.22
300 2.65 3.22
500 2.68 3.22

Table 2. Several examples of 5% and 1%
critical values of the statistic 7'(n).

3. Effect of dependence

Many authors, e.g. Antoch, Huskovd and Praskova (1997), Bai (1993), Kim (1995),
Tang and Mac Neil (1993), studied the effect of dependence on decision whether
a change in a series occurred or did not occur. The typical behavior of a process,
where the neighboring observations are positively correlated, is such that it moves
slowly from one level to another level. Therefore, the change must be more apparent
to be detected.

To get some information how the dependence affects the distribution of T(n) under
H, we prepared a simulation study. For n = 80,120,200 and p = 0,0.1,0.2,0.3,0.4,
0.5,0.6 we simulated 100000 realizations of an AR(1) sequence with the first autore-
gressive coefficient p and errors distributed according to N(0,1). Figure 2 shows the
sample quantile function for p = 0,0.3,0.6 and for n = 200. The 95% quantile of
the statistic T'(n) for i.i.d. random variables corresponds approximately to 81.5%
quantile of T'(n) for AR(1) sequence with p = 0.3 and to 54 % quantile for AR(1)
sequence with p = 0.6. It means for example that 46 % of realizations of statistic
T(n), if the observations {X;} form an AR(1) sequence with p = 0.6, exceed the 5%
critical value (95 % quantile) of T'(n) supposing {X;} are independent. It indicates
that the dependence affects enormously the ” rejection-acceptance” decision.

13
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Figure 2. Quantile functions of T'(n) for i.i.d. random variables
(solid line) and for AR(1) sequences with p = 0.3 (dashed line)
and p = 0.6 (dotted line).

Table 3 and 4 show critical values of 7'(n), n=80,120,200, obtained by our simulations.

4
n| 00| 01| 02| 03| 04| 05| 0.6

80| 2.63|2.83|3.08]|3.39(3.76 | 4.23 | 4.88
120 | 2.63 | 2.84 | 3.09 | 3.40 | 3.78 | 4.25 | 4.88
200 | 2.64 | 2.85 | 3.11 | 3.42 | 3.80 | 4.27 | 4.89

Table 3. 5% critical values of T'(n).

4
n| 00 01) 02| 03| 04| 05| 0.6

80 |3.24 | 3.50 | 3.84 | 4.24 [ 4.73 | 5.34 | 6.21
120 | 3.22 | 3.48 | 3.81 | 4.20 | 4.68 | 5.29 | 6.11
200 | 3.23 | 3.50 | 3.83 | 4.22 | 4.70 | 5.31 | 6.13

Table 4. 1% critical values of T'(n).

Antoch, Huskovd and Préskovd (1997) studied the model (1) with errors {e,}
forming a linear process

et = ) wi€rj, (7)

3=0
where {¢;} are i.i.d. such that Fe;, = 0,Ee? = 0? and El|e;|**® < oo for some
6 > 0 and {w;} are real constants satisfying 3" w; # 0,> w? < oo and moreover

14
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Y j|w;| < co. They showed that for such a linear process the critical values (obtained
from (3) for i.i.d. random variables) have to be multiplied by VA where

_ 27h(0) _ (Zwy)’
e (8)

h(-) denotes spectral density of the process {e;} and v = Var e;. Similarly, for the
linear process (7) such that 3 j%|lw;| < oo we have proved that critical values of
T(n) obtained by (6) have to be adapted in the same way. Notice that stationary
ARMA sequences are linear processes satisfying the upper conditions. If for exam-
ple the process {e;} forms AR(1) sequence, the critical values should be multiplied

by \/ (14 p)/(1 — p), where p is the first autoregressive coefficient. Our simulation
study showed that the critical values for independent random variables multiplied by

\/(1 + p)/(1 — p) slightly overestimate the corresponding critical values obtained by
simulations. In the worst case (p = 0.6) the 5% critical value for i.i.d. multiplied by

\/ (1+ p)/(1 — p) corresponds to the 3% critical value obtained by simulations and

the 1% critical value for i.i.d. multiplied by \/(1 + p)/(1 — p) corresponds to the
0.5% critical value obtained by simulations. For practical purposes it is important
to notice that all critical values change as n increases only very slowly. It enables to
make interpolations and extrapolations to get critical values which are not listed in
our tables.

Sometimes, the value of A = 2wh(0)/ may be assessed from an experience with
the series similar to the series under study due to the similar environmental conditions.
But sometimes it has to be estimated. If we are sure that a certain portion of
series is stationary we can use this part of the series to estimate A. However, we
have to bear in mind that if in reality the part of the series used for estimation
is not stationary then changes affect the sample autocorrelation function and the
estimator of A considerably. Antoch, Huskovd and Praskova (1997) suggested to use
the nonparametric estimator of A:

L
A=p0)+23 (- Dpk), L<<n, ©)

k=1

where 5(i) denotes the value of sample autocorrelation function for the lag 2. Suppos-
ing that the process {e;} forms an ARMA sequence, the estimators of the parameters
of the ARMA model provide us with the parametric estimator of A.
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4. Examples

The first example describes the decrease of precipitations in the North-West Africa.
Figure 3 presents the annual rainfall departures in Sahel (1901-1990) constructed by
Nicolson (1994). The sequence {7,k = 1,...,89} is displayed in Figure 4.

L]
5
e

oo Teie  ieam  e30  tes0  1eEe  1#80  1#70 1880 1990 % ) 20 3% ) 50 [T 70 0 C
Figure 3. Annual rainfall Figure 4. Sequence {7}
departures in Sahel for annual rainfall departures
1901 -1990. in Sahel.

The testing statistic 7'(n) attains the value 6.44 and exceeds clearly the
1% critical value for i.i.d. random variables. The null hypothesis that the
series is stationary is rejected and the change is detected in 1960. Figure 5
shows the data with the fitted model. The autocorrelation function of the
residuals indicates a slight dependence between observations, see Figure 6.
The non-parametric estimator of A computed of the residuals (using (9) with
L = 12) equals approximately 1.7.
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Figure 5. Annual rainfall Figure 6. Autocorrelation
departures in Sahelwith function of residuals.

the fitted model.
As the dependence is slight, our decision to reject the null hypothesis
remains without any change. We would like to remark that the value of T'(n)
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is so great that we would not change our decision even for more strongly
dependent variables.

The second series that serves as an example how to apply the suggested
method presents the decrease of the width of ozone layer that protects the
Earth from too much radiation. The example shows that the over-all ten-
dency in behavior of the series is more apparent if we deal with annual
averages. On the other side by studying monthly averages we may get a
more detailed insight into character of changes of our data. However, the
applied statistical inference has to take into account the dependence of the
observations that is usually much stronger than in the case of the annual
averages.

Figure 7 shows the annual averages of total amount of ozone in D.U.
measured in Hradec Krélové (Czech Republic) in years 1962-1995.

A
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Figure 7. Annual averages of Figure 8. Sequence {T}} for
ozone in D.U. measured in annual averages of ozone.

Hradec Krilové, 1962 —1995.

Figure 8 shows the behavior of the sequence {ﬁ, k=1,.. .38} s
maximum - the statistic T(n) - attains the value 4.61. Supposing the obser-
vations are independent the value is significant even on the level 0.001 and
detects a change in 1984. Figure 9 shows the data including the model under
the alternative (4).
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Figure 9. Annual averages of ozone with the fitted model.

The residuals and the autocorrelation function of residuals are shown in
Figure 10 and Figure 11. It seems that the model fits the data well.
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Figure 10. Residuals after
fitting the model.
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Figure 11. Autoregression
function of the residuals.

Figure 12 shows the corresponding monthly averages. To estimate the sea-
sonal component and to estimate the autocorrelation function we supposed
that the series was certainly stationary in the first ten years (1962-1971)
and we used these data for estimation. The autocorrelation function of the
first part of series adjusted by removing the seasonal component (n = 120)

is given in Figure 13.
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Figure 12. Monthly averages Figure 13. Autoregression fun-
of ozone between 1962 and ction for seasonal adjusted
1995 after removing the monthly averages between 1962
seasonal component. and 1972.

The nonparametric estimator of A calculated from (9) is 2.9. According
to several information criteria the AR(2) sequence

€t — A1 €t—1 — QA2 Et—2 = &,

where a; = 0.16067 and a; = 0.27473, has been chosen as the best ARMA
model. The parametric estimator of A is then

1 1+(12
(1—&1—a2)2 1—(12

A=

((1 - a2)* —a}) =2.76.

For the second part of the monthly series between 1972 and 1995 (n =
288) adjusted by removing the seasonal component (estimated from the first
part of the series) we calculated the corresponding sequence {T}}, see Fig-
ure 14. Its maximum - the statistic T'(n) - attains the value 5.25 for the
change point k* = 153 which corresponds again to year 1984. If we take the
5% critical value 2.65 or 1% critical value 3.21 from Table 2 and multiply
them by v/A (supposing A = 2.9) we get 4.51 as the 5% critical value and
5.48 as the 1% critical value. The null hypothesis claiming that the monthly
series is stationary is rejected at the 5% significance level. The seasonal
adjusted monthly series (1972-1995) with the fitted model is presented in
Figure 15.
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Figure 14. 'Sequence {ﬁ}
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ly averages (1972-1995).

300

Figure 15. Seasonal adjusted
monthly averages (1972— 1995)
with the fitted model.

Figure 16 shows the seasonal components (January average, February
average ...) for years 1962—1985 and 1986 —1995 and Figure 17 shows their
differences. The most significant decrease occurred in those months in which
the total amount of ozone is greatest, i.e., January, February, March and

April.

7T T

Figure 16. Seasonal compo-

nent corresponding to years
1962 —-1984 and 1985—-1995.

12

" " " i i L
] 2 4 L] L] 10 12

Figure 17. Difference between

seasonal component for years
1962 —-1984 and 1985-1995.

The study of series corresponded to those months showed that a decrease
started already before 1972, e.g. in case of February data (see Figure 18) and
in case of March observations even before 1962 as it is shown in Figure 19.
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Figure 18. February averages, Figure 19. March averages,
1962 —-1995. 1962 —-1995.

Unfortunately, this seems to be typical for natural series related to a
damage of environment. One does not usually monitor them before they
start to change their behavior.

Acknowledgement: The work was partially supported by grant
GACR 97/201/1163.

References

[1] Antoch J. and M. Huskova (1998), Estimators of changes, Nonaparametrics,
Asymptotics and Time Series, A tribut to Madan Lai Puri, ed. S. Ghosh, M. Dekker,
New York.

[2] Antoch J., M. Huskova. and Z. Praskova (1997), Effect of dependence on statis-
tics for determma.tlon of change, Journal of Statistical Planning and Inference 60,
291-310.

(3] Bai J. (1994), Least squares estimation of a shift in linear processes, J. Time
Series Analysis 15, 453-472.

[4] Jaruskov “a D. (1997), Some problems with application of change-point detec-
tion methods to environmental data, Environmetrics, 8, 469—483.

[5] Kim H.J. (1995), Detection of a change in longitudinal data, Proceedings of
International Conference on Statistical Methods and Statistical Computing for Quality
and Productivity Improvement, Seoul (Korea), 748-754.

[6] Nicholson S. E. (1994), Century-scale series of standardized annual departure
of African rainfall. In Trends’93: A Compendium of Data on Global Change, T. A.
Boden, D.P. Kaiser, R.J. Sepanski and F.W. Stoss (eds.) 952—-962. ORNL/CDIAC
- 65, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory,
Oak Ridge, Tenn., USA.

(7] Tang S.M. a.nd Mac Neil I.B. (1993), The effect of serial correlation on tests
for parameter change at unknown time, Ann. Statist. 21, 552-575.

(8] Yao Yi-Ching and R.A. Davis (1986) , The a.syrnpt.otic behavior of the likelihood
ratio statistic for testing a shift in mean in a sequence of independent normal variates.
Sankhya 48, 339—-353.

OZET

Hidrolojik ve meteorolojik siireglerin duragan olup olmamas: " degisim noktas: olarak
adlandinlan bir yéntemla aragtinimstir.
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Abstract

It is noticed that small sample estimations of semivariograms are affected
by finite sample lengths as well as the persistence of the regionalized variables.
In order to quantify this point the small sample expectation of semivariogram
is derived analytically by taking into account the autocorrelation structure of
the regionalized variable. Analytical derivations are based on the Kendall’s bias
estimation procedure for the autocorrelation of autoregressive, (AR ), processes.
His procedure is modified for the semivariogram of AR process and explicitly ex-
panded to cover the autoregressive integrated moving average, ARIMA(1,0,1),
processes. These processes subsume AR, moving average, (MA), independent,
(IP) and Brownian motion processes. For simple correlations within the re-
gionalized variables which are exemplified by AR process, the sample semivar-
lograms overestimate the population counterparts. The AR process semivari-
ograms do not exhibit any nugget effect even for small samples. However , in
the case of ARIMA(1,0,1) process the amount of bias is relatively smaller and
for small samples there appears nugget effect the amount of which diminishes
with the increase in sample lengths. As the sample size increases and / or
the correlation coefficient decreases the discrepancy between the sample and
theoretical semivariogram decreases. Analytical expressions of small sample
semivariogram estimates explain explicitly the linearity, nugget and hole effects
in the semivariogram depending on the type of stochastic process.

Key words: Autocorrelation;bias;small samples;semivariogram;stochastic
process.

1. Introduction
The regional variability in any geological phenomena has been modeled thought
the use of semivariograms for almost three decades starting with the original work

by Matheron(1962).The main purpose of the semivariogram has been to define the
distance over which these phenomena are interdependent.Depending on the shape
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of semivariogram over small distances the geological phenomenon is said to have
either independent structure in the statistical sense, i.e., the occurrences of the phe-
nomenon at different sites do not affect each other or dependent structure from
which one can conclude whether that the phenomenon is perfectly, moderately or
weakly continuous. Furthermore, the shape of experimental semivariogram over
the initial distances determines the model as linear,power,spherical,Gaussian,De Wi-
jsian,etc.,type,(Clark,1979).Last but not the least the comparison of semivariograms
for the same phenomenon but at different directions provides information as to the
isotropy and heterogeneity of the phenomenon concerned.

The semivariogram concept has developed rapidly especially in ore reserves esti-
mation, (David1977; Journel and Huijbregts, 1978), ground water storage and quality
predictions (Aboufirassi and Marino, 1982; Myers et at.,1982; Subyani and Sen, 1989),
earthquake evaluations, (Carr and Glass, 1985) as well as in many other earth science
domains. Besides, the semivariogram is a model used in the estimation procedure
of kriging which provides the best unbiased and linear estimation of any regional
variable. The success in the kriging procedure relies significantly on the most suit-
able choice of the semivariogram type. Such a task can be achieved first of all by
identification of an unbiased empirical semivariogram from the available data.

In addition to the aforementioned advantages of the semivariogram, a considerable
degree of confusion has arisen, recently, over its basic terminology. There appeared
a series of critical discussions whereby the very basis of the semivariogram concept
has been questioned, (Philip and Watson, 1986; Shurtz, 1986). Concerning the semi-
variogram, these discussions concentrated on the arbitrary way that a theoretical
semivariogram model is fitted to sample semivariograms and furthermore, on the ef-
fects of averaging procedure as well as extreme values of the data in addition to the
irregular distribution of sampling sites within the study area. However, cumulative
semivariograms avoid almost all these points, (Sen, 1989).

Another significant point in the sample semivariogram estimations from finite-
length samples is whether these estimations are biased or not?. It is stated by semi-
variogram advocates that in the theoretical model fitting only the initial portion
of the sample semivariogram should be used. In fact, in the Kriging applications,
the small distance semivariogram values play the major role.It is already confirmed
by Sharp(1982a,b) through extensive Monte Carlo simulations for some stochastic
processes that there are significant deviations between the sample and theoretical
semivariograms.He stated that serious attention should be given to the relative im-
portance of short range fitting of semivariograms upon kriging estimations.It is noted
that departures between the theoretical and sample semivariograms may reach to
significant levels.This is clearly the result of finite length of observations. Hence, this
point raises important questions as regards the theoretical model fitting to sample
semivariograms and its effective consequences in the kriging estimates of regionalized
variable.Even though the theoretical model may predict, for instance, an exponen-
tial rise the actual series may produce sample semivariograms which might not be
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exponential for very long samples, (Sharp, 1982a).However, the cause of this effect
could not be documented analytically except by the Monte Carlo simulations.It will
be sequel of this paper analytically that such deviations are due to the bias effects
which might appear as a result of different reasons among which finite sample length
constitutes the major role.

It is the main aim in this paper to derive analytical expressions for the bias
effects resulting from the small sample semivariogram estimations.In order to verify
the bias effects, herein, the autoregressive integrated moving average, ARIMA(1,0,1)
process proposed by Box and Jenkins(1970)is adopted for the analytical derivation
of bias effects on the small sample semivariogram estimates.This stochastic process
subsumes other simple processes such as the independent, IP, autoregressive, AR, and
moving average, MA, processes.

2. Bias effect

An assumption which is a prerequisite in any simulation, estimating or modeling
scheme is that the field data represent only a finite length sample from the underlying
phenomenon.It is not possible to have full information on a random variable, (RV),
unless all of the possible values are recorded exhaustively.This cannot be the case
for observations of geologic phenomena and as a result, the information content in
each recorded sequence will be lacking in some way and accordingly the parameter
estimates will be operationally biased, that is

an =« (1)

In which a, is the estimate of any concert parameter from finite length data and
a is the corresponding population value that could result from extremely long 1.e.,
complete data set only. Hence, by no means it is possible to extract the population
values from finite data sets. As in eq. (1), if the finite length estimate from a single
set of data is not equal to its population counterpart then this parameter is said to
be in operational bias and the amount of bias, B, is

B=a-a, (2)

This bias amount diminishes as the number of data increases but for small samples it
always exists and there is no way to get rid of it entirely. However, it can be reduced
to a minimal value by different regionalization techniques.

On the other hand, quite distinct from the operational bias which is due to the
sampling variability, is the statistical bias associated with parameter estimation. Pro-
vided that the underlying stochastic generating mechanism of the geological phe-
nomenon is known a priori, then the estimates of parameters drawn from the finite
historic sequence could first be corrected for bias and subsequently these corrected
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estimates could be assumed to be the equivalents of corresponding population val-
ues. In general two types of statistical resemblance can be achieved between the field
observation set and the equally likely generation (by simulation) of these variables
by stochastic processes, (Sen, 1974). The first type of resemblance is asymptotically
satisfied for large samples;although for small samples bias effect may exist in some
of the parameter estimates, and small sample resemblance may not be satisfied. If
aydenotes the estimate of any desired parameter desired from a set of finite data, then
it plays the role of population parameter. If a,, is the estimate of the same parameter
from a generated synthetic sequence, then the field and generated data are said to
resemble each other asymptotically provided that a,; — a, as the length of generated
data goes to infinity. On the contrary, when dealing with a set of finite data, it would
appear more logical to maintain the resemblance for small samples as well. This kind
of resemblance is defined in terms of ensemble of m available sequences of finite length
n from the same phenomenon. Each one of these finite- length sequence provides an
estimate of the parameter concerned and these estimates are then averaged over the
ensemble to give an overall estimate denoted by a,,4+; then a,s» — @, as the number
of sequence m goes to infinity. The asymptotic value of the bias amount has to be
equal to zero, which ensures that the finite field data and generated counterparts re-
semble each other asymptotically as well as for the small samples. The statistical bias
contrary to the operational bias can be eliminated completely provided that there are
suitable analytical expressions which quantify the bias amounts.

The magnitude of bias in parameter estimates of a stochastic process depends on
() the marginal probability distribution function of the phenomenon concerned, (2)
the autocorrelation structure, (27) the type of estimate employed, (zv) the length of
data, and finally (v) whether or not the mean value of the process is known or has
to be estimated. Herein, only the normal probability distribution will be considered
together with the ARIMA (1,0,1) process autocorrelation structure as given by Box
and Jenkins (1970). As for the types of parameter estimates are concerned there are
four different procedures available in the literature which are (z) the moment estimate,
(22) the maximum likelihood estimate, (z22) the maximum entropy estimate and finally
(1v) the Bayesian estimate. However, in this study the maximum likelihood estimates
will be employed due to certain statistical advantages, (Box and Jenkins, 1970), as
well as extensive use in practice.

3. Small sample estimation of semivariogram

One of the most important property of any geologic phenomenon is that its vari-
ability of regionalized variable can be measured with the semivariograms which are
defined as the half of the summation of successive square differences between obser-
vations at two sides h apart. The lag-k semivariogram estimate, 4., from a traverse
over which there are n equidistant data values, Z;, (¢ = 1,2,...,n) within the study
area can be written as, (Clark, 1977):
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1 n—k
T =7 > (z— Zi)' (3)
i=1

Herein, Z;’s may represent observed sample values such as ore grades, layer thick-
nesses, ground water level elevations, density, etc. Notice that vo.corresponds to zero
distance and its value will be zero. Definition in eq. (3) does not include the sample
mean value estimate as it is the case for the autocorrelation estimations and therefore
semivariograms have the advantage that for small lags it is independent of long term
variations. In order to be able to quantify the effect of only regional dependence
within a geological phenomenon by means of the semivariogram estimates, first of
all the observed data values, (Z;’ s) will be rendered into a standard sequence, Z;
thorough a standardization procedure as,

i — Z

Zi = S (4)

in which Z and S are the arithmetic average and the standard deviation values es-
timated from the given set of finite data. The standardized sequence has unit standard
deviation and zero mean value. Besides, after the standardization the series become
second order stationary. In addition, such a standardization procedure does not affect
the autocorrelation structure of the original observations at all. In other words, Z;
's and 2; ’s have the same autocorrelation structure. In an ensemble of standardized
series with finite lengths, the estimates of semivariogram and autocorrelation will be
different for each ensemble member. Hence, the application of expectation operation
on both sides of eq.(4) leads after some simple algebraic calculations to

E(w) = 1 - E(ps) (5)

in which the second term on the right hand side indicates the small sample esti-
mation of the lag-k serial autocorrelation coefficient. Hence, it is apparent that the
small sample properties of the semivariogram can be fount only after the analytical
expressions are derived for the small sample expectation of autocorrelation coefficient.

The most commonly used estimate of the serial correlation coefficient is a circular
series approach, (Sen, 1974), in the sense that the end of a sample series is assumed to
be followed by its beginning, and the general from of lag-k autocorrelation coefficient
estimate, px+ 1s given by as

(6)

This expression also represent the maximum likelihood estimation of the auto-
correlation coefficient. For the sake of discussions in the following sections a brief
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derivation of small sample expectation of v, will be exposed briefly as presented by
Kendall (1954). Accordingly, Eq.(6) can be written succinctly as a ratio similar to
which was first proposed by Kendall as:

Pks = % (7)

in which A represent the k-th order covariance function in the numerator and B
corresponds to the variance in the denominator of eq.(6), respectively. It is obvious
that A and B RV’s for within the ensemble finite sequences and so is 7. Let the
first order moments of these RV’s be represent by E(A) and E(B). Then eq.(7) can
be written in terms of shifted variables as

_E(A)+a
P = BB +5b

where a and b are new RV’s with zero means, i.e., expectations and hence,

The right hand side of this expression can be expanded into an infinite summa-
tion, first, by applying the Binomial expansion formula and subsequently taking the
expectation of both sides and then performing the necessary algebraic calculations
with the view that the E(b?) = Var(b),the following approximate but general formula
can be obtained,

E(A) Cov(a,b) E(A)Var(b)
E(B)” EB) T BB ©)

E(pi+) =

in the derivation of which third and higher order terms have been ignored. Accord-
ingly, from eq.(5) the small sample expectation of the semivariogram can be found in
general as

_E(4) I Cov(a,b) E(A)Var(b)
E(B)  E2?(B) E3(B)

The explicit forms of various terms on the right hand side of eq.(10) are given by
Kendall (1954) as

E(ne) =1

(10)

E(A)=nik [(n‘k—l)ﬂk—n—i—gn_;_ (n — k=) (prsi + pr—i) (11)
BB =1-—— 2 Y a_k_ip (12)
Tk (n-kf & 8
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n—k—1

2
Cov(a,b) = — Y. Pipitk (13)
i=1
and finally
2 n—k—1 5
Var(h) = — 3. #i (14)
i=1

The substitution of eqs. (11)-(14) into eq.(10) yields to a huge expression which has
been avoided herein.

4. Biased semivariogram of stochastic processes

In the aforementioned formulations, eq.(10) provides the small sample expecta-
tions of the classical semivariogram in its general but implicit form without any
reference to any particular stochastic process. However, specifically autoregressive
integrated moving average process, ARIMA(1,01,0) will be adopted, herein, in de-
riving the analytical expressions for E (7). These process can be reduced easily
into other simpler processes such as the independent, (IP), autoregressive, (AR) or
moving average, (MA) processes depending on the values of model parameters as
will be explained in the sequel. Besides, the ARIMA(1,0,1) processes are capable for
representing long memory effects in natural phenomenon. In general, two subsequent
values, Z; and Z;_,, of the phenomena concerned are related recursively to each other
as

Z;=¢Zi1+ € — Oei (15)

in which ¢ and 6 are model parameters and ¢;’s are random variable with Gaussian
distribution. Notice that for ¢ = 0 eq.(15) yields MA process and when 6 = 0 it
reduced to an AR process which is commonly known as a first order Markov process
and, finally if ¢ = @ = 0 then the resulting process is purely random which is usually
referred to as white noise, i.e., IP. In the case of AR process, ¢ = pi where p; 1s
the lag-one autocorrelation coefficient of this process. A common property in all of
this processes is that they are stationary. Last but not least, when ¢ =1 and 0 =0
eq.(15) leads to random increments, Z; — Zi—, = €, which is known as either random
walk or Brownian motion process. As stated by Jenkins and Watt (1968) this process
is non stationary in both the mean and the variance.

The autocorrelation structure of ARIMA (1,0,1) process is given in terms of ¢ and
0 by Box and Jenkins (1970) explicitly a

po=1

_ (¢—0)(1 — ¢6)
PL= T 02 — 240
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Pi = ¢Pi—l

in which po and p; are the lag-zero and lag-i autocorrelation coefficients. The sub-
stitution of eq.(16) in to eqs.(11)-(14) and the completion of the necessary algebraic
calculations yield explicitly that

E(A)== [(n k) pht + kgn R — = — mﬁ (17)
E(B):l—%—ﬁ (18)
Cov (a,b) = [plqb* 2 (¢ + kp1)] +2(12_;) (19)

and
Var (b) = x [1 + 12_”;52] (20)

The substitution of these equations into eq.(10) leads to the small sample expec-
tations of ARIMA(1,0,1) process semivariograms as

1-¢+2m) (1= pg*)

E(m)=1~p¢"" +% [( +kp1 (¢ +2p1) 71—

(1-¢)
ﬂ.—-k-l 4p1¢k ! ] '
kpi¢ ( — $7) (¢ —p1) (21)

This expression is general in the sense that it gives the small sample expectations
of semivariograms for IP, MA and AR processes by substitution of relevant ¢ and 0
values as mentioned earlier in this section.

5. Analytical solutions and discussions

It is possible to derive many useful expression concerning the properties such as
the nugget and hole effect, linearity, etc., of the semivariograms as follows.

(z) even tough the sample sizes are small the AR processes do not exhibit any
nugget effect, i.e., the semivariogram value at the origin is equal to zero. This state-
ment can be proven from eq.(21) by substituting first ¢ = p; and then k = 0 and
after the necessary algebraic manipulations one can find that £ (y0+) = 0 irrespective
of sample sizes or autocorrelation structure.
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(22) on the contrary, for small samples ARIMA(1,0,1) processes possess nugget
effect the value of which decreases with increase of sample size. It is not possible
to substitute into eq.(21) directly ¥ = 0 since as is obvious from eq.(16) that k is
meaningful only when it is greater then 1. The recurrence relationship in eq.(16)
indicates that in general pr = p;¢*~1. Therefore, in eq.(21) first of all p;¢*~! terms
should be replaced with p; and then £ = 0 must be substituted with consideration
that po = 1. Quantitatively, one can obtain the analytical expression for the nugget
effect after these algebraic manipulations as:

_4p (¢ —p)
B () = 2t (22)
which shows clearly the nugget effect for finite sample lengths. However, for large
sample sizes (n — o0) there is no nugget effect, i.e., E (yo+) — 0.Notice from eq.(22)
that for the AR process, p; = ¢, and hence there is no nugget effect.

(24¢) in the MA process case there appears no nugget effect but it yields a distinct
hole effect at lag one as was observed by Sharp (1982) on the basis of extensive Monte
Carlo simulations. However, the analytical expression of this effect can be obtained
easily from eq.(21) by substituting ¢ = 0 and k = 1 which leads to

1
E(ne)=1 +;(1+2P1)

or, since p; = —0/ (1 4 6?) the substitution yields

14062

(iv) one of the extremes in the semivariograms appear when the AR parameter,
#, is set equal to unity simultaneously with § = 0 which implies that ¢ = p;. This
situation corresponds to the case of Brownian motion. The substitution of these
conditions into eq.(21) leads to

E (1) =1+%(1 . ) (23)

() =2 - (24)
which implies that for finite sample lengths the semivariogram appears as linear
trends. However, for very large sample lengths (n — o) the semivariogram becomes
equivalent with the horizontal axis for k << n.
(v) another extreme of the semivariogram is due to random independent process
whereby ¢ = 0 = p; = 0 and the substitution into eq.(21) gives

1
Efpe)=1-— (25)
It is obvious that for small samples there appears some bias in the beginning but

increase of sample size leads to a complete nugget effect as E (yx+) =1
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(vz) It is interesting to notice that for large sample sizes and small lags, i.e.,n >>
k, eq.(21) reduce reduce to the already known relationship between the semivariogram
and autocorrelation function for large samples as

E(p) =1 p} (26)

This may be the main reason why in theoretical semivariogram model fitting only
the initial portion of the sample semivariogram is consider as reliable in model fitting.

6. Numerical solution and discussion

The small sample expectations of the semivariograms for the aforementioned pro-
cesses can be calculated for different combinations of model parameter values on
digital computers. To this and, first of all the numerical solutions of eq.(21) are
presented in Figures 1-3 for various sample lengths and a set of p; values for AR
processes.

The general impression that can be taken from these figures is that the finite
sample length as well as the autocorrelation structure distort the population semivar-
iograms. Small sample semivariograms deviate from the population semivariograms
more and more with the increase of correlation coefficient. However, the smaller the
dependence the smaller will be the deviation. Besides,for instance in Figure 1 at
large lags the small sample semivariogram starts to decrease after reaching the max-
imum at some moderate lags. Furthermore, especially small sample semivariograms
for big auto correlations give the impression of a power model where as the popula-
tion semivariogram is of exponential type. This point indicates clearly that a simple
mathematical function must not be fitted heuristically to the small sample semivar-
iograms prior to eliminating the eliminating the bias effect. It is suggested herein
that as a preliminary guide the graphs in Figure 1-3 can be used as standard curves
and then the one that matches the sample semivariogram is picked up which deduced
the underlying population value and accordingly the parameter estimate. Otherwise,
all parameters derived from convectional semivariogram fittings are hypothetical and
subjective. Comparisons of Figures 1-3 indicate that as and sample sizes increases
the small sample semivariogram estimates are expected to approach the population
semivariogram. However, as the sample size increases there appears cases where by
after initial curvature point the small sample semivariogram remains constant for
the majority of moderate lags. This is very similar to the hypothetically suggested
spherical model where by the constancy after some distance corresponds to sill, i.e.,
the variance in the stochastic process terminology. For instance, in Figure 2-3 all
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of the small sample semivariograms with different autocorrelation coefficients expect
p1 = 0.9 appear in the forms of spherical model whereby the underlying population
(theoretical) semivariograms have exponential increase. This point also shows pitfalls
in fitting a theoretical semivariogram to the sample semivariogram points without
any further interpretation. In fact, there should be a physical and analytical basis
in fitting theoretical semivariogram otherwise the small sample semivariogram might
lead to some model which may not be consistent with the geological phenomenon
occurrence at all.

Figures 4-5 show the effect of small samples very clearly for different sample
lengths. It can be concluded that as the structural dependence in regionalized variable
increases the chances are that the sample semivariogram becomes more biased and
therefore does not represent the population semivariogram. On the other hand, for
independently distributed regionalized variables there will be relatively very minor
bias effect from the finite sample lengths, (see eq.25). Therefore, the best case for
the semivariogram application away from the undesired bias effect is the independent
regionalized variables which have limitations in practical application. Otherwise,
the finite sample length as well as autocorrelation effects must be considered and
accounted for in the semivariogram fittings.

It is possible to obtain numerous similar graphs for any set of parameters (¢, 0
and n) from eq.(21) which shows the variation of E (4. ) with the lag. Herein, Figures
6-7 represent two samples only from the small sample expectations of ARIMA(1,0,1)
process for different model parameter values and sample lengths. By comparing these
graphs with each other as well as with the previous figures for the AR process the
following additional significant points can be observed :

(¢) for the same AR parameters ¢ and p, invariably the AR processes semivar-
iograms will have more bias than the ARIMA(1,0,1) process provided that § < ¢
which is the case with natural phenomena.

(1) for fixed ¢ values increase in 6 value leads to less biased semivariograms initial
portions which is obvious from Figures 6 or 7.

(141) comparison of Figures 6 and 7 indicates that as expected, any increase in the
sample size decreases the bias effect.

(1v) furthermore, increase in ¢ parameter brings additional biased to the small
sample semivariogram estimates.

7. Conclusions

The small sample properties of the semivariograms resulting from the different
stochastic process are presented analytically. It is observed that the smaller the
sample length the more will be the bias effect and, therefore, the semivariogram esti-
mations at small distances will be in gross error compared to the parent population
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values. Furthermore, paucity of data affects the sample semivariogram estimates,
especially, if the regionalized variable has a strong dependence structure. This ef-
fect occurs in the form of bias which causes overestimations in the semivariogram
calculations. The analytical expression is obtained that relates the small sample
semivariogram expectations and the autocorrelation structure of the ARIMA(1,0,1)
process in term of model parameters. This expression provides a common basis for
the autoregressive, AR, moving average, MA, independent, IP, and Brownian mo-
tion processes small sample semivariogram expectations. The analytical expression
of these expectations showed quantitatively the linearity, nugget and hole effect in
the semivariogram estimates.
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OZET
Yan-Variogramlarin tahminleri sonlu &meklem uzunluklanna ve yore verilerin

durumlanindan etkilenir. Yoresel verilerin otokorelasyonlannmn yapisina bal ik yan-
variogramlarin beklenen degerleri sonlu $rneklemler igin analitik olarak hesaplanmugtir
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Abstract

This paper presents a level crossing predictor for Gaussian ARMAX pro-
cesses, which is optimal in the sense that it minimizes the number of false alarms
for a given probability of detecting the level-crossings. It is applied to real data
for predicting and warning for high water levels at the Danish coast in the Baltic
Sea. The optimal alarm system is shown to work better than a simpler and
more conventional alarm system. A method to optimally predict the crossings
also when the external signals are not known is presented. In this particular
case most of the variability of the predictions are due to system noise, so the
performance of the system with predicted external signals are almost identical
to the performance when the external signals are known. A smaller simulation
study shows that the water level process is hard to predict and that the choice
of model can be rather important.

KEY WORDS: level crossings, flooding alarm, catastrophe prediction, optimal
alarm, ARMAX process.

1. Introduction

A flooding incident can be disastrous, especially if people are not warned. Hence,
in many situations it is important to be able to give an alarm some time before the
incident occurs. It is also important to give as few false alarms as possible, but still
find a sufficient number of the flooding incidents.

In a more general setting, the problem is to predict level crossings, catastrophes, of a
stochastic process a sufficient time in advance. This catastrophe prediction problem was
treated by de Maré and Lindgren, and a definition of the optimal catastrophe predictor

was given as the predictor that gives a minimum number of false alarms for a given
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detection probability. This idea was further treated in Svensson, Holst, Lindquist &
Lindgren , and leads to an explicit catastrophe predictor for Gaussian ARMA processes
with constant catastrophe level. Since the construction of the optimal catastrophe
predictor requires quite a large amount of calculations, two suboptimal predictors were
also introduced. In Svensson & Holst

the technique was extended to cover both ARMAX and SETARMAX processes
with a deterministic but changing catastrophe level. This made it possible to use the
optimal catastrophe predictor on real data, describing water levels in the Baltic Sea,
presented in this paper. Modelling of the water levels in the Baltic Sea is treated in
Berntsen, Nielsen and Spliid & Nielsen . A complication with ARMAX processes is
that the external signals might not be known in advance, which means that they have
to be predicted too. An idea how this can be treated in the same framework as above
is also included in this paper and applied to the data sets used.

2. The data set

The data sets used in this paper are from 1978, 1979 and 1980. They consist of the
following measurements.

Location Water | Head | Side Air Temp.
level | wind | wind | pressure

Korsgr X

Rgdbyhavn X

Gedser X

Visby X

Kadetrenden/ Maribo (78) X X X X
Mgn-Sydgst lightship (79,80) X X X X
Mgn lighthouse: X X X X
Christiansg lighthouse X X X X X
Hammer Odde lighthouse: X X X X

Only three of these signals are used in the final model describing the water level
at Rgdbyhavn. They are the water level at Rgdbyhavn, the head wind at Christiansg
lighthouse and the air pressure at Kadetrenden/Maribo (78) or Mgn-Sydgst lightship
(79,80). The original data sets contained measurements every hour, but since the
process is oversampled, only one sample per 3 hours was used for modelling the water
level. Before they have been used for modelling, the mean value using data from all
three years has been subtracted. However, the catastrophe levels used later are related
to the original data. In Figure /refwater78 the water level at Rgdbyhavn is shown for
the data set from 1978. The complete data sets with a short description can be found
at the address: http://www.maths.lth.se/matstat/staff/anderss/data/data.html.
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3. The models

The water level at Rgdbyhavn has been modelled as ARMAX and SETARX pro-
cesses, denoted X;, with two external signals, denoted u;: and uz:. The structure of
an ARMAX(p,q,m1,m2) process is

Xet+ar Xe 1 +...4+a,Xep =
biouie + ...+ b1y U t—ry + b2ouze + ... + b2, Uz, t—r, + Co€t + ... + Coei—g,
or shorter .
Az V)X, = Bi(z7Yu1s + Ba(z7uae + C(z71)e,
where {e;}$2_., is white noise and e; is uncorrelated with X,, u;, and uz, for s < t.

It is furthermore assumed that e, € N(0,1).

After trying a number of different models three were chosen and estimated on the
data from 1978, and optimal alarm systems were calculated. The models are AR-
MAX(2,1,1,1), ARMAX(4,2,1,1) and SETARX(2;2,2;1,1). The noise is assumed to be
independent and Gaussian with variance 1.

The ARMAX(2,1,1,1)-model is

A(z™') = 1.0000 — 1.2794z~" + 0.3786z 2
C(z') = 5.5678 + 3.18362"

Bi(z7') = —0.0072z""

By(z~') = 0.0232:°!

The empirical density functions for the one and two-step prediction error for the data
set from 1978 are shown in Figure , together with the normal density function, and
normal probability plots. It can be seen that the residuals have slightly heavier tails
than in the normal distribution. However, in spite of these deviations the normal
distribution has been used for modelling and calculation of the alarm systems. It
seems to work rather well.

The ARMAX(4,2,1,1)-model is

A(z™') = 1.0000 — 1.72272z"! +1.7602z"%2 — 1.59502"2 + 0.6652z~*
C(z™') = b5.1942 + 0.4259z7* 4 3.7263z~2

B:(z7') = -—0.0074z7!

By(z™') = 0.0225z7!.

The SETARX-model is composed of two ARX-models where

A(z"') = 1.0000 — 1.5280z~! + 0.6137z~2
C(z"') = 6.0661
B;(z7') = —0.0049z71

By(z~') = 0.0155z71
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is used when the process value X;_, < 30 and

A(z™') = 1.0000 — 1.4226z~" 4 0.7434z"2
C(z7') = 6.0661

Bi(z~!') = 0.0202z7!

Bi(z"') = 0.1312:7}

when the process value X;_» > 30.

In cases when models for the external signals are needed these signals have been
modelled as AR processes. The model for the head wind at Christiansg lighthouse is
an AR(3) process with the parameters

A;(z~') = 1.0000 — 1.7042z"! + 0.5411272 + 0.1713273
Ci(z"1) 7.7460

and the model for the air pressure at Kadetrenden/Maribo (78) or Mgn-Sydgst lightship
(79,80) is an AR(1) process with the parameters

Az(z”') = 1.0000—0.9657z"!
C2(z~1) = 27.8675.

It could be considered using one model for the air pressure at Kadetrenden/Maribo
(78) and another model for Mgn-Sydgst lightship (79,80), but since the locations are
rather close to each other, the same model has been used. This also requires fewer
calculations.

4. The optimal alarm system

The optimal alarm systems used in this paper are optimal in the sense that they
minimize the probability of false alarms for a given probability of detecting the catas-
trophes. Optimality is reached by the alarm system defined through the likelihood

ratio,
dPy k) (y|CY)
dPy (t-k)(y|Ct)

where Y (t) denotes the available information at time ¢, C; is the event that a catas-
trophe occurs at time ¢t and C} is the complementary event that no catastrophe occurs
at time t. This condition can be simplified, so that the alarm system can be based on
only the predictor (£¢—1,%:) of the process X; at times ¢ — 1 and ¢, instead of all the
available information Y'(¢). The result is

P(C¢|Z¢-1,%:) > P,

< constant,

which was shown in Svensson et al. , to be the optimal alarm system for ARMA
processes with a constant catastrophe level. It is then possible to calculate the alarm
region in advance, which makes the alarm system rather fast. A typical alarm region
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in the (£¢—1, £;)-plane is shown in figure . The model is the ARMAX(2,1,1,1) described
above, with the influence of the external signals subtracted. The predictor is using 6
old process values and the prediction horizon is 2. This idea was further developed in
Svensson & Holst, to cover ARMAX and SETARX processes when the external signals
are known and the process is stationary.

5. Alarm system using predicted external signals

Since predictions of the process values are needed in the level crossing predictor,
also predictions of the external signals are needed when the external signals are not
known in advance. In case of known external signals, the effect can be included in the
catastrophe level, giving a catastrophe level that changes through time, see Svensson
& Holst . However it is not that simple in case of stochastic external signals. A few
assumptions on the signals have to be added in order to get an explicit level crossing
predictor.

If we assume that the external signals and the process are stationary Gaussian
processes, the covariance of the process value predictor Cov(£;_1, ;) will include both
the effects of the process noise and the external signals.

Suppose the process can be written,

A(zH)X: = B(z Y us+ C(z7 Ve
Aj(z7VYuy = Ci(z7V)we.

Due to linearity, X: can be decomposed into one part, X, , describing the influence of
the external signals and one part, X. ., describing the influence of the system noise.

X: = Xup+ X
A(z7 V)X = C(z7V)es
A(an)Al(IZ_l)Xu.g = B(Z_I)C]_(Z‘-l)wg.

The same deductions can be done for the predictions, leading to
Xt == Xu.t + Xc.t-

If the noise processes e and ws are a.ssumed to be inde endent the cova.ria.nce of the
p ] P ]
predictions Z;_i, Z; is

Cov(&i-1, &:) = Cov(&Ey -1, Eu,t) + Cov(Zet—1, Teyt)-

This means that if X, : can be optimally predicted, the technique presented in Svensson
& Holst , can still be used and thus the resulting critical levels for the stochastic part
of the process will be

(Leat(t — 1|t — k), Leat(t|t — k)] = [L(t — 1), L(£)] — [£u(t — 1]t — k), Z.(2]t — k)]
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The catastrophe level L(t) for the original process, is assumed to be deterministic and
known, and need not be predicted. The part of the process that is due to the external
signals, influences the mean value of the process and will thus enter as an addition to
the catastrophe level. Predictions for times t — 1 and ¢ are needed and the information
is available up until ¢ — k.

One model, the ARMAX(2,1,1,1)-model with the external signals modelled as AR(3)
and AR(1) as above, have been tested and the results are shown and compared to the
other alarm systems in Table , Table and Table . The alarm system works well for
the data set that was used for estimating the model, but poorer for the other two data
sets. The reason for this could be that the fixed models for the process and the external
signals are not totally correct. This is similar to the alarm system where the external
signals are not predicted, which is expected since almost all the variability is due to
process noise.

In order to check how much the departures from normality and model type influence
the performance, a smaller simulation study based on the ARMAX(2,1,1,1) model
above with the external signals simulated as AR(3) and AR(1), was also performed.
It shows that the process is very hard to predict, and will give a large amount of
false alarms if a high detection probability is desired. An alarm is denoted false if
it does not predict the catastrope exactly in time. The influence of the inputs are
rather easy to predict when the prediction horizons are short, leading to almost the
same alarm system as for known inputs. The variability of the predictions of process
values is almost entirely due to the influence of the system noise, e;. The results from
the simulation are shown in Table . When the wrong model is used the detection
probability can become a lot lower than calculated. This is obvious, especially for the
SETARX model. The performance would have been better if the models had been
estimated on the simulated data and not on the water data. Worth noting is that the
maximal detection probability for the naive-naive alarm system is 0.29, so it is not
comparable to the other alarm systems.

6. Results

The optimal alarm systems for the different models were compared to some simpler
alarm systems. The simplest alarm system, called the naive-naive alarm system, gives
an alarm when the process value k steps before a possible catastrophe crosses a certain
level. This alarm system did work, but not as well as the optimal alarm systems.
The most important disadvantage is that the naive-naive alarm system will have a
maximum detection probability, that cannot be exceeded and is rather low.

Another simple alarm system models the process and gives alarm when the predicted
process values crosses a level, that was determined from the data sets. This alarm
system did not work, hence it has not been included in the tables below.

The optimal alarm system has a nonlinear alarm region, that changes depending on
the catastrophe level and the process values. This makes the optimal alarm system
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rather complex. In many cases when the performance is important this is the alarm
system that ought to be used. In other cases it might be good to compare a proposed
simpler alarm system to the optimal in order to check how close to the optimal the
simpler alarm system is.

The parameters describing the process have all been estimated on the data set
from 1978, and then tested on all three data sets. The alarm level for the naive-
naive alarm system has been optimized over the three data sets together. As can
be seen in Table the naive-naive alarm system has a rather low maximal detection
-probability, and thus is not possible to use if a high detection probability is required.
The performance of the optimal alarm systems for these three data sets does not differ
very much from each other and they have almost the same number of false alarms.
The detection probabilities used are shown in parenthesis. They were in most cases
set to 90%. ARMAX2111pred is the alarm system where also the external signals are
predicted.

The optimal alarm systems with the highest detection probabilities have quite a few
false alarms according to the strictest definition, where an alarm is considered false if
it does not predict the catastrophe exactly right in time, but it could be questioned if
all of these should be considered false. In Figure , it can be seen that a few of the so
called false alarms are early alarms, or alarms given when the levels are still critical.
In case of early alarms, at least for one or two steps early which means 3-6 hours early,
the additional cost should not be too large. Also, the confidence in the alarm system
will not be damaged too much. In the case of alarms when still over the critical level,
it means that it will take a little longer to get back to normal state from the emergency
state, caused by the process being alarmed. The cost should be small compared to the
cost of the catastrophe. If these ideas, i.e. one and two steps early alarms are counted
as correct alarms and alarms given when in catastrophe state are not counted at all
are taken into account, Table will turn into Table .

The alarm level for the naive-naive alarm system is optimized over all three sets. It
only reaches a total detection probability of approximately 40 %, which is far below
the detection probabilities reached by the different optimal alarms. However, a higher
detection probability will inevitably lead to more false alarms, and that is a trade-off
that has to be made in each individual case.

In Figure close-ups at some different times are shown to give an explanation for the
rather high rate of false alarms. 95% one-dimensional confidence intervals based on
the one and two step predictions are also shown. The process is rather hard to predict
which leads to wide confidence intervals and a high number of false alarms if a high
detection probability is wanted.

7. Conclusions

This paper has presented an optimal alarm for processes described by linear or
piecewise linear processes applied to prediction of high water levels in the Baltic. The
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optimal alarm technique gives as few false alarms as possible for a given probability of
detecting the catastrophes.

Data are collected in the southern part of the Baltic and high water levels in
Rgdbyhavn in Denmark are to be predicted.

The models that are used to describe the water levels all contain external variables,
with future values that are unknown at prediction time. This means that also these
external signals have to be predicted, which influences alarm levels and probabilities
for detection and for alarm. Three different models for the water level have been
considered.

The optimal alarm systems presented in the paper work well, and have the ability to
reach any specified detection probability. The more conventional alarm algorithm that
the optimal alarm is compared to, i.e. the alarm is sounded when the process reaches
a certain level, has a maximal detection probability which in these cases is rather low.
This means that if a high detection probability is required, the optimal alarm system
has to be used. A drawback with a high detection probability is that the number of
false alarms also becomes rather large, even though the optimal alarm systems give a
minimum of false alarms. In particular the SETARX model for the water level shows
this balance, it has a fast response and detect almost all catastrophes on all datasets,
but at the expence of giving a high amount of false alarms, in particular on a dataset
(from 1980) to which the model was not adapted.

A possibility to lower the number of false alarms is to find a better model, e.g. by us-
ing more external information for the predictions or by taking the timevariations of the
water level process into account. Furthermore, in the flooding data case the prediction
errors are not exactly normally distributed, which introduces further approximations
in the calculations.

OZET

Bu calismada Gaussian ARMAX siiregleri igin yanlis alarmlarnn sayilarimin minimize
edilmesi anlaminda optimal kestiriciler incelenmistir. Sonuglar Baltik Denizi'ndeki su seviyelerinin
kestirimleri igin uygulanmig ve burada verilen optimal alarm sisteminin daha basit sistemlere gére
daha iyi sonug verdigi gézlenmistir.
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Abstract
Two basic statistics seem to have been introduced in literature to measure
and detect a possible quadrant dependence between two random variables. This
work compares these two statistics and dwells on one of these discussing distri-
butional aspects for the empirical case. The results presented are preliminary
findings of an ongoing research on the subject.
Key Words: Probability ratio, bivariate empirical processes, simple ran-
* dom walk, negative binomial (Pascal) probability.

1. Introduction

Two arbitrary random variables X and Y are in consideration. These variables
have the respective given marginal distributions Fx(z) and Fy(y) and a symmetric
joint distribution F'(z,y) at the point (z,y) € R?, such that little information exist
about the latter for reasons to be given later, the marginal and joint distributions are
not assumed to converge concurrently to the same functional values as ¢ — +oo and
(or) y — +oo.

When independence of X and Y to be emphasized, the joint distribution F(z,y)
will restrictively be denoted by F(©)(z,y), i.e.,

F(z,y) = FO(z,y) = Fx(z)Fy(y); (1.1)

F®M)(z,y) will in general stand for quadrant dependence case (c.f., for the concept,
Lehmann (1966)), i.e.,

FO(z,y) # Fx(z)Fy(y). (1.2)
When neither F(!)(z,y) nor F(©)(z,y) are to be emphasized, the joint distribution will
be denoted by F(z,y). To measure and detect dependence of X and Y , two statistics
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seem to be favored in literature which form the bases of many other alternatives used
for the same purpose:

(2,9) = Foogdy, FO(2,9) #0, (z,9) € Ry (1.3)
”) Hr(z,y) = F(z,y) - FO(z,y), (=z,y) € R

such that Sp(z,y) = 1 and Hp(z,y) = 0 discloses in dependence of X and Y at the
point (z,y) € R?%. To give some examples of other statistics based on Sr(z,y), the
generalized likelihood (probability) ratio is a typical one used in sequential analysis

(c£., Wald (1947), pp.37-61), i.e., Sp(z,y) = HeEY; also, the Kullback- Leibler

separator (c.f., Kullback-Leibler (1951)) is another example used in measurement of
dependence, i.e.,

FO(z,y).
]*_'(‘3)(:1;,‘,?;)1

and we have also the concentration ratio (function) of Cifarelli and Regazzini (1987)
and of Scarsini (1991), i.e.,

sp(z,y) =InSp(z,y) =1n

FO) (g,
o) = Ty

Similarly, it is well-known that

sup |Hr(z,y)| = sup |F(z,9) = FOa,v)|
(z,v)ER? (z,y)eR

corresponds to the bivariate Kolmogorov-Smirnov statistic;

[Hr (2,y) = [F (2,9) — FO (2,9)]

yields the bivariate version of Cramer-von Mises statistic (cf., Kendall and Stuart
(1973), p.467); and

He(z, ) _ [F(@9) = FO@,y)]
FO(z,y) FO)(z,y)

forms the well-known chi-square statistic.

In all of the above variations of Sp(z,y) and Hr(z,y), the statistics cannot distin-
guish between dependence and independence at the points ¢ — +oo and/or y — +oo,
where F(z,y) on the one hand, Fx(z) and Fy(y) on the other converge concurrently
to the same limiting value. Hence, these two basic statistics have similar performances
at the extremes. This means that the restriction F(©(z,y) # 0 for Sp(z,y) is not
disadvantage for the statistic in question, because Hp(z,y) has also the same disad-
vantage. However, because of the major works of Kolmogorov (1933) and Smirnov
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(1935), and in view of time-proven applicability ease of chi-square, Hr(z,y) seem to
favored and known more in applications.

In the following sections, empirical counterparts Sgn(z,y) and Hp,(z,y) of the
dependence statistics Sp(z,y) and Hp(z,y) will be discussed; then, an attempt will
made to tackle the distributional features of the former empirical statistic Spn(z,y).
The results presented are preliminary findings of an ongoing research.

2. Empirical dependence statistics

When, on the other hand, all the distributions Fx(z) , Fy(y) and F(z,y) are
unknown and when we have a finite-sized (i.e.,n < co) random sample of observations
(X;,Y:),1=1,2,...,n, on (X,Y), the following empirical counterparts of (1.3) are
used:

Bz,
SF.'R(x?y) = ﬁ’ FTED)('I} y) ‘_lé 0, (21)

HF.ﬂ(a:sy) 0 Fﬂ(xsy) =4 F,EO)(:C,?})
where, by definition (cf., Gaenssler and Stute(1985) and Tuncer (1995), we have

Fa(e,9) = 3 Lxs(Xi ,¥) = = 3 La(X:) - In(¥) 2.2)

=1 =1

S

1 n 1 n
Fi(z,y) = Fxa(z) Fya(y) = (;ZIA(Xi)) ; (HZIB(Y}))
i=1 =1
with the usual indicator function for an arbitrary set E being defined as

e Dsifteaculi
IE(“")‘{O, if w¢E,

and A = (—o0,z| and B = (—o00,y].
For convenience of notation, we shall re-set

G = Laxs(Xi, Yi) = La(Xi)Ig(Y3) = &miy (2.3)
f,' — IA(X,') and n = IB(Y;) -

which, as they will be easily noted, are independent Bernoulli trials yielding two-state
Markovian processes

Zm:zci:Tm=Z€j aHdUm=ZWka (2.4)
=1 1=1 k=1
m =0,1,..., to be discussed in the next section.
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Note however that for n > 1 and for any (z,y) € R;,the events that Sg.(z,y) = 1
and Hpn(z,y) = 0 are analytically negligible, inasmuch as,

1 n 1 n 1 n

= :;1& Mk F (n ‘;é;) (n Jzﬂm) ; (2.5)
unless of course all {’s (or all 7;’s or both) either vanish or are equal to unity —clearly,
for n = 1, Sa(z,y) = 1 — This point of negligibility is also supported by the fact
that the set

M = {(xay) | Sﬂ(ma y) = 1,($,y) € ‘SR?}
is a line in R, which has Lebesque measure zero, and therefore, for any distribution

G(z,y) that is absolutely continuous with respect to Lebesque measure, the proba-
bility measure is zero:

P(M) :f] dG(z,y) = 0.
M

This undoubtedly is true for continuous distributions. Corresponding to the case
where the quantities -3 7_, & - nx and (% Y 1-) . (.71.1. 2 T?j) are each obtained
from two distinct samples from an identical population, Karlin and Taylor(1981, pp.
113-116) find on the other hand that the probability P(M) in general is equal to 3.
This point of negligibility warrants that there is almost no information lost when such
points are discarded from the analysis.

In fact, as it is the case with Sp(z,y) and Hp(z,y) at £ — +oo and/or y — o0
, the empirical measures Sr,(z,y) and Hp,(z,y) will not discern dependence from in-
dependence at points Z,., = max {Z1.n, Z2:ny -y Tren} ANA/OT Ynow = MaxX {Y1:n, Y2:ns -ooy Ynin} -
These observations yield thus negligible results.

Note that the distributions that govern Hp,(z,y) are well-worked-out in litera-
ture, but this is hardly the case with Sg,(z,y). The latter is a ratio of two positive
integers, which may be statistically dependent on each other. As a matter of fact,
when the numerator and denominator of Sg,(z,y) are both estimated from the same
sample, then, as will be noted in(2.3), both will be based on identical observations, so
that dependence will be inevitable. The form of such a dependence will be taken up
in the next section. Nonetheless, when the numerator and denominator are each com-
puted from two distinct (independent) samples, such a dependence is eliminated, so
that it may be possible to enquire into some discrete distributions, say, (cf. Johnson
and Kotz (1969, p.31))

PIX =r/s]=(e—1)(e+ —1)7, (2.6)
which has positive finite moments and where r and s positive integers. However, when
based on the same distribution, the numerator and the denominator are dependent,
so that the distributions that govern the numerator and the denominator of Sg.(z,y)
must be studied separately, and ways must be sought to eliminate the dependence.
This line of reasoning will be followed in the following pages:
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Letting N = {1,2,...,n}, the set of first positive integers, then

SF‘H(‘T!y) = Tr';_ztfn; = %’E ?

2 =n Z, and Vi, = T.U,

where, for a given n, Z,, T, and U, are as in (2.4). Accordingly, V, € N? =
{k-1/ ke Nand!l € N} and Z, € N, the latter holding under specific conditions
to be discusses in the next section. Thus, Sr.(z,y) becomes a quotient of two inter-
dependent positive integers, and in the next section, we shall discuss the distributions
of Z, as eliminated from its dependence on V,, and the subsquent section will shortly
dwell on the distribution of V,,. Under the circumstance, it will be possible to enquire
into potential uses of such distributions as in (2.6). The last point will be resumed
in another article.

3. Bivariate empirical distribution n . F,(z,y)

Since the variable (; in (2.3) is a Bernoulli trial which takes the value (; = 1
with P((X;,Y:) € A x B) = p and the value ¢; = 0 with P((X;,Y;) € A x B) = g,
then their sums Z,, = "%, ¢, (m = 0,1,2,...),will obviously be a simple random
walk governed by the probability p. The sample size n is fixed, so that the process
cannot continue indefinitely. Our concern will thus be the probability governing the
sum Z, = n- F{)(z,y) =(XL, G).

Adopting the vectorial notation £*= (1, &2, ..., &x) and 2‘ =(n1,M2,---,7Mn), Where
the components &;’s and 7;’s, (¢ = 1,2,...,n), are the indicator functions defined in
(2.3), it is possible to define three distintc sums which are related to the three distinct
empidistributions mentioned earlier (cf., 2.4):

Zn =nFy(z,y) =t , T,=nFxu(z)=£¢ and U, =nFy, =Et2 .

where the sum Z, corresponds to the bivariate Markovian process ;s ; the sums T,
and U, result from the respective univariate Markovian processes {;‘s and 7;'s. On
the other hand, the Cauchy-Schwarz inequality as applied to the case, i.e.,

(€n)?* <(£¢)- (')
yields the following relations between these three sums:

() < min{(€%¢) , (n*m)}, (3.1)

~ ™~

and all the more
(€'n) < (€6 (n'n)- (3.2)
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The sum Z,, is thus bounded from above by the random quantity r = min {(cf ke ) (T}tﬂ)}

as in (3.1) above. As such, the sum Z, can only take values 0,1,2,...,r; whereas

the sums 7T), and U, can freely take values 0,1,2,...,n. Since these latter sums obey

Binomial probability laws with respective parameters (n, Fx(z)) and (n, Fy(y)) (cf.,

Karlin and Taylor(1981), pp. 112-123; Gaensler and Stute(1985), pp.1-9), one is

tempted to think that Z, is also governed by the Binomial law with parameters (n,

F(z,y)). This, however, is in strict conflict with the random bound given by (3.1).
In fact, corresponding to the bivariate case, the random sums

Zmw =" Ciy m=0,1,2,.,n; with Zy= (o= 0, (3.3)
=1

display a two-state simple Markov process property, such that the process Z,, starts
at Zo and is either absorbed at Z,, = r, m < n, or stopped whenever 0 < Z, <
r. The fixed sample size n and the bound r play thus some important role on the
stochastic behavior of the process.

From an intuitive standpoint, since n is fixed and since the bound r must be
obeyed, Negative Binomial probability law seems to be appropriate for the issue in
hand. This intuitive result is also supported by analytical methods often utilized in
practice, i.e., by probability generating function technique (cf., Cox and Miller (1965)
pp.22-75). In fact, the probability generating function of such a process (for analytical
derivations, cf., Appendix) is

o(0= (2] =S¢ (12 )ro (3.0

i=b

where t € R;, such that t < ¢!, and, as before,

r=min {3}, &), (Zisim)} >0,

g=1-p.

The coefficient of ¢" in (3.4) is instrumental for and is central to the subsequent
discussions on obtainement of the probability governing Z, which we aim to obtain.
The coefficient corresponds to

o
P(N =n;r,p) = (” )p‘"q“-", n>r>1 (3.6)
T —

and P(N = n;r,p) in (3.6) is the probability mass function of a random variable N,
which represents varying sample size and yields the relative frequency of the number
of observations required to obtain Z, = r is n. The quantity r is the parameter of
this mass function, which, as it will be noted in (3.1) above, itself is random. Another
well-known version of (3.6) is
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w+r—1
w

'P(W=w;r,p)=(

which stands for the relative frequency of the waiting time w (in terms of failures) to
Lo =

As it is noted earlier, the positive integer r is random, and therefore, the proba-
bilities in (3.6) and (3.7) must be compounded with the distribution of this random
positive integer. The distribution of R is known to be Binomial with parameters n
and 7, where 7 is either P(X < z) = Fx(z) or P(Y < y) = Fy(y),depending on
min {Fx(z),Fy(y)} . However, since r > 0, the relevant Binomial distribution is the
so-called modified Binomial distribution, in which only positive Binomial observations
are considered (cf., for the concept, Johson and Kotz (1969), pp.204-209):

)P’qw, w>0andr > 1. (3.7)

" ) __ P(R=rn,m - =
'P(R =Trn, 77) — l—;(R:O;ﬂ,}H) {11 ﬁ-)ﬂ ( ) (1 - W) (38)
r= 1, 2 )n

where R* is the modified Binomial variate and R is the standard Binomial variate.
The corresponding probability function is:

Bpe(t) = a+ (1 — a) - Ba(t),

with a = 1—(1(—1)10—,, and ®x(t) = ((1 — 7) + 7t)*, so that

Bpe(t) = i_(_l"—'”)l Z (’Z)( T3k gk, (3.9)

(I_W)n k=1 L=

Accordingly, the compound distribution has reprective probability and moment gen-
erating functions

@wc(t) = « + (1 —a)- ®p. ('I’W,,(t))

= L )2 (Z‘)(I”:)’(‘I’w..(t))’" (3.10)
- gl 3  ()E)rZay

M= T 5 () (G .11

T o1 1—7" "1 — qet
Hence, the mean can be calculated to be equal to

E(W*)Zﬁ'%'i(n:;)(li V) (3.12)

p ™

and the variance is given by

nqzl (1 —m)" . 2

V) = BT
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It is only obviously a routine matter to calculate £(Z,) and V(Z,) through the rela-
tion Z, + W7 = n. Also it should be noted that, in (3.10), instead of the standard
characteristic function of w, we can used the characteristic function of the modified
Negative Binomial variate w. where w = 0 is eliminated. ‘

From the computational standpoint, both versions of Negative Binomial noted in
(3.6) and (3.7) above are known to have some affinity with a quotient of Incomplete
Beta functions, and hence Binomial distribution. In fact, the variables Z, W and N
are related through N = Z 4+ W, so that the event {Z, < r} in the Binomial case is
related to to the event {n < N} in the Negative Binomial case, etc., (cf., for details,
Kendall and Stuart (1969), p.130 ; Johson and Kotz (1969), p.127). As such, computa-
tion of Negative Binomial probabilities boils down to calculation of the corresponding
Beta and hence Binomial percentage points. Nonetheless, separate tables of percent-
age points are available (cf., Williamson and Bretherton (1963). Furthermore, avenues
of Poisson approximation (cf., Rahman (1968), p.218 ), of Gamma approximation (cf.,
Woodroofe (1975), p.109) and of Normal approximation (cf., Wilks (1962), p.274) as
well as other computational possibilities (cf., Johnson and Kotz(1969), pp.127-131)
also exist.

4. Distributions of V,

Since V,, is the product of T}, and U,, both being positive integers in N, and since
the distribution of these latter variables are modified Binomial distributions in which
T, = 0 and U, = 0 are eliminated, then V, will be a positive integer in N? which
contains some of the positive integers ranging from one to n? and leaves out some
like n? —n+1,n? —n+2,...,n? — 1. Accordingly, the distribution of V,, will be a
discrete distribution in whivh the unit mass is concentrated at points of N?. The
distributions of T}, and U, in the through the distributionsof 7,, and U, in the usual
way:

PV =v) =3 P(t, )

—
t_n

=3 P(T=1) Plu=1)

t=%

(1) (1)

-1
t—'l‘l-

_ 1-8)"(1-6)" _ & _ 8
where AB = (1-{5-5)%{1-(1)-9)") , =15 and ¢= 15

with é = Fx (z) and 6 = Fy (y).

54



MEASUREMENT OF DEPENDENCE OF TWO RANDOM VARIABLES

Acknowledgement

I would like to thanks Drs. Ismihan Bairamov, Yilmaz Akdi and Bilgehan Giiven
for helpful suggestions on the subject.

References

[1] Cifarelli, D.M.and Regazzini, E.(1987). ”On a general definition of concentra-
tion function”. Sankhyd, Vol. B 49, pp. 307-319.

[2) Cox, D.R. and Miller, H.D.(1965). The Theory of Stochastic Processes. Chap-
man and Hall, London.

[3] Gaenssler, P. and Stute, W.(1987). Seminar on Empirical Processes (DMV
seminar; Bd.9). Birkhauser-Verlag, Basel

[4] Johnson, N.L.(1969). Distributions in Statistics: Discrete Distributions. Houghton
Mifflin Company, Boston.

[5] Karlin, S. and Taylor, H.M.(1981). A Second Course in Stochastic Processes.
Academic Press, Inc., San Diego, California.

[6] Kendall, M.G. and Stuart,A.(1969). The Advanced Theory of Statistics: Distribution
Theory. Third edition. Hafner Publishing Company, New York.

[7] Kendall, M.G. and Stuart,A.(1973). The Advanced Theory of Statistics:Inference
and Relationship. Third edition. Hafner Publishing Company, New York.

(8] Kolmogorov, A.(1933). Sulla determinazione empirica di una legge de dis-
tribuzione.Giorn. Inst. Ital. Altuari, Vol.4, pp.83-91.

[9] Kullback, S. and Liebler, R.A.(1951). On Information and suffiency. Annals
of Mathematical Statistics, Vol. 22, pp.79-86.

[10] Rahman, N.A.(1968). A Course in Theoretical Statistics. Hafner Publishing
Company, New York.

[11] Scarsini, M.(1990). ”An ordering of dependence” in Topics in Statistical
Dependence, edit. by H. Block et. al., Institute of Mathematical Statistics Lecture
Notes and Monograph Series, Vol.10, pp.403-414.

[12] Smirnov, N.V.(1935). Uber die Verteilung des allgemeinen Giedes in der
Variationsreihe. Metron, Vol.12, pp.59-81.

[13] Wald, A.(1947). Sequential Analysis. John Wiley and Sons, Inc., New York.

[14] Wilks, S.S.(1962). Mathematical Statistics. Wiley International Edition.
John Wiley and Sons, Inc., New York.

[15] Williamson, E. and Bretherton, M.H.(1963). Tables of Negative Binomial
Probability Distribution. John Wiley and Sons, London. '

[16] Woodroofe, M.(1975). Probability with Applications. McGraw-Hill, New York.

[17] Tuncer, Y.(1995). On some measures of dependence and complete depen-
dence. Journal of Applied Statistical Science, Vol. 3, pp.107-128.

55



Y.TUNCER

Appendix

Let Zy stand for the initial stage of the process, so that we may have either Z, = 0

or Zo =r > 0. In the latter case, with probability one, the process starts and ends
automatically, and this will be denoted with

pgg?,) = P(pocess starts and ends at initial stage) = 1,
where the superscript (0) indicates the stage 0 and the subscript (r,r) shows that the
process starts at r and ends at r. In this appendix, we shall be concerned with prob-
abilities like PEE,)r) and shall seek the generating function which produces them.When
the process starts at Zo = 0, Z,, for any m = 1,2,..., n can take the values (can
reach the states) 0,1,...,r with probabilities;)g:%), pg:%) N p%”;)’r}. Likewise, for
an intermediary state ¢, 0 < ¢ < r, we have

o) = P(c< X1,Xa, ..., Xmo1 < 7, Xm =1 | Xo =¢).

Clearly, since a process cannot start at ¢ and end at r at the initial stage whenever
¢ # r, we shall have

Together with pEE?,_) = 1; pfg’)f) = 0 forms initial conditions. Note that a markovian
process has the property that the realization of Z,, s < t, does not depend on the
realization of X, ¢ < u. Accordingly, if we start at the intermediary point c,i.e.,
Zy = ¢, and then the next will be

o =2 _{ c+ Lwithp =P((X1,Y1) € Ax B) (A1)

=\ ¢  withq =P((X1,Y) € (A x B)) °

where A and B will respectively be, say, A = (—oo,z | and B = (—o00,y |, and this
will be independent of the realizations of all (m — 1) subsequent steps. Therefore,
when Z; = ¢+ 1, the (m — 1)t step will be independent, so that we can multiply the
relevant probabilities to have

1 m—1
pEc,)c+1) 'pEc+1.3)‘ (A2)
Similarly, when Z; = ¢, the next steps will be independent, so that we have
aey Py (A.3)

Obviously, these two events are mutually exclusive, and these imply that. Z,, = b.
Thus, adding (A.1) and (A.2), we obtain pE:“,))

(m) _ (1) (m—1) (1) (m-1)
Ple;r) = Pleet+1) " Plet1r) T 9(cie) * Pler)
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which denotes the probability that the process starts at ¢ and is absorbed at r at the

m!* stage. Clearly, pE:",?} is an unknown function of two discrete variables m and c.

By definition, the probability generating function which will produce pE:"l) is
Pen(t) = D tmpi) =1t [P' >t lpaate Y tm'lpEf.‘,?)]
m=0 m=1 m=1

because, as stated earlier in connection with initial conditions, pg")‘,) = pEg_),_Lr} = 0.
As such,

Pler)(t) =t p [pesrn(®) | + 1 q [pEn®)]

which is a linear homogeneous difference equation in (t) with the boundary condition
o rr)(t) =1, (A.4)

due to the facts that pg'_"),) = 1 set initially and that pﬁfl) = 0, i.e., the process is not
recurrent. A solution of this difference equation is given by

1-t-gq
t-p

penn® = (15E2) - wren(e)

The equation now is free from m and is a function of ¢ only. Thus,

1—t%t-q ¢
Per)(t) = (*-1;*'*;-") @0,r) (1),

i.e.,
1—-t-.-4q

oo = (F5E2) - von®.

However, by the boundary condition (A.4) above ¢( - r)(t) = 1, so that

t- ;i
CP(l:l,-r)( = (—'—"""“'—1 tp ) §
— . q

as stated in the text.

OZET

iki rasgele degisken arasinda miimkiin olan dairesel (quadrant) bagimllik igin literatiirdeki
iki istatistik tamitilmugtir. Bu galigmada empirik durumlar igin bu iki istatistik karsilagtinlmig ve
dagilimlan incelenmistir. Burada bulunan sonuglar bir baslangi¢ olup bu alanda caligmalar devam
etmektedir.
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Abstract

Let X;,X2,... be a sequence of independent and identically distributed
random variables (r.v.’s) taking on values 0, 1, ... with a distribution function F
such that F(n) < 1 for any n = 0,1, ... and EX; < co. Let Xp(,) be the n-th
weak record value. In this paper we show that X; has a geometric distribution
iif B(X1(nt+2)— XL(n) | XL(n) = %) = @, for some n > 0,a > 0 and for all ¢ > 0.

Keywords: records, weak records, characterization of geometric distribu-
tion.

1. Introduction

A lot of papers in the field of records are devoted to characterizations of dis-
tributions via records (see [2 — 9], and also the references in [1],[7] among many
others). Great interest in records exists because we often come across with them in
our everyday life in such a way that singling out and fixing of record values.

Let X, X,,... be a sequence of independent and identically distributed random
variables (r.v.’s) taking on values 0,1,... with a distribution function F such that
F(n) < 1 for any n = 0,1,... and EX; < oco. Define the sequence of weak record
times L(n) and weak record values Xp,) as follows:

L(1) =1, Ln+1)=min{j>L(n): X; 2 Xpm}, n=12,... (1)
If we replace the sign > by > in (1), then we obtain record times and record values
instead of weak record times and weak record values. Denote py = P{X; = k} and

F(k)=1-F(k) (k>0).
It is known that
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1) X; has a distribution of the form

PIXy S} = (ﬁ(a+ (i — 1)ﬂ) (ﬁ(l +a+i5))_1

=1 =1

forsomea > 0,8 > 0,and m = 1,2, ..., iif E(XL(n41)=XL(n) | XL(n) = 8) = atBs, -
for all s = 0,1,...(n > 0) (Stepanov(1994)). If 8 = 0 this result corresponds to the

geometric distribution,
2) if {A;}2, is any sequence of positive numbers such that A;_;/(1 + A;) < 1

for all : and ﬁ A;/(1 + A;) = 0 then X; has distribution of the form P {X; > m} =
i=1

ﬁl Aia/(1+ A)

forall m = 1,2,... iif E{XL(,;H) — Xy | Xo(n) = 3} = A, forall s = 0,1,...(n >
1) (Aliev(1998)). In the case of A; = o+ s from this result implies the above result

of Stepanov(1994).
In this paper we first give a characterization of geometric distribution in terms of

E {XL(“+2} = XL(ﬂ) I XL(,,) E— 8} instead of £ {XL(n+1) = XL(") | XL(n) = S} .

2. Characterization Theorem

Theorem. A necessary and sufficient condition for a r.v. X; to have a geometric

distribution is that

E {XL(n+2) — Xy | Xp(n) = s} =a for somen2>1,a>0 andall s=0,1,....
(2)

Proof. Consider the probability P{X L(n+2) - X Ln) =k, Xpn) = .s} (k,s >0).
We have

P {XL("+2) — Xin) =k, Xp(n) = s} =P {XL(“H) =k+ 38, Xp(n) = 3} =

fes)

= dz P(XL(E+2) =k+ S,XL(,‘) = s,L(n) = d) =
)
= Z Z P(XL(n+2) =k + S,XL(ﬂ) = S,L(ﬂ.) = d,L(n -!-2) = m) =
=n m=d+2

o] o0 m=1
= 2 2, P(Xm=k+s,Xa=s,L(n)=d,L(nt1)=1L(n+2)=m)= (3)
d=n m=d+2 l=d+1
00 o0 m—1 k+s
=3 Y Y D P(Xm=k+s,Xa= 8, Xpnr) =t,L(n) = d,L(nt]) =
d=n m=d+2 [=d+1 t=s
[,L(n+2)=m) =
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m=1 k+s
= Z Z > Y P(Xp = k+s, X4 = 8, X; = t, L(n) = d, L(n+1) = |, L(n+2) = m).
d=n m=d+2 l=d+1 t=s
Probability under summation may be rewritten as

P(Xm=k+s,Xg=5,X=1Ln)=d Ln+1)=1,L(n+2)=m)
=LP(X; =8 Lin) =d,Xivs €8, sy h1d S8, X1=§ (4)
XH.]_ < t, ---1Xm—1 < t,Xm =k -+ S).
Note that the event {Xy = s,L(n) = d} is defined only by the r.v.’s X;, X,,..., Xy
and, therefore, is independent of
{Xd+1 < s, ...,X;_1 < S,Xf = t, X1+1 < t, ...,Xm_}_ < t,Xm =k+ 3} ,
consequently, from (4) we have
PXm=k+s,Xg=5X=tLn)=d,L(n+1)=1Ln+2)=m)=
= P(Xd = S,L(Tl) = d) X P(Xd.;_l < S,...,X{-] < 8§,
X,':t,XH.] Ll oy sy <t,Xm=k+S)= (5)
= P(Xy = 5,L(n) = d) - F"=(s) - F"~-1(2) . P(X; = t) - P(Xn = k + 5) =
= Diphps P(Xg =8, Ln) = d) - F=%(s) - F™1-1(1).
From (3) and (5) changing the order of summation for ¢, [ and m one can write
P{XL(n+2) = Xrin) =k, Xpm) = S} -
m—1 k+s

= Z Z 34 D {Pth+sP(Xd = s, L(n) = d) - F=%(s) - Fm‘I‘l(t)} —

d=n m=d+2 l=d+1 t=s

k+s o
P S PKa= s Lm) =d) Yop 3 Fl(s) Y PR, (6)
d=n t=s I=d+1 m=Il+1
Using the obvious facts
i Fm—l—l (t) - _1 ’ i l—d— 1 = _1 and
m=I+1 F(t) I=d+ F(S)

P(Xpmy=3s) =Y P(Xq=s,L(n)=d) with (6) we obtain
d=n

1 k+s pt

P{X1(nt2) = Xpm) = ks Xp(n) = 8} = P(Xp() = 8) * Phts o) = T
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or, equivalently, for the conditional probability, we may write

1 k+s

P{Xpmin) = Xy =k | Xug) =9} = bhrs - = 3 ot !
{L(+2) L(n) | Xi(n) 3} Pk+ F(s)gF(t) (1)

Note that since this probability does not depend on n, we may, without loss of
generality, assume that n = 1.
From (7) the conditional expectation is

1 00 k+s P{
E{XL(3) -X | X = S} = F_(s_ ) Z (k Pk+s Z —m) . (8)

k=0 l=s

By changing the order of summation in (8) and taking k + s = z one can write

E{XL(S) -X; | X1 = S} = F;s) i (F(I) Z( —8) Ps) ) =

l=s z=l

(pz (Z( 5 )) ii zpzpa

sz!

o0

Therefore, the ba51c formula for the conditional expectation for future references is

oo o0

E{XL(3) X1 I X]_ = S} ZZ szz}};!(l — 8. (9)

=5 z=I

Necessity. Let X; has a geometric distribution with p, = P(X; = k) = pg*
(k=0,1,..., g¢=1—p). Then it is obvious that F(s) = ¢* for all s > 0. Using the

known formula §(zqz) M and (9), it may be trivially seen that

z=l

2 00 O

E{XL(;;) Xl | X1 = S} Z Z: qu pq = p‘—sz Z(Zqz) — § =

=35 2=l q q q I=s 2=l

2()01 ! +1
_PPety :—Z(’P‘I g Y g

qs 1—3 p2 1_5
spq® + gt 2
= 25 (g + Zq’“ =ZH T i,
qs I=s == q p p p

‘which proves the necessity part of the theorem.
Sufficiency. Let condition (2) hold. Also using (9), we take the equality

oo 0o

Zp.pi B
22 FFD F)FQ)  °°%

=8 2=l
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or, equivalently,

5227 )_a+s for all s > 0. (10)
Rewriting (10) for s = k we have
A e 2? Fflff?a) i FRFR T, ii FOFD
S e + z;f; o = (11)
- g Ller _F(k iz P+ 0P ~ 70 CRES TR

By the condition (10) Bxyy = @ + k + 1, therefore, from (11) for all £ > 0 one can
write

@ o 2 > z ﬁF—(k+1)- o
+k—F2(k)§( )t gy etk (12)

Observing that F(k + 1) = F(k) — px (12) gives the identity

Pk < F(k) — p
(.]!+k'=_— sz+—';'—"""—"(a+k+1),
F(k) ,,;,( ) F(k)
or, equivalently,
Pk <
a+k= (zp.)+a+k+1-— (a+k+1).
0= G

From the last identity we may write

Dk (a+k—|—1—F(k)Zzpz) = F(k) forall k> 0. (13)

Here in the case of £k = 0 we have

1 _ o0
EX, + 2 a, or » (zp,
po =1

and rewriting (13) in the form

1 —(po+...-Pk-1)
k=1
1 1-
L R = ey (O‘ 2 El(zp’))
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we have recurrent relation for determining p; for any given po. It is clear that the set
of probabilities pg, p1, p2, ... must satisfy the conditions

P0+P1+P2+P3+ .=1and
E(ZPZ)+‘_EQ'—Q

z=1

(14)
For proving that such set of pg, p1, ps, ... exists and is unique rewrite (13) in terms of
F(k). Having the obvious equality

_ ko (k+ Dpess + (B4 Dpraa + .
a0 E:( k )

3 F(k)+F(k+1)+F(k+2)+ F(k+3)+...
Bl ()

with (13) and the identity px = F(k) — F(k + 1),we reach

Fk)+ F(k+ 1)+ F(k+2)+ F(k+3)+...\ _—
(F(k) ~ F(k-+ 1) (a-+2- s ) = Fee

Last equality may be equivalently changed as
F(k)F(k+1)

—- . 1
aF(k)=F(k+1)+F(k+2)+F(k+3)+.. +F(k)—F(k+1) (15)
Now using (15) for k£ and k + 1 and subtracting we take
F(k)F(k+1) _ F(k+1)F(k+2)

a(F(k)—F(k+l))—F(k+l) F(k)—-F(k+1) Fk+1)—F(k+2)
Denote B = F(k+1)/F(k) (k> 0), noting that F(k+1) = By F (k) and F(k+2) =
BiBry1F (k) from the previous formula we have the recurrent relation for Sy

Bi(1 — B)
o1 — Br)? — 3B + 26

Consider the second part of conditions (14) for 8. Note that o = 1 — po = F(1),
BoBr...Bx = F(k+1) and 0 < Bx < 1 for all k. Together with the second part of (14)
and the known equalities for expectation

Brer =1+ (16)

o0

S (p:) = EXy = S F(K),

z=1 k=1

we have

Bo
1 - o

Bo + Bob1 + ... + BoPr.-Br + ... +
64

= a. (17)
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In this step first note that taking By = e D (16) we have o =1 = o= ... = T
which implies that F(k) = (3%5)¥!. Thus as well as one solution for (16)-(17) (also

satisfying (13)-(14) and (15)) exists. This solution corresponds to the geometric
distribution with py = p = %4_2 Let us show that this solution is unique. Consider

the real valued function f(z) = 1 + 0(1_:)(,1:3”’1”::2 (0 < z £ 1) with two points of

discontinuity. For all continuity points z of f(z) we may write

a(l —z)? + 22

1) = Ga— o= 3z 1 209

> 0.

Therefore f(z) is monotonly increasing function in continuity intervals. Let z; and
23 (21 < z3) be the discontinuity points of f(z). It may be verified that this points
are different, z; € (0,1) and z; > 1 for any a > 0. Furthermore, f(z) > 1 for
0 < z < z; and from (17) we may have fy > 0 and B, < 1. (16) may be written
as Br+1 =f(Bx) and we have By > z;,because in vice versa we have ; > 1, which
contradicts with condition 0 < f; < 1. By the same way it may be seen that from
the condition 0 < f; = f(B) we have By > 1 — (a + 1)~'/2, Note that last point
1 — (a+ 1)7%/2 is the small one of two roots of equation f(z) = 0. For all z such that
1—(a+1)"Y2 <z <1 f(z)isstrictly increasing function and (17) becomes to the

form
Bo + Bo - f(Bo) + Bo- f(Bo) - f(f(Bo))+ (18)
+..t+ Bo- f(Bo) - o - F(-- F(f(Bo))...) + ... + Tgnﬁ_o =a.

Because f(fo) is monotonly increasing function of B, and T@g,g is also monotonly
increasing expression of o (0 < Bo < 1) we say that the left hand side of (18) is
monotonly increasing expression of fy. Therefore, for the constant right hand side

of (18) we may have only one f, satisfying (18), which completes the proof of the
Theorem.
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OZET

X1.X,.X5.... bagmsiz 0.1.2.3... degerlerini alan aym F dagilimina sahip rasgele
degiskenler olsunlar dyleki herhangi bir n igin (n=0,1,2.3,...) F(n)<1 ve E(X})<wx. X, n. inci
zayif rekor deferini gostersin. Bu galigmada X rasgele degiskeninin geometrik dagihma sahip

olmasi igin gerek ve yeter kosul bitin 20 ve baz k>0, a>0 igin

Xigm =1 ) =a

E (Xl.(n+2) ~XL(n)
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Abstract

The problem of constructing confidence limit for dependent sample values
is investigated by the method of computer simulation. This problem is consid-
ered for the random sequence 2y, 23, ..., 2, ... constructed from the sequence of
independent identical distrubuted random variables 21, 23, ..., Zp,... with the
continious distribution function F' by the method of moving summation:

zn=x1+e2+ ...+ Tk, 22=22+ 23+ ...+ Tk41y, ooy, 2n =
Tn+ Tuy1+ oo+ Zhin—1, oo

Key Words: Invariant confidence interval, dependent random variables,
moving average, computer simulation.

1. Introduction

In the contemporary mathematical statistics the problem of construction of confi-
dence limits for the bulk of distribution of general population and for the parameters
has outstanding place. The solution of this problem is necessary for creation of the
statistical tests of pattern recognition, test of hypothesis and also for the test the
precision of parameter estimations. Unfortunately, the analytical solution for the
problem of the constructing the confidence limits and investigation its properties we
can realize only in the case of independent sample values, as far as for dependent ones
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there exist significant important and some times insuperable difficulties. In this work
we shall investigate this problem by the methods of computer simulation.

2. Investigation of confidence limits for the bulk of distribution of
general population constructed with the help of the order
statistics in the case of dependent sample values

Let zy,z3, ..., , be a sample obtained from the general population G with an
unknown distribution function F'(u) with the help of the simple sampling and z(;) <
Z(3) < ... < Z(n) be a variational series corresponding to this sample. As well-known
Madreimov and Petunin (1982), with the help of the order statistics z(;), z(;), ¢ < j we
-1

n+1

can construct the confidence interval (:r:(,-), .T(j))With confidence level a =
J—1
pii = p (2n1 € (220))) =2 (2 € (200:20))) = 77 (1)

where z is the sample value from the general population G' which does not depend
on the sample 21,2, ..., ,. Bairamov and Petunin (1990) were shown that under
some natural conditions any confidence interval

(@ {Zedy; s )b (Bedey o ylis)) 5 0 (B 8w B) 018 825 4 5 Ban)
Vm1)$2s viaiy :In

for the bulk of the distribution of the general population G with significance
level which does not depend on the distribution function F'(u) (so-called confidence
invariant interval) will be generated by the order statistics so that a (z1, 2, ..., z,) =
x(t), b(."ﬂl,xz, avit mﬂ) = .‘B(J)

Now assume that our sample values represent a sequence of dependent random
values z;,Z3, ..., Zn,... (for example, stationary time series or stationary Markov
sequence) with the joint distribution function F'(uy,us,...,u,), whose marginal dis-
tributions coincide with F'(u). In a natural way the following problem arises: will the
formula (1) be correct or is it necessary to revise its right- hand side? We consider
this problem for the random sequence 2z, z3, ..., 2,,... constructed from the sequence
of independent identical distributed random variables z,, z,, ..., Z,, ... with the con-
tinuous distribution function F'(u) by the method of moving summation:

21 =21+ 22+...+ Tk, 22=T2+T3+...+Th41y, 0oy Zn =Tn+Tap1t.o +Thyn-1, .-
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The random sequence {z,} is stationary in a broad sense, as far as the mathe-
matical expectation is

E(z,) =(k—1)E(zs) = (k—1)a,

where a = E (z,), and its correlation function is of the following form for ¢ > 0:

K (zn'.lzn+t) = E ((zﬂ = E (zﬂ)) (zﬂ'i‘t - E(z"'*'t))) = I{ (t) = { ,[;,_ t, :- f ]I:.’

K(zmzn+t) — k—
O'(Zﬂ)O'(Zn+g) k
and 7 (zn, 2n4:) = 0,1f ¢ > k, that is why for large k the statistical dependence between
the random values z,, and z,4; may be strongly desired. For the computer simulation
and computation of frequency of hitting of the values z;, I > n (n = 30, [ = 31,...,60)

: : t .
Note, that correlation coefficient is 7 (zn, zn4t) = it < ks

into the confidence interval (Z(,;), z(j))a,s a random sequence z, we select the sequence
of independent random variables from uniform distribution over the interval [0, 1],
obtained with the help of generator of pseudo random real values RANDOM of MS
Fortran 5.0. The lower and upper approximate confidence limits for the probability
pi; are constructed with the help of the frequency k;; at 5% significance level according
to the formulae Van der Waerden (1957)

(1) h13m+92/2 .g«hﬂ ‘J)m+gz/4
p:J m+q2 ?
@ _ hejm+92/2+9\/hij(1 — hij)m + g2 /4
p‘lj o m +g2 4

where g = 3 in accordance with the 3¢ rule, m—(2)9 t(h)ejn the corresponding
1) (2

significance interval is I = (pU ) Pij

The results show that for small k, the number of terms contained the sum z,
(n=1,2,3,4) is slightly different from the frequency h;; and probability p;;.

In the Table 1 it is shown that as number k is increasing this difference become
more and more significant and under ¥ =10 the number of falling of p;; outside the
correspondent confidence interval exceeds 50%. This indicates on the bad correspon-
dence of the formula (1) with experimental data.
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3. The 3s-rule for depended observations

Classical 3o-rule states that for random variables, which may occur in the practical
statistical calculation, the confidence interval

(E(z) —30 (), E(z)+30(z))

contains more than 95 % of values of the general population generated by the random
variable z. Now this rule is strongly justificated for the general population G' with
unimodal distribution F(u) (Vysochanskij and Petunin (1980), Pukelsheim (1994),
Sellke (1996), Dharmadhikari (1988)). As far as the parameters F(z) and o(z), as a
rule, are unknown, then this parameters are replaced by its estimations constructed
on the basis of sample values z,, z3, ..., Tp

1 n
N—=_- 2 ~ - - .
E(z)~7 E z;, o*(z) ~s* b= é T; —T)

i=1

According to practical recommendations stated on the monograph of Cramer
(1975), the estimation Z practically coincides with E(z), if n > 30, and s(z) coincides
with o(z), if n > 150 <+ 200, in the case when samples values z;, z,, ..., z, are given
as a result of simple sampling. If we replace E(z) by Z, and o(z) - by s(z), then the
interval I3, = (Z — 3s(z),Z + 3s(z)) is called a confidence interval for the bulk of the
general population G constructed on the 3s.

Consider the problem of estimation of significance level for this confidence interval
I5,. We shall use the method of computer simulation for this aim. Let z,, 22, ..., Z,, ...
be a sequence of independent identically distributed random variables with uniform
distribution on the segment [0,1]. As early, we generate the sequence of random
variables 21, 23, ..., 2y, ... by the method of moving summation. Let GG, denote general
population corresponding to this sequence. To estimate the parameters E(z) and
o(z) we shall use the samples whose size is more than 30. After calculation of the
confidence interval I3, we consider a new sample whose size is equal 30 from general
population G, and calculate the percent of hitting of these new sample values in the
confidence interval I3,. The results of these calculations are represented in the Table
2. Analysis of the data mentioned in the Table 3 shows that the confidence level of
this confidence interval I3, constructed on the 3s-rule practically, is about 100 %,
although the sample values 2y, 2, ..., 2n, ... for the big values k (k = 80+ 100) will be
strongly dependent. Thus the 3s-rule remains valid for the dependent observations.
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4. Confidence limits for probability in MP-model

Consider the following model of identification of homogeneous of sample com-
posed from two different samples. Let G, and G, be two general populations with
unknown continuous distribution functions F; (u) and F (u), respectively. We have
two samples X = (z1,z2, ..., 2,) and Y = (y1,92, ... ,Ym) sampled from G, and
Gy, respectively. It is necessary to test whether these unknown distribution func-
tion F, (u) and F, (u) coincide (hypothesis Hp) or differ from each other (compound
concurrent hypothesis H;) on the basis of these samples. In the first case F; (u) =
F, (u) we deal with combined heterogeneous sample z1, z2, ..., Tn,Y1,¥2, ... , Ym; and
if F; (u) # F, (u) then combined sample is heterogeneous.

Construct on the sample the variational series z(;) < z(2) < ... < Z(n), assuming
T(0) = —00, T(n41) = 00, and consider the random interval [; , = (:1:("), 3:("‘*9'), where
i, ¢ are the fixed numbers (0 <i<n;1<¢g<n-—i+41). Consider in connection
with the interval I; ; the following model of trials: at kth step (k = 1,2,...,m) we test
whether the sample value yx belongs to the interval I; ; or not. Thus we have a the
group of events Ay = {yx € L;,},k = 1,2,...,m, each of which can occur with some
probability px = p(Ax),k = 1,2,...,m. It should been noted, that even though in the
classical Bernoulli trials are independent, the events A in considered model will be
depended since in each of these events we deal with random interval I; ;. Define the
random variables  in the following way: o = 1, if the event A; has occurred, and
o = 0 otherwise; as far as the events A; are depended then the random variables oy
also will be dependent.

Introduce a random variable © which is equal to the number of events A; occurred

in the series of m trials; then © :Emak. If the hypothesis Hy is valid then the
k=1
probabilities in the formula (1) are equal to

q
= —— =1p,. 2
p(AlH) = —L = p, )

This model is known as MP- model (N.Johnson and S.Kotz , 1992). In papers
Matveychuk and Petunin (1990, 1991) the distribution of probabilities of random
variable © was obtained as follows:

l m—I
Gl 4O

m+n—I—gq

Cm

m+n

p(0© = I|Hy) = L 1=0,1,..,m, (3)
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where m, n are sizes of the samples X and Y ; ¢ is a fixed number which is the number
of order statistics in the interval I; ;; C? is the number of combinations from r by s.

G
Let h be a frequency of appearance of events A; under m trials, then A = —.

Consider the problem of validity of the 3o-rule for random variable A. ﬁl was
found that this rule is valid if the hypothesis Hj is valid, and samples X and Y have
equal size, moreover, we shall show that even for significantly more narrow confidence
interval I,,, constructed on the 20-rule, has the significance level not exceeding 6 %.
Indeed, in the case when hypothesis Hy is valid then on the basis of the results of the
work [10, 11]

E (h|H0) = Pg;

Uz(th0)=Pq(1—Pq)m+n+l =pq(l—pg,)2n+l HZP"(I_%)
n+2 m n+ 2 m

By using these formulae we can calculate the confidence level of the interval I5,:

p(h € Iz) = > p (h = %\HO) :

[
1——-3(&) <20(h)
m

Note that with the help of the confidence interval I, for the bulk of the dis-
tribution of the random variable A we can construct the confidence interval for the
probability p,. Really,

p(h € I;) = p(|h — E(R)| < 20(h)) = p(|h — p,| < 20(h))
= p(pqy € (h—20(h),h +20(h))).

The results of calculations of the confidence level of the interval I3, which is equal
to the confidence level of the interval (h — 20 (h), h + 20(h)) are represented in Table
3 forn= m.

If we have a random confidence interval I (©) = (h — 20(h), b + 20(h)) containing
the probability p, with the significance level 24:

p(p, € 1(0)|Ho) =1 -2,
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then we can construct the following criteria to test the hypothesis Hy against
alternative Hi:

1) we construct the variational series on the sample X and take the random
interval I; , for fixed ¢ and ¢ ;

2) we define the statistics © which is equal to the number of the elements of the
sample Y belonging to the interval I; 4;

3) on the statistics © with the predefined significance level 23 we construct con-
fidence interval I (©);

4) if 1(©) cover p, then we accept the hypothesis Ho, otherwise we accept the
hypothesis H;.

Summarizing the analysis of obtained results we may state that the presence of
the dependence between the sample values not always requires to introduce significant
corrections in calculations of the significance level of the confidence; in many cases
these significance levels remain practically constant.
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k | Number of hitting | Number of falling out
1 28 1
2 28 1
3 26 3
4 25 4
5 17 12 k | n=10 | n=20 | n=30
6 21 8 1 | 0.043 | 0.053 | 0.056
7 19 10 2 | 0.029 | 0.046 | 0.051
8 16 13 3 | 0.035 | 0.032 | 0.040
9 17 ' 12 4 | 0.035 | 0.041 | 0.052
10 12 17 5 | 0.029 | 0.048 | 0.036
o , _ 6 | 0.039 | 0.027 | 0.042
Table 1: Frequency of hitting and fallings out confidence interval 7 1 0.033 | 0.028 | 0.027
8 | 0.035 | 0.036 | 0.040
9 | 0.029 | 0.042 | 0.037
k | Hitting frequency z s2(2) 10 0.044 | 0.044
1 1.00000 1.04048 | 0.16601 11 0.044 | 0.050
2 1.00000 1.49308 | 0.22020 12 0.042 | 0.054
3 0.99700 2.03360 | 0.29452 13 0.038 | 0.042
4 1.00000 2.49091 | 0.43437 14 0.032 | 0.045
5 0.99600 3.01639 | 0.48761 15 0.037 | 0.031
6 0.99800 3.55370 | 0.51377 16 0.048 | 0.031
i 0.99800 4.12859 | 0.53500 17, 0.041 | 0.045
8 1.00000 4.45868 | 0.66220 18 0.032 | 0.042
9 0.99500 5.01084 | 0.76228 19 0.046 | 0.054
10 1.00000 5.49083 | 0.72886 20 0.050
20 0.99800 10.80193 | 1.87548 21 0.044
30 0.99900 15.59051 | 2.86506 22 0.038
40 1.00000 20.84352 | 4.96147 23 0.043
50 0.99700 25.38411 | 2.96953 | - 24 0.032
60 1.00000 30.37748 | 4.52146 25 0.042
70 0.94900 36.82066 | 5.67559 26 0.036
80 0.99800 39.80943 | 5.33090 27 0.052
90 0.96900 46.38148 | 6.54674 28 0.040
100 1.00000 50.86939 | 7.78361 29 0.051
Table 2: Frequencies of hitting in confidence Table 3: Confidence level in MP-scheme

interval for depended observations

O7ZET

Bagiml érneklemler igin giiven araliklarinin olustutulmas: problemi bir simiilasvon metodu
ile incelenmistir. Bagimsiz aym surekli F dagilimindan gelen .Y, ..Vs..\5... rasgele degiskenlerinden
elde edilen hareketli toplamlar Z,.Z..Z5... rasgele degiskenleri gézniine alinnustir. Burada

2=+ G+ + 0 Zo= G+ Ge +V0 2, = U+ U+ 4
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