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Abstract

In this paper, we construct a type of nonlinear predictor and investigate
the relations between the prediction errors of the linear and the nonlinear
predictors when the sample size is not large as well as case where the sample
size tends to infinity.
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1. Introduction

For predicting the values of future time points of a stationary stochastic
process {X;}, many predictors are available. Sometimes we use a linear predictor
and, sometimes, a nonlinear predictor. As nonlinear predictors, many authors
use predictors constructed on the basis of bilinear models (Subba Rao and Gabr
(1984)), threshold models (Tong (1990)), and etc.

We assume that the exact model of the time series is not known and evaluate
the goodness of a predictor by means of the mean square prediction error. Here,
we consider the case when we do not know the values of any moments of {X}.

We suppose that the samples {X;; —(T — 1) < ¢ < 0} are obtained and

want to predict the value of X}, for a positive integer k. As a linear predictor, we
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usually use the predictor X;(), which can be expressed as

-1

Xu(l) = 2 diXos, (1)

i=0
where ¢;’s are unknown constants and p is a suitably chosen nonnegative inte-
ger. For estimation of ¢;’s we use the least square estimators &, = (&1, N JS,,)
constructed by the sample data..

As a nonlinear predictor, we consider a predictor which is expressed by
means of a complete system of orthogonal functions of the samples, since we
treat the case where the exact model is not known and where the best predictor
is systematically approximated as much as possible. For the first step of this
study, we take the system of orthogonal polynomial functions, on the grounds
that a kind of the best nonlinear predictor can be generally expressed by using
the system of orthogonal polynomial functions (Masani and Wiener (1959)) and
that such a system includes the linear predictor, which is usually used, as a special

case. The adopted nonlinear predictor is

. r—1 p—-1 p-1
Xh(nl) = §+ E 9,‘1X_.'1 e z Z 9,'1,",X_,'1X._,‘2 4+ .-
41=0 $1=01i2=0
p—1 p-1 p~-1 ' ’

+ E E sak Z ﬂilliZi-":iKX—itX‘*iﬂ S5 X—ix1 (2)

i1=0i3=0  ix=0
which is expressed by the K-th order polynomial function of the samples. Usu-
ally, we do not know the values of 4, 0,,’s, 8, ;,’s and etc. We replace OF =
(0, 6i7s, 0i5,%s, ..., B} ;.8)" by the least square estimators OF = (4, 6,
Bisin'8ye - o Oia g ). o
When X, is a Gaussian process, X}(!) is known to be the best predictor for

sufficiently large sample size T'. When however { X} is not known to be Gaussian,

Oiri’

our interest is whether we should use a nonlinear predictor Xj(nl). In general,
Xi(nl) includes X,(!) as a special case, and the mean square prediction error of
Xn(nl) is not greater than that of X, () for a non-Gaussian process when T is
large. But X}, (nl) includes higher dimensional parameter than X »(1), and we can
suspect that X (nl) includes less stable estimators of the parameters than Xj,({)
for especially small sample size. Thus, for especially small-sized samples, we can
guess that the variance of Xj;(nl) is larger than that of Xx(D).
2
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In this paper, we discuss which of the predictors Xj(I) and X} (nl) is better
to use in the relation of sample size T. In section 2, we mathematically evaluate
the mean square errors of the linear and nonlinear predictors when the sample
size is large and K = 2. In section 3, we carry out simulation studies to show their
prediction errors when the sample size is small, since it is difficult to evaluate the

prediction errors mathematically.

2. Mean square prediction errors for large sample sizes

In this section, we evaluate the mean square prediction errors of the linear
and nonlinear predictors.
Put

Vt — (Xt, e ,Xt.'.]_p)r,
WE, = (A% ) IX e Xt} oo Xy - =X V)

where 0 < 23 < --- < ig < p—1, and also let X’h(l)o = V4@, and Xh(nl)o =
WXE!'OK be the projections of X}, onto the spaces spanned by V, and W, respec-
tively.

Then, the mean square prediction error of the linear predictor is
E(Xy—Xn(D)* = E(Xn— X1+ X2(1) — Xu(D)?
= E(X,—X30)’ + E(XR(0) - Xu(D)’
+ 2E(Xn — X)X — X (1))
Here, we assume that the predictor Xj(l) is constructed by using the LSE &
based on another time series Y_(r_1),..., Yo which is independent of {X;} and

has the same probability structure with {X;}. Then, the third term vanishes,

and the prediction error becomes
E(X — Xu(D)* = E(Xi - X3(0) + E(XR() — Xu ()" ()
By the same arguments, we have

E(X — )“{h(nzj)z = E(X» — X2(nl))? + E(X2(nd) — Xn(nl))®. (4)
3
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From (3) and (4), we find that the mean square prediction errors of the pre-
dictors are composed of the mean square errors of the projections, which do not
depend on the sample sizes, and the residual terms caused by random fluctuation
of the estimators ® and @X. Our concern is to find some relations between the
bias terms and the sample sizes.

-To evaluate the relations, suppose {X;} is expressed as

Xt — E¢jzt—ja (5)
j=0
where {Z,} is a white noise sequence with EZ; =0, EZ;_;Z;_; = 026(, j), where

8(z,7) is Kronecker’s delta. Here we impose the following assumptions.

Assumption 1 Z; is a 4Kth order stationary process, and

==

E le(nla---:ni-l)l < 00,
N eenyNj—1 =—00
for3 < j < 4K, where Qf”(nl, -+, Mj-1) 15 @ cumulant function of (Z;, Zeynys - - -y Ztan;_y)
defined by a coefficient of the jth orderterm of a Taylor expansion of the logarithm

of their characteristic function.

In many cases, the absolute summability of ¢;’s is assumed to obtain some
theoretical results. Here, we relax this summability condition and study the

effects when this summability condition is not satisfied.

Assumption 2 There ezists a constant d with 0 < d < 2 such that
Y l¢5l* < oo.
i=0

Assumption 3 The distribution function of Z; has an absolutely continuous

component.

Under the Assumptions 1 and 2, E|X;}’ for 1 < j < 4K is shown to be

finite (see section 4 for a proof) and put

=k
R =BV, k=z Y WV,
T t=—T+p
4
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. 1 =
Th =EXt+th, Th“—“i-.‘ Z Xc+hVEs
t=—T+p
—h+1 "
Z Wt Wt )
t==T4p+1
-h

Yo XenWE.
t=—T+p

Sk = EWQK“’;K’: Sk =

K a
sy = EXepn WK, 8 =

"il'—' ‘-3|r—l

Note that matrix R can be shown to be non-singular only from Assumption 2
(see, for example, Brockwell and Davis, 1990, p167), but Sk is not always non-
singular-see Masani and Wiener (1959) for a counter example where they showed
that Assumption 3 was a sufficient condition for non-singularity Sk .

The least square estimators &, and 6K are

‘ih = R_l &
fad ) —1 o~
Bf = Sy Sf,
respectively. And put
®, = R;lrh
0k = Silsk.

Hence we have the following theorem:

Theorem 1 Suppose that Assumptions 1, 2 and 3 are satisfied. Then, ®, and
é converge in probability to ®, and OF respectively, as T tends to oo

For a proof of Theorem 1, see section 4., From this theorem, the variances
of the asymptotic distributions for the linear a.nd nonlinear predictors as T tends

to infinity are

N 2 _
E(X,, _ X,?(z)) = EX}—r,R'm, (6)
R 2
E(Xh == Xﬂ(nl)) = EXh - Sh KISf (7)

respectively.
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Our next interest lies in the examination of the second terms in (3) and
(4) from the standpoints of the tail behavior of {¢;} in Assumption 2. Define a

sequence {c;} such that
aj= Y |4l (8)
i=j+1
which is shown to converge to 0 as j tends to co in consequence of Assumption
2. Let the nonlinear predictor for K = 2 be denoted as Xh(q), which we call the

quadratic predictor in the subsequent discussions. Then, for K = 2, the following

theorem can be obtained for the linear and the quadratic predictors.

Theorem 2 Under Assumptions 1, 2 and 8 and for K = 2,

Xu(0) = X1 = Oy(lr), (9)
Xu(g) - XP(q) = Oy(qr), (10)

as T tends to oo, where {ir} and {gr} are sequences which converge both to 0 as

T tends to infinity. In particular, the following relations are satisfied:
1. When d <1, we have Iy = qr = T3

2. When d > 1, we have Iy = T~%and qr = o(1), if E;?f’__1|aj|§ < oo. In

particular, if 3322, laj|é < o0, we have Iy = gr =T-%.

Proof of Theorem 2 is given in section 4. This theorem shows {ir} and

{gr} depend on both d and {a;}. We provide some examples below.

Example 1 When a; = O(p?) with |p| < 1, we have lp = T~% and g7 = T3,
regardless of the value of d.

Example 2 When d > 1 and o; = O(57*) with p > 0, we have

Llr=T"%andgr=T"%, if0< p < -g—.

logT
T

2 iy = and qr = T~ 2a, ifp=4.

S lr=T"%andqr=T"%, if S <p<d
' 6
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4. lr=T"% and qr = \/1—°§,I, if p=d.

5 lp=T"% and gz =T-%, if u > d.

Note that a stationary causal ARMA process is a special case of the Exam-
ple 1 and a stationary fractional ARIMA process is a special case of the Example
2 (Brockwell and Davis (1990, p522)).

As it is shown in Theorem 2 I7}( X, (1) — X2(1)) and ¢7*(Xx(g) — X2(q)) con-
verge in probability, and hence, in distribution, to some variables with variances
C, and C,, say, we approximate the variances of X}, (1) — X2(!) and X3(g) — X2(q)
for large sample sizes by C11% and C,¢%, respectively. The latter are called asymp-
totic variances. This shows the relation between the mean square prediction errors

and the sample size.

Theorem 3 Under Assumptions 1,2 and 3 for K = 2,

E(X, — Xn(D))? ~ E(X,—X2D)+Cil2, (11)
E(X»—Xu(9))* ~ E(Xi—XR(q))’+ Caqt, (12)

where "~” means the variances of X,(1) — X2(1) and X4 (q) — X2(q) are replaced

by their asymptotic variances.

Here we examine Theorem 3 by concrete examples. We generate time series

by
Xt = 1.5Xt_1 = 0.56X¢_2 + ft = 1.3ft._1, (13)

where f; is a stochastic process with mean 0. To examine the effects of {ax}

defined in (8) as it converges to 0 slowly, let f; be generate by
fo = (1=B)"Z,

where B is a backward shift operator and 7; is a constant with 0 < n; < 0.5, and
Z,'s are independent standard normal random variables. Note that Assumptions
1-3 are satisfied. When 7; = 0, X; is an ordinary ARMA process and the As-
sumption 2 is satisfied with d = 1. When 0 < 7; < 0.5, X; is a stationary long

memory process and the Assumption 2 is satisfied with d = 2.
7
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We generate time series by (13) and repeat the evaluation of the prediction
error 1000 times and calculate
1000

MSE(l,p) = 1000 E(x — Xn(1)9)?, (14)
1 ! @) _ % ()0))2
MSE(q,p) = =) (X3’ —Xn(@)")", 15)
(¢,p) To00 & X+ ) (

where X3 (1)@, X,(q)® and X" mean the values of Xi(1), Xa(q) and X}, in the
1th simulation study, respectively.
To examine (11) and (12), we express MSE(L,p) and MSE(Q,p) as

MSE(l,p) = E(Xn—Xp(1)*+v(1), (16)
MSE(q,p) = E(X»— X)) +v(q). (17)

and evaluate v(I) and v(g) by calculating E(X, — X°(1))? and E(X) — X2(q))>
mathematically by (6) and (7), respectively.

In Figure 1, we show the values of v(I) and C;/} and those of v(gq) and
Cagk for h = 1, p = 4 and 7, being equal to 0.2, since the results for other values
have same tendencies. From Figure 1, we find that (11) holds with C; = 7.0 and
Iy = T7°% and (12) holds with C; = 2.0 and g7 = T-%3. (11) holds when the
sample size is larger than 50, while (12) holds when the sample size is larger than
400.

3. Mean square errors for small sample sizes

In this section, we show the comparison between linear and nonlinear pre-
dictors especially when the sample size is small. When sample size is not large,
it is very difficult to evaluate the prediction errors of X, (I) and Xj(nl) mathe-
matically and, so, we carry out simulation studies for the case K = 2.

For our purpose, we generate X; by (13) for f; given by
Casel. fy = (1-B)"Z,
Case2. f; = (1—B)"g,
Case3. fi = Y i ™,

q=1
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where Z; and €; are random variables with standard normal and exponential
distributions, respectively. Here the exponential distribution is adopted as a
typical example of non-Gaussian distributions.

When 7, > 1.0, Assumption 2 is satisfied with d = 1 and, when 7, < 1.0,
the Assumption 2 is satisfied with d = 2. By (14), (15), (16) and (17) we evaluate
MSE(L,p), MSE(q,p), v(!) and v(g), respectively, for Cases 1-3. In the following,
E(Xy — X2(1))? and E(X, — X?(q))? are denoted as AMSE(l,p) and AMSE(q,p),
respectively.

In Figure 2, we show results for Case 1 with 7, being 0.2, Case 2 with 7,
being 0.4 and Case 3 with 7, being 0.6, when p = 4 and A = 1, since other
cases give similar results with the above cases. jFrom Figure 2, we find that
AMSE(q,4) is smaller than AMSE(1,4) for Cases 2-3 but is equal to AMSE(1,4)
for Case 1. This is clear since time series in Case 1 is Gaussian. For each Case,
v(q) is much larger than v(!) when the sample size is less than 100 and MSE(q,4)
is larger than MSE(1,4) when the sample size is less than 100.

Next we consider the relations between the prediction error of the linear
predictor and that of the quadratic predictor for time series which do not nec-
essarily satisfy the Assumptions 1-3. To seek the relations, data is obtained for
Case 1 with n; = 0.2, Case 2 with 7; = 0.4 and Case 3 with 7; = 0.6, and by the

following nonlinear models:

Case 4. X,=Z;+0.2Z} , +0.32},,
Case 5. X,=Z,+0.2Z},+0.3Z},,
Case 6. X;=04X;_1—03X, 3 +04X, 12,1+ Z;,
Case 7. X;=04X,1—03X,2+04X, 272, + Z;,
Case 8. X;=04X;1—-03X;2+4+04X, 272, 5+ Z;,
—2.0X;1 +1.04+ Z;, Xi—1 2 -1.0
{ 04X 1 40545, K <—10;
e { —0.5X;—1 + 04X, 2 — 1.0+ Z;, X3 > 1.0
04X, ,+1.0+ Z,, X2 < 1.0,
Case 11. X, = {0.5 + exp(—0.1X2 )} X;—1 + Z;,
Case 12. X; = {0.5+ 0.4 cos(0.1X;-1)}Xi—1 + Zi,

Case 9. X;=

Case 10.

9
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where Z,’s are independent random variables which have standard normal distri-
butions. Cases 4-12 are concerned as nonlinear models which are often examined
in many literatures, since we want to investigate the forecasting performances of
the linear and the quadratic predictors for wide varieties of time series.

By simulation study, we evaluate MSE(l,p) and MSE(q,p) as in (14) and
(15), respectively, for sample sizes 50, 100, 200, 500 and 900. And we calculate
the ratio

MSE(q,p)
MSE(l,p)

The results are presented in Table 1 for p =4, and A = 1,2,5 and 10.

It depends on properties of time series how many sample sizes we need for
the quadratic predictor being more accurate than the linear predictor, but we
find it would be enough to take the sample size 100 for many cases we examined.
However, for Case 9, which is the threshold model, the quadratic predictor has
smaller prediction errors than the linear predictor even when the sample size is 50.
For a longer forecasting lead time, it needs more sample sizes for the quadratic

predictor to be more accurate than the linear predictor.

Proofs of Theorems 1 and 2

In this section, we give the proof of Theorem 2 given in section 2. Let
Qf(nl, ...ynj-1) be a j-th order cumurant of (X;, Xi4n;,. .., Xt4n;_,) and put
b(X) = Y520 ¢j exp(—ijA). For a proof of Theorem 2, two lemma are necessary.

Lemma 1 Under Assumptions 1and 2, for3 < j <4K,
> (1- QX (mk+q1,. .., i1k + 1)
|kl<T
converges to a constant as T tends to oo, where p;s take the values 0 or 1 and

are not all 0, and g;s are integers.

Proof. We show the proof only for § = 4K, since other cases can be proved
by essentially the same arguments. Put m = 4K — 1 for simplicity. Now the
process {X:} has a (m + 1)th order spectral density fX,(\1,..., Am) such that

fn}f—}-l()\l: e 'a)\m) — b(_)\l) SR b(“Am)b(Al el g Am)ffﬁ—i-l(‘)\l + -4 Am; ;\2, —
10

» Am),
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where fZ,,(-) is a (m+1)th order spectral density of {Z;}. See Brillinger (1974).
Denote by K7(A) the Fejer kernel and we put p; to be equal to 1 without loss of
generality. Then

k
E (1 |T|)Qm+1(k+q]l'":pmk’l'Qm) (18)
|kl<T
f.. . f{ o Kr(M+ ... 4+ pmAm) - 2 exp(2qa A1) b(—A1)b( A1 + - - - An)
X £+1(A1 sl B A1'1'11/.\25 RGE aAm)dAl}b(—'xz) T b(_)\‘m)

x exp{i(gaA2 + - + gmAm) }dAa - - - dApy.

Let

H(’\la “ee ,)\m) =2 exp(qu)\l)b(—)\l)b@l +-- Am)f£+l(A1 +---4 Am: Ag, caey /\m)

Note that for each A € (—m,7),

/ f IHOd, -+ A Pdg - - - A < 0.

Then,

[ ] [z Oa+ 4 prAm) B, M)
_H(_p2A2 T Emw pm.f\my AZ} R | ’\m)}dfxl

b(=Ag) - - B(=Am) exp{i(gada + - - + gmAm)dAz - - - |
g{/...f|jKT(A1+...+pmAm)H(A1,...,,\m)dA,

—H(=p2Az = .. = PmAmy Mgy - oy Am)PdAa - . . dA )2

x{/ ]|b “a) . b(=Am) A . A} (19)

By L; convergence of the Cesaro sum, (19) converges to 0 and (18) converges to

f..._/H(—pz)\z e = B Mgy ey )
xb(=Ag) - - b{=Am) exp{i(gara + - + gmdm)}dA2 - . - DA,y

as T tends to co. This completes the proof.
Proof of Theorem 1. Since the spectral density function of X; is square
integrable from A_ssumption 2, EX;X;_x tends to 0 as k tends to be infinity. By

this fact and Lemma 1, we can show easily that Var(R), Var(#s), Var(S:) and
11
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Var(3f) converge to 0 as T tends to infinity, and R, 7,5 and 8F converge in
probability to R, 74, S and sf, respectively by the law of large numbers. This
completes the proof of Theorem 1.

Put
_ 1 0
X = -1_1 Z Xh
t=—(T-1)
'1'2(?) = EXtXHpa
" L- &2
Y2(p) = T E XiXitp,
t=—(T-1)
73(?1,?2) = EXtXl'-+p1Xt+pz:
S 1 0
73(371:?2) = T E XtXt+th+p,,
i=—(T-1)
'T4(P1 P2, P3) = EX‘XH'PI XH-P: X\H-ps )
. L &
74(PI,P2,P3) = = E XtX¢+p1Xt+ng+p3.
T i7—y

By using the result of Lemma 1, we can show the following lemma.

Lemma 2 Under Assumptions I and 2,

X = Oyp(gr), (20)

Y2(p) — 12(p) = Oy(l7), (21)

Y3(p1, P2) — 1a(p1, P2) = Op(gr), (22)
Ya(P1, P2, P3) — Ya(P1, P2, 03) = Op(qr), (23)

as T tends to co, where Il and g7 are given in Theorem 2.

Proof. We give the proof only for (21) when p; = p, = 0 and (23) when
p1 = pz = p3 = 0. First, we show (21). Put @Q;(-) = Q¥(-) for simplicity. Then,

Var(42(0))

and

OO‘U(X?, th-l-k) = Q4(0, k, k) -L 2‘72(;0)2
12
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Since Q4(0, k, k) is Cesaro summable by Lemma 1, we only have to evaluate the
order of v,(k)2. If d < 1, 72(k)? is absolutely summable and TVar(42(0)) con-
verges to a Constant. If d > 1, 12(k)? = O(a,%) by Holder inequality. Therefore
if i o cx?f < 00, TVar(42(0)) converges to a constant as T tends to co. If
R aE diverges to oo, we can say only that Var(42(0)) = o(1). This com-
pletes the proof of (21).

Next we show (23) when p; = p; = p3 = 0.

i S
Var(%(0,0,0)) = %EZOOU(X;‘,X;‘)

s=1 t=1
1 ||
= 7 2 (1= ")Cou(XY, Xh),
T lk|<T T i t+
and
Cov(X$, Xiys) =

Qs(0,0,0,k,k,k, k) + 6Q6(0,0,0, k, k)y2(0) + 16Q6(0,0, k, k, k)72(k)

+6Q¢(0, k, k, k, k)v2(0) + 4Q5(0, 0,0, £)Qs(0,0) + 24Q5(0,0, k, k)Qs(k, k)
+24Qs(0, k, k, k)Q3(0, k) + 4Qs(k, k, k, k)Q3(0,0) + 16Q4(%, k, k)Q4(0,0, k)
+18Q4(0, k, k)Q4(0, k, k) + 48Q4(k, k, k)12 (k)72(0) + 72Q4(0, k, k) y2(k)2()
+36Q4(0, &, k)72(0)72(0) + 48Q4(0, 0, k)72(k)72(0) + 24Q5(0, 0)Q5(0, £)72(0)
+16Q3(0,0)Q3(0, 0)12(k) + 36Qs(k, k)Q3(k, k)12(0) + 144Q3(k, k)Qs(0, k)72()
+24Qs(k, k)Q3(0,0)72(0) + 36Qs(0, £)Qs(0, k)72(0) + 247, (k)*
+7273(k)*72(0)*.

The term which converges most slowly among the above terms is
16Q3(0,0)Q3(0,0)v2(k), since Cesaro summability of the other terms is guaran-
teed by Lemma 1. Note that y,(k) is O(aé) by Holder inequality. If 322 aE e
00, TVar(42(0,0,0)) converges to a constant as T tends to co. I 12 aé di-
verges to 0o, Var(42(0,0,0)) = o(1). This completes the proof of (23).

Proof of Theorem 2. First observe that

6}.,—-—‘1);, = E"lf*h—9h
= B Yfw—rn—(R— R)®:}.
13
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Since we have shown in Lemma 2 that 7, — r, and R — R are both Op(lr) and
that B! is 0,(1), &) — s = Op(Ir) holds. By the same argument,

A A =1,
@i—@i = Sg Si— @i
= 58 - s~ (5 - Sn)ep).

By noting that S;* is 0,(1) and that §2 — s and S, — S, are both O,(qr) by
(20), (22) and (23) in Lemma 2, 62 — ©2 = 0,(q7) holds.
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Table 1. The ratios MSE(Q,4)/MSE(L,4) for Cases 1-12.

T | Case | h=1 h=2 h=5 h=10|Case| h=1 h=2 h=5 h=10

50 1.740 1.796 2.358 3.579 1.408 1.922 1.825 3.050
100 1.207 1.139 1.237 1.443 1.038 1.200 1.189 1.255
200 1 1.062 1.0556 1.068 1.110 7 0.928 1.068 1.103 1.120
500 1.012 1.023 1.015 1.014 0.877 1.009 1.029 1.011
900 1.006 1.014 1.002 1.000 0.857 1.004 1.015 1.011

50 2.243 2.225 2.555 5.653 1.386 1.798 2.902 3.103
100 1.167 1.088 1.127 1.822 0.976 1.130 1.293 1.329
200 2 0.981 0.882 0.876 1.079 8 0.893 0.889 1.179 1.092
500 0.903 0.822 0.766 0.908 0.821 0.879 1.035 1.016
900 0.883 0.791 0.695 0.852 0.810 0.873 1.022 1.018

50 1.913 2.106 3.518 9.408 0956 1.835 2.302 2.541
100 1.170 1.121 1.073 1.542 0.613 1.172 1.295 1.143
200 3 0.904 0.826 0.749 0.958 9 0.539 1.053 1.084 1.061
500 0.865 0.770 0.697 0.822 0.502 1.001 1.025 1.018
900 0.867 0.782 0.691 0.815 0.504 0.995 1.021 1.010

50 1.557 1.575 1.855 2.236 1.381 1.711 1.803 2.043
100 1.037 1.142 1.207 1.228 1.023 1.133 1.149 1.232
2000 4 0931 0983 1.076 1.094| 10 |[0.907 0.968 1.071 1.082
500 0.892 0.950 1.013 1.017 0.853 0.932 1.037 1.039
900 0.891 0.937 1.010 " 1.009 0.847 0.928 1.024 1.015

50 5.220 8.792 17.208 12.155| - 1.963 2.686 3.313 5.620
100 2.237 2.278 2.503 2.451 1.284 1.460 1.285 1.353
200 5 |1.532 1.351 1.225 1.312| 11 |1.095 1.127 1.098 1.118
500 1.159 1.087 1.048 1.066 1.042 1.054 1.049 1.025
900 1.037 1.067 1.026 1.017 1.024 1.033 1.035 1.017

50 2.568 2.123 3.140 3.753 1.655 1.768 2.675 T7.218
100 1.219 1.239 1.272 1.490 1.201 1.209 1.243 1.391
200 6 |0.945 1.107 1.108 1.144| 12 |1.064 1.075 1.068 1.087
500 0.877 1.015 = 1.028 1.013 1.025 1.031 1.026 1.023
900 0.844 0.986 1.015 0.999 1.011 1.017 1.017 1.016
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Figure 1. The values of v({) and C,I(T)* and those of v(q) and Cyq(T)?

for g = 0.2. In (a), —— indicates v(l) and - indicates 7.0/%, where
lp = T-%5, In (b), indicates v(g) and - indicates 2.0q%, where
qr = T—O.S_
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Bu ¢alismada, dogrusal olmayan bir kestirici elde edilmis dogrusal ve dogrusal ol-

mayan kestiricilerin kestirim hatalan arasindaki iliski drneklem hacminin biyiikligune

gore incelenmistir.
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Abstract

The concept of homogeneous and heterogeneous general populations and
also the concept of combined and mixed heterogeneous ones are introduced.
The algorithms of analysis of homogeneity and heterogeneity of general popu-
lation with the help of Quetelet curves and spacing curves are considered. The
methods stated are used for investigation of heterogeneity of the population
of tumour radioresistant cells in different generations of Guerin’s carcinoma in
rates.

Key words: General population, homogeneous and heterogeneous popula-
tion, Quetelet curve, spacing curve.

1. Introduction

Consider new concept of the general population. Let G = {X;,¢ € I}be any
set of the elements (individuals); we shall be interested in values of some numerical
characteristics only, but not individuals X; by itself. It is supposed that there is
no any ordered structure in the set G' (the indexation X;, which we introduced, is
defined only for distinguishing of the elements, but not indication of the order of
their arranging). In various applied sciences it is naturally to accept the following
hypothesis: numerical characteristics z; may be considered as a value of some random
variable z, however, the set G by itself is not the sample (because it is not ordered),
but it is only the set of the sample values of some unknown sample G*, which is
generated by the Nature. There is ordered structure in the sample G*, but it is
unknown to experimenter. Suppose, that the set G*, and then G, is finite, and card
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G* = n. Let G* = {2}, z3,..., 2}, denote by F* (uy, ug, ..., u,,) the joint distribution of
the random variables z3, z3, ..., 2, which may be dependent among themselves, and
by Fy (u), F5(u),..., F* (u) - marginal distributions of these random values. Put

F(u) = F*(u) = -:: £ R,

We shall call the distribution F (u) the basis distribution of the sample G*. The
joint distribution F** (u3, U, ..., Us), and therefore the marginal distributions F} (u),
and also the basis distribution F (u), are not known to us, however, F (u) may be
approximately estimated on the basis of the set G of the sample values of G*. Indeed,
let F}, () be empirical distribution function constructed on the basis of the variational
series of the sample G* or G. By virtue of the well-known results of the theory of
probabilities, F,, (1) = F (u) , so that F, (1) may be considered as an approximation
of the distribution F (u). It should be noted that F (u) is the probability of the
following event: the value, which is chosen at random from the set G, does not exceed
u. As far as there is no ordered structure in the set G then the unique probabilistic
characteristics of this set is one-dimensional distribution F (u) = p(z < u). We shall
call the set G with the basis distribution F (u) the general population, thus in our
sense the general population is unordered set of dependent or independent sample
values.

Let G be a general population and S be some method of sampling of the elements
from the set G. As a result of using n times this method of sampling S we obtain
the ordered set of numbers (vector) (z1,23,...,2,), consisting of the values of the
characteristics z of the elements X;, X3, ..., X,. We shall call the vector (z1, 23, ..., Z,)
the sample z obtained with the help of the method S from the set G. For the general
population G and given method S for every natural n the joint distribution function
F (uy,u3, ..., u,) of the random variables (uy, ug, ..., u,) is defined:

F(u1,u3, oy tin) = p(21 < 1,0y Ty < Uy).

As far as we have not the sample G* with joint distribution F* (uy,us, ..., u,)
then the following problem is arising: to renew the sample G* on the basis of the
set of sample values G, i.e. by using the set G to construct n random variables
which have joint distribution coinciding with F** (u;,us, ..., u,) . To solve this problem
we proposed two methods [1]. The first method is based on the urn model. We
shell assume that all the set of the sample values G is pertaining in the urn; take
at random one of the elements y; from the set G, then from the set G \ {1} of
the other elements we take at random the following 7; and so on. Thus, we have
the serie of trainings consisting of random samplings without replacement of the
elements of the set G containing in the urn. Received multidimensional random
variable Y = (41,73, ..., 7n)is called induced sample obtaining with the help of the
urn model. Denote by (1, the set of the results w of such series of trainings; it is to see
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that the number of the elements of the set 2, equalston! : 0, = {w, =7 =1,2,...,n!}

1 :
, and, moreover, p{w = w,} = —. The following statements are correct [1]:
n!

Theorem 1. Let be F* (uy,us, ..., un) @ joint distribution function of the sample
G*; then the joint distribution function F.) (u1,us, ..., un) of the induced sample v(*)
obtained with the help of the urns model has the following form:

1
F:(“) (uth:"-:uﬂ) - E F* (uiﬂuizs'"auin)
n. (il r---:iﬂ)eIrl

where I, is the group of permutations of the numbers (1,2, ...,n).

Corollary 1. If G* be the sample from the general population G with the dis-
tribution F (u) then every component v;,4 = 1,2,...,n of the random vector (") has
distribution F' (u).

Corollary 2. If the elements of the sample G* from the general population G
be independent random variables then the distribution function F,;"{,.,) (u1,ug,...,un) of

the induced sample 4™ obtained with the help of the urn model coincide with the
distribution function F* (uy,us, ..., Un):

o (U1, Uy ey Un) = F* (Ug, Uz, ooy Un) = F (u1) . F (un) .

Theorem 2. Let G* be a sample from the general population G with the distribu-
tion F (u) where the sample values from G* have the normal join distribution. The
sample values from G* are independent if and only if the elements v1,7s, ..., Yn of the
induced sample 7™ obtained with the help of the urn model are independent random
variables.

The second method is based on the concept of the variational series and random-
ized procedure. Consider the variational series zj;) < z7, < ... < () constructed
on the unordered set of the sample G* obtained with the (help of the simple sampling
(it means that the random variables z3, z3, ..., 2, are independent and have the same
marginal distribution). Define m- dimensional random variable é® = (¢1,&3, ..., ém),
2 < m < n with the help of the following additional random experiment (random-
ized procedure): we take by the simple sampling without replacement the sample
gr = (%1, i;,l...,im) from the set of the numbers (1,2,...,n); where r = 1,2, ..., AT, and

n!

m—__— _ Put
Ay e Pu

&= 33?1)!‘52 = 55?2): oy bm = :r?m), ‘f{m) = (61’63’ rers &) -
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Theorem 3. Let the distribution funciion F(u) of the general population G
has the probability density f(u); then the components &1, ....&m of the multidi-
mensional random variable (™ are independent and identical distributed random
variables, whose distribution functions Fy, (v) coincide with F (u), j =1,2,...,m.

Definition 1. Let G* be an unordered set of the sample obtained from the general
population G by the simple sampling. The multidimensional random variables 4™

and £(™), mentioned above in the Theorems I and 8, are called renewed samples with
the sizes n and m.

The above mentioned conception of the general population points out that the
sample z = (z1,%3,...,2;),k < n obtained from the general population G with the
help of the method of sampling S does not always consist of an independent random
values, even if we use the simple sampling. This contradicts to the conventional well-
known concepts of the classic mathematical statistics [2] which state that by using
the simple sampling from the general population it is possible to obtain the sample
values z = (z1,2,...,2),k < n, where z; are only independent variable with the
same distribution ” [2]. Thus, the existing dependence in the sample G* cannot be
excluded with the help of any methods of sampling S.

In the definition of the general population G and the method of sampling S we do
not impose any conditions on the multidimensional distribution function F(u1, ua, ..., un
(for example, the condition of oherence of the distributions and so on). However,
hereinafter we shall study two methods of sampling: '

1) the simple sampling when the random variables z,, z, ..., z, are independent
and identically distributed, so that F(u1,us,...,us) = F(u1)...F(us), where F(u) is
the marginal distribution;

2) random sampling where the random variables are independent but they can
have different marginal distributions, so that Fi(uz) , k = 1,2,...,n; F(uq,us, ..., tn)
=F1(U1) ...Fn(uﬂ) ‘

On the basis of the above mentioned results about renewed sample we can guar-
antee the existence of the simple sampling or the random sampling in the case when
the primary G* consists of the independent sample (hypothesis H). Hereinafter we
shall suppose that the hypothesis H is correct.

In applications of mathematical statistics the concepts of homogeneous and het-
erogeneous general populations are very important. Homogeneous general population
consists of the similar objects such that the values z;, z3, ..., z, of the quantitative in-
dex z have the identical marginal distributions F (u) : Fi (u) = F (v),k =1,2,...,n.
However, this condition is not sufficient for the homogeneity of the general popula-
tion. According to empirical statistical concepts it is conventional point of view that
the homogeneous general population is characterized by the unimodal distribution
function, that is why we shall assume that the general population is homogeneous if
the marginal distribution F (u) is unimodal. This definition is not logically faultless
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because there counterexamples of the mixture of two normal distributions whose prob-
ability density is unimodal. Nevertheless, such normal distributions are sufficiently
close each to other and it may be considered as practically identical. Thus, according
to our concept the terms "unimodal” and "homogeneous” are the synonyms.

The cell population is the particular case of an abstract general population, which
is investigated in contemporary mathematical statistics, and it is the arbitrary set G
of the values of the quantitative parameters of some objects with specific distribution
F (u), which, probably, is unknown. As a rule, the distribution of the heterogeneous
general population G is multimodal, but the sample = = (21,23, ...,2,) from the
heterogeneous general population G may be in the simplest case an combination of
two samples 2(1) = (21,25, ...,2;) € G; and 2® = (241, Zpyo, vy Tp) € Gy from the
different general populations G; and G, (we shall call such samples combined ones)
or the mixture of two samples from these populations Gy and G, (we shall call such
samples mixed ones). The combined samples arise when an individuals, which form
the sample, have the different localization (i.e. they are placed in the different regions
of the space), while an individuals, which form the mixed sample may be placed in a
random order.

Consider the problem of the recognition of the general population heterogeneity.
It is obvious, that to recognize the combined sample is significantly more simply
then mixed one. Really, if we assume that the parts (V) = (z,, z,, ..., Zx) € Gy and
2@ = (2341, k42, ..., Tn) € Ga and of the sample z = (z1,23,...,2,) € G have the
equal size, then we can determine the difference between z(!) and z(? computing the
proximity measure between them. If this distinguish is significant then the sample
z = zM U z(® is combined, otherwise it is should been verified whether this sample
is mixed one.

Let us give the description of the computation of the proximity measure between
the samples z = (21,%3,...,2,) € G and z' = (a:;,:c;,...,z;t) € G, obtained by
simple sampling from the general populations G and G’ having unknown distribution
functions Fg (u) and Fi (u), respectively. Consider the most general situation when
the distribution functions Fg (v) and Fiy (u) can have atoms. Explain the concept
more detail. As well-known, any distribution function F (u) is monotone decreasing
continuous from the left function which is defined on the whole number line and
0 < F(u) < 1. Among the points of the domain of the function F (u), i.e. the real
line, there exist the points of continuity ue, then

Flug—0)= lim F(u)=F(up+0)= lim F(u).

u—rug,u<up u—rug,u>U
In addition, on the real line there exist the points of discontinuity u;, where
F(up—0) < F(uo +0).

The points of discontinuity are called atoms. For these points the probability of
the event "the sample value z exactly equals to u;” is not zero while for the points
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of continuity this probability equals to zero. On the basis of the sample such atoms
can be determined if the sample is sufficiently large, of course. In this case atoms are

such sample values which occur in sample more then one time.
Let be z(3) < z(3) < ... £ m(ﬂ),:n'(l) < :1:'(3) < .. < m;m) variational series con-
structed on the samples z = (21,23,...,2,) € G and ' = (:B'l,a:;,. m') € G,

oyl
respectively. If the order statistics z() occur in the variational series more then one

time, then z(zy is the atom of the distribution Fg(u). Suppose, that there are no

atoms in the half-open interval [3:(,-), fB(j)) , then on the basis of the results of the pa-
per [3],

p(Aij)=p (5 € (wtf):ﬂ’(j))) =pij = 2 (1)

n+1

where z is the next sample value from the general population G which does not

depend -on the sample z = (z,23,...,2,) € G. In the case when the half-open

interval [a:(,-), :c(j))conta,ins the atoms, we can represent it in the form of the sum of
the adjacent component half-open intervals:

[ﬂ’{f): “’(:‘}) = [:c(g-), m(i+1)) J [m(m)a-’f(m)) Ll [m(i—l)v"‘(i))-

Suppose that the left end point of some half-open interval [:c(k), a:(k.,_l)) is an atom.
Denote by n; the number of the repetitions of z; in the sample ¢ = (z1, z,, e FER)]

put 7 = = Itis readily seen that on the basis of the law of large numbers for
sufficiently large n we have:

'YkmF(IBk-FO)—F(:Ek—O).

In this case we must correct the formulae (1) in the following way:

p(Akks1) =p (5‘3 € [w(k), m(k+1))) = Pkk+1 =P (55 € {rs(k)} 2 (z(k)wm(kﬂ))) =

p(F=2w) +p(F € (2 zeen)) ~ m + ;;Jlr—l‘

Taking into account this correction, we have:

p(Ay)=p (5 € [33(1'):-"'3(.1'))) = pij; =

P (5 = [""(*)’mfiﬂl) o [m(i+1)’$(='+2)) Mgl [3’(:'—1)@(:'))) =

P (E € [m(i)s‘”(iﬂ))) +p (5 € [$(£+1):3?(£+2})) Tt g (fE € [z(,-_l),a:(j))) ,
so that

J—1
Ai) =pis = : ;. > 2
p( i) Pij =%+ Yigr + ...+ 1+n+1 (2)
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Note, hat the formula (2) is correct irrespectively of, whether the half-open interval
[x(,-), :c(j)) contains the atoms or does not. In the case when there are no atoms in

[z(;), m(,-)) then v; + 941 + ... +9j-1 = 0, and formula (2) transforms into the formula
(1).

If we have the sample z' = (:c’l,.?:;, ...,3:;,_), we can determine the frequency h;;

of the random event A;; and the confidential limits pg-), p,(;‘-’) for the probability p;;,

corresponding to the given significance level B, such that 1 — § = p(B), where B =
{pgj € (pﬂ ), pg?))}. These limits can be calculated on the formulae[4]:

a _ hij + 0.5¢% — g\/h,-j (1 — hij) m + 0.25¢2

Pij m+ g2 )

hi; + 0.5¢* hi; (1=h 0.25¢2 3)
(2) _ M £0.99 +9\[=‘:‘( — hij) m +0.25¢
by” = m + g2

: i 1 : : i
where g satisfies condition ¢ (g) = 1 — 5 B, (u) is the density function of the

normal normed distribution (if m is small, then we use the ”3¢” -rules with g = 3).

Denote by N all confidence intervals I;; = (p‘(-;-), p‘(-_?)) AV = E—(n%l) and by L

the number of such I;;, which contain the probability p;;. Put b = p (F*,F *') =

p (:c,:c') = % As far as h is a frequency of the random event B = {p;; € I;;} having
the probability p (B) = 1— f, then setting h;; = b, m = N and g = 3 in the formulae
(3) we obtain the confidence interval I = (p(1), p(z)) for the probability p(B), which
has the confidence level 0.95. The test of hypothesis H with the significance level,
which is approximately equal to 0.05, may be formulated in the following way: if
the confidence interval I = (pm,p(z))contains the probability p(B) = 1 — f then
the hypothesis H is accepted, otherwise it is rejected. Statistics A is the proximity
measure p g.:, a:') between samples z and z'.

The problem of mixed sample recognition is more difficult because the mixture of
two unimodal distribution may be again an unimodal distribution, when there exist
some relations between their mathematical expectations and variances. However, this
situation is not typical and, as a rule, after mixing of two unimodal distributions we
have bimodal one.

We propose new method to solve the problem of recognition of mixed sample.
This method is based on the investigation of the graphics of the variational series of
the sample. Let = (z1,2,...,2,) be a sample from the general population G and
z(1) < z(z) < ... < (n) be its variational series. Consider on the plane the points

i,:r:(,-)) 0 = 1,2,...,n, draw the smooth curve through these points (for example,

joining the adjacent points by the linear segments). This curve is called the Quetelet
curve (fig. la - 6a). It is well-known that the Quetlet curve consists of the three
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parts. Its initial part is obtained from the first minimal order statistics, then it
have the middle part, which is formed by the points z(; of the samples from the
bulk of the general population G, and its final part formed by the maximal order
statistics. In many cases the initial and final parts of the Quetelet curve are the
curves formed by the outlyings stipulated by artifacts. That is why the middle part of
the Quetelet curve is the most reliable one. If the general population is homogeneous
then the middle part of the Quetelet curve is well approximated by the linear segment.
Hence, when the middle part of the Quetelet curve is approximated by two segments
generating broken line consisting of two links (the first case) or by two disconnected
segments (the second case), we deal with the heterogeneous general population. In
any case, the right end point of the first segment we shall call singular point of the
Quetelet curve; in the first case, it is the point of the break, and in the second case it
is the point of discontinuity of the Quetelet curve.

Justification of the proposed test for detection of the heterogeneity is base on
the following reasons. If the general population is homogeneous then its density of
probability is increasing at first, and the, after mode, it begin to decrease. Hence the
distribution function of such general population is convex before mode and concave
one after mode, and in the mode neighborhood (point of inflection) this curve is well
approximated by the linear segment, so that the bulk of the general population is
placed between abscissas of the end points of this segment. As far as the Quetelet
curve approximates the inverse function to the distribution function, the graphics of
this curve is the reflection of the graphics of the distribution function relatively to
the bisectrix of the first and the third quadrant. Hence, in this case the middle part
of the Quetelet curve is well approximated by the linear segment. If the density of
probability of the general population G is the bimodal curve then the graphics of its
distribution function consists of two similar parts: for one part we have the curve
changing the convexity on a concavity in the first mode neighborhood and the second
one which change the concavity on a convexity in the second mode neighborhood.
That is why, the graphics if the distribution function is well approximated by two
linear segments. Hence, the Quetelet curve is also well approximated by the linear
segments (see, for example, fig. 3a). Note, however, that under calculations it as
more preferable to deal with the Quetelet curve, because it is more slanting one in
comparison with the distribution function. _

The algorithm for the detection and computation of the coordinates of the sin-
gular points of the Quetelet curve is the following. At first, on the sample z =
(z1,%2,...,Zs) € G we construct the variational series z(;) < z(g) < ... < T(n) and
remove 10% of its extreme order statistics (5% of the first minimal order statistics
and 5% of the maximal ones). Then, using the rest order statistics we construct the
curve formed by the increments of the ordinates of the vertecies of the adjacent links
of the Quetelet curve (¢, y;), where y; = z(;41)— ), ¢ = [,{+1,...,n—I—1 connecting
the adjacent vertecies (i, y(,-)), (i + l,y(‘-H)) by the linear segments. The values y(;
are called spacings, so we call the curve constructed in such way as the spacing curve
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(fig. 1b-6b). Then, we divide the set of the abscissas and ordinates of the vertecies

of the spacing curve on the three equal (or almost equal) parts : Uy, U,, Us and
}fla Y;,Ys:

U, ={1,2,...k}, U ={k+Lk+2,...m},Us={m+1,m+2,..,n—-1-1},
Yi = {yl:ym"wyk} a}}E = {yk+lsyk+23 -"aym} aY:?; = {ym+1aym+2,---gyn—f—1}:

n—2-1
3

Put y() =minY;,yl) = max¥;,i=1,2,3. Then the criteria for the recognition
of the heterogeneity of the general population we call formulate in the following way:

wherekz[ ],m:n—l—-k—2.

1) If y& < ¢ and y1), > ¥, then beginning from the right end point of
the graphics of the spacing curve we verify the inequality 3 < yo_1_1_; < y@)
j =1,2,...,n—1—2; the first point with the order number n, outlying from the interval
limits is the singular point and, respectively, the bound between two subpopulations
in the general population. In this case the set W = {y;}, 7 = 1,2,...,ny belongs
to the first subpopulation and the set s the singular point and, respectively, the
bound between two subpopulations in the general population. In this case the set

Wi = {y}, t =no,n0+1,...,n — [ — 1 belongs to the second one.

2) Otherwise, we begin to sort out the points of the spacing curve from the left
end point verifying the inequality 3 < y; < y(l) 3 = 1,2,...,n; similarly the
previous case the first point with the order number ng outlymg from the limits of the
interval is the singular point and the set Wi = {y;}, ¢ = 1,2, ...,n0 belongs to the
first subpopulation and the set Wi = {y;}, 1 = ng,n0 + 1, ...,n — [ — 1 belongs to the
second one.

3) The variant when the singular point does not exist is possible also, so that
1) _

Yo = y( ) and y{) =40 In this case the sample is homogeneous.

Note, that above mentioned method can be applied for detection of the combined
samples also.

On the fig. 1-6 the Quetelet curves and spacing curves constructed on the vari-
ational series of the samples formed by the areas of the nuclei of the cells of the
Guerin’s carcinoma of rates under investigation of the generations of the radoiresis-
tance cells are shown. Using of the propose method permitted to detect that the
general population of the control (uniradiated)cells is homogeneous and the general
populations of the cells in the consequent generations are heterogeneous (combined
and mixed).

The results of the investigations of the heterogeneity obtained by the computa-
tion of the proximity measure between two halves X; = {zy,z,,...,zx} and Xp =

{Tk, Zkt1,---) Tn} Of the sample X = {24, 2y, ...,2,}, where k = [g is the entire part
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Generation | p(X;,X;) | LCL | UCL | p(X;,X;) | LCL | UCL
Control 1.000 0.944 | 1.000 | 0.000 0.000 | 0.056
3 0.974 0.950 | 0.987 | 0.026 0.013 | 0.050
) 0.249 0.190 | 0.318 | 0.751 0.682 | 0.810
6 0.998 0.991 { 0.999 | 0.002 0.001 | 0.009
T 0.493 0.419 | 0.566 | 0.507 0.434 | 0.581
12 0.441 0.409 | 0.475 | 0.559 0.525 | 0.591

Table 1: Indecies of the sample heterogeneity.

Generation | NC [ SP [ NC1 | Partl | Minl | Max1 | NC2 | Part2 | Min2 | Max2
Control 45 No | 45 1.00 59 85 - - - -

3 89 |83 |83 0.93 |30 125 6 0.07 |125 225

] 89 44 |44 0.49 30 80 45 0.51 100 225

6 135 |118 118 |[0.87 |65 125 17 013 | 125 160

7 89 |69 |69 0.78 |30 60 20 0.22 |60 90

12 135 | 110|110 |0.82 |25 125 25 0.18 | 125 200

Table 2: Estimations of the population heterogeneity by spacing curve method

of the number g, are represented in the Table 1. This proximity measure we denote

by p (X1, X;) and introduce the value p (X1, X3) = 1 — p(Xi, X3). The small values
of 4 (X, Xz) mean that the sample is combined.

Here LCL and UCL are the lower and upper confidence limits of the proximity
measure corresponding to the 5% significance level.

It is readily seen, that the samples of the cell from 5th, 7th and 12th generations
are combined one.

Then we investigated the type of the samples by the method of the spacing
curves.We computed the singular points of the Quetelet curve (fir.1-6), part of the
subpopulations (modal classes) which form the generation and the limits of the vari-
ation of the area of the nuclei of the cells from these subpopulations (Table 2).

Notes. In the Table 2 NC is the number of cells in the sample, SP is singular
point of the Quetelet curve, NC1 is the number of cells in the first subpopulation,
Partland Part2 are the part of the first and second subpopulation in the sample,
Minl and Max2 are minimal and maximal order statistics of the first and second
subpopulation, respetively. We removed 5% of the first minimal order statistics and
5% of the last maximal statistics of the samples . In addition, we do not consider
the sample consisting from the cells which number is less then 5% as a separate
subpopulation.

Acknolegemeﬁts. Authors are very grateful to the senior researcher of the
Ukrainian Institute of Oncology and Radiology V.A.Zinchenko for kindly submitted
experimental data.
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OZET

Homojen ve homojen olmayan kitleler kavramlan verilmistir. Homojenligi analiz
etmek icin Quetlet egrilerine ve komsu sira istatistiklerinin farklarina dayal testler

tasarlanmistir. Sonuglarin onkolojide bir uygulamas: verilmistir.
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Abstract

Asymptotic properties of solutions of general stochastic equations (consistency
and the behaviour of deviations) are studied. Applications to the analysis of mo-
ments method estimators constructed by observations on the trajectories of stochas-
tic systems in stationary and transient conditions are considered.

Key Words: stochastic equation, solution, convergence in probability, weak
convergence, moments method.

- 1. Introduction.

In different models that appear in numerical mathematics, stochastic optimization
problems, statistical parameter estimation we come across the necessity to study the
behaviour of solutions of stochastic equations.

Let us consider the following examples.

Example 1. Suppose that we would like to find a solution of & deterministic equation

f(6) =0, (1)

where f(0) is some continuous function, § € © C R", and © is some bounded region. But
according to the real scheme of calculations we measure the function f(f) with random
errors in the form:

re(0) = £(6) + &(6), 1<k <,

where {¢(0),0 € ©},k > 1 are jointly independent families of random functions (fields)
such that E&(6) = 0.
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In this case it is reasonable to approximate the function f(6) by the averaging

2(0) = = 3-ra0). @)

k=1

Therefore a natural question arises: in what sense and under which conditions a
solution of a stochastic equation

fa(0) =0 (3)
approximates a solution of the equation (1) as n — oo.

Example 2. In different statistical schemes, estimators can be represented as solutions
of stochastic equations where a corresponding random function is some additive type
functional on a trajectory of the observed system.

Consider the following quite general scheme of observations. Let S(t),t > 0 be the
trajectory of some (random or non-random) system with values in R™ and ¢; < ¢, < ... be
the times of observations on the interval [0, T]. Let also independent parametric families
of random variables {yx(c), @ € R"},k > 0 with values in R" and independent on S(-) be
given. Suppose for simplicity that distributions of random variables 7 () do not depend
on index k. Consider various statistical methods.

1. Magimum likelihood method. Consider the case of complete observations. Let
densities of random variables {y:(c), € R"} exist and belong to the parametric family
of densities {p(2,0,a),z € R",0 € B, € R"} where O is some bounded closed region in
R". We observe variables sx = S(tx) and ¥ = yx(sx),k < v(T) , where ¥(T) is the total
number of observations on the interval [0, 7).

Then a logarithmic maximum likelihood function L(6, T') is represented as an additive
random functional on the trajectory of S(:) of the form:

v(T)
L(6,T) =T ) Inp(w,0, ). (4)

k=1

If derivatives exist then the maximum likelihood estimator is a solution of the vector
equation
v(T)
T Z "nb(yhgs sk) =0, (5)
k=1
where %(y, 0, 8) = & In(y, 6, 5) (in a vector case the expression % In(y, f, s) meens a vector
of partial derivatives).
2. Moments method. Suppose that the 1st moment’s functions of variables {7x(a), o €
R"} exist and belong to a parametric family of functions {g(f, ), € 8,a € R"}.

Then under the same scheme of observations the moments method estimator is a
solution of the equation

v(T) v(T)
Ty g(6,se) =T7" ) ws (6)
k=1 k=1
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3. Least squares method. Suppose that the function f(8,«) is given and we observe
variables sx and zx = f(6o, sx) +€x, 0 <k < »(T), where 6 is the unknown parameter,
and variables & represent a random noise, Elex/sx] =0, Elex/se)? < co . Denote

u(T)
FO,T) =T (- f(8,sx)) (7)

k=1
Then if derivatives exist a least squares method estimator is a solution of the equation

V(T)

T Y 2 1(6,50) (2 — £(6,54)) = 0. ®)

k-—l

These examples show that the analysis of various type statistical models leads to the
necessity to investigate the following classes of problems:

1. Studying the asymptotic properties of solutions of general stochastic equations.

2. The description of classes of stochastic systems for which it is possible to study an
asymptotic behaviour of additive type functionals.

In this paper, a new approach in statistical parameter estimation for observations
on trajectories of stochastic systems is suggested. At first an estimator is represented
as a solution (set of solutions) of some stochastic equation with function which is some
additive functional on the trajectory of a system and then, using solutions of both above
mentioned problems, an asymptotic behaviour of the estimator itself is studied.

In the paper it is shown how to realize this approach for moments method estimators
constructed on the trajectory of a system satisfying some conditions of averaging (or
ergodicity).

The paper consists of two main parts. The 1st one deals with studying of asymptotic
properties of solutions of stochastic equations. Theorems of the convergence to the limit
point (consistency) and the convergence of the normed deviation to some random value
which is in general a solution of some limiting stochastic equation are investigated. We
mention that a general theorem about the asymptotic behaviour of solutions in Banach
space was given by Van der Vaart [7] for the case when a limiting equation has a linear
form. In our paper a finite-dimensional case is considered but the limiting equation has
a general form (in particular non-linear).

In the 2d part applications to the analysis of moments method estimators constructed
by the observations on trajectories of stochastic systems in transient and stationary con-
ditions are studied.

2. Analysis of solutions of stochastic equations
2.1. Asymptotic behaviour of solutions for general stochastic equations

Here we prove some general results devoted to the asymptotic behaviour of solutions
of stochastic equations.
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At first let us give some necessary notations. For any function g(f) and any compact
set K C O denote by

Ay(c,9(-), K) = sup{|g(q1) — 9(@)| : ls — @2| < ¢, q1, 42 € K}

the modulus of continuity in a uniform metric for the function g(f) on the set K.

Definition 1. The sequence of random functions f,(f) uniformly converges (U-
_converges) to the function (deterministic or random) fo(0) on the set K if for any k > 0 and
for any 6, € K, ... 6 € K a multidimensional distribution of a vector (fn(61),..., fa(6%))
weakly converges to the distribution of a vector (fo(61),. .., fo(6%)), and for any € > 0

liri101im sup P{Ay(c, fu(),K) > e} =0.
C n—oo

This means that the sequence of measures generated by the sequence of random func-
tions f,(-) in Skorokhod space Dk weakly converges to the measure generated by fo(-).

Definition 2. Let G,, is some sequence of random sets in ©. We say that G, converges
in probability to go (Gn B, o), where gy is a deterministic or a random point in ©, if

p(.gO: Gﬂ) i} 01

where p(a, A) = sup,e4 |a — 2.

Definition 3. We say that the function g(f),0 € © satisfies the condition of sepa-
rateness S if there exists such § > 0 that for any y € R", |y| < 6 the equation

9@) =y

has a unique solution and the solution y of the equation g(6p) = 0 is the inner point of
the region © (if the function g(f) is random, it means that the condition of separateness
is satisfied with probability one).

Now let f,(6),t > 0,0 € ©,n > 0 be a sequence of continuous random functions with
values in R", where © is some bounded region in R". Let us consider a stochastic equation

fa (9) =0, (9)
and denote the set of all possible solutions by {f,}.

Theorem 1. 1). Suppose that the sequence of functions f,(6) U-converges in each
set K C © to the function fy(f) (random or non-random) which satisfies the condition of
separateness S, and the point 6 is the solution of a limiting equation:

fo(6o) = 0. (10)

Then with probability which tends to one the solution of the equation (9) exists and
the sequence of sets {6,} converges in probability to .
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2). Suppose further that 6 is a non-random point and there exists # > 0 and a
non-random sequence v, — oo such that for any L > 0 the sequence of random functions
v8 fa(Bo + v;'u) U-converges in the region {|u| < L} to some (random) function 7o(u),
which satisfies the condition S and the point &g is the solution of the equation 79(kg) = 0.

Then there exists a solution 8, of the equation (9) such that the sequence v, (6, — 6o)
weakly converges to the (random) variable kq.

Consequence 1. If in conditions of the 2nd part of Theorem 1 the function ng(u)
can be represented in the form £, + Got, where §; and Gy are vector and matrix-valued
(possibly dependent) random variables, and the matrix Gy is not degenerated with prob-
ability one, then there exists a solution 8, such that the sequence vn(ﬁ; — 6p) weakly
converges to the random variable —Gy 1o.

Remark 1 If the solution of limiting equation (10) is not unique and the limiting
function fo(6) is deterministic then

P lim {6.} C {80}

where {fo} is the set of all possible solutions of the equation (10) and symbol P lim denotes
the convergence in probability. '

Remark 2. An asymptotic behaviour of solutions of stochastic equations with some
applications in statistics is considered in [2]. A generalization of these results will appear
in [5].

Proof. The proof of Theorem 1 uses the method of a common probabilistic space
developed by Skorokhod [6]. According to this method we can construct our random
functions f,(8,w),n > 0 on the same probabilistic space {2 in such a way that fn(0,w)
uniformly converges for all w € Qg to the function fo(6,w) in the region © where P(Q) =
1. Let us fix some w € §g. Denote by 6, (w) one of solutions of the equation

fa(0,w) =0, (11)

if the set {6} is not empty. As the region © is bounded, we can choose 2 subsequence
8,,, (w) such that there exists a limit

Jim 6,(0) = #(u).
Using the uniform convergence of fn(6,w) we obtain that

fﬂ(eﬂk(w):w) == fo(el(w),w) = 0

It means that all partial limits of the sequence 6,,(w) belong to the set {fo (w)} and proves
the Remark 1.

Further if the condition S of separateness takes place then a solution of the equa?:ion
(11) exists at large n according to the continuity of fn(f,w). Now if 6, (w) is one of solutions
of the equation (11) and it does not tends to fo(w), then there exists a subsequence 7 such
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that 0, (w) — ¢'(w) ~bo(w). Using the uniform convergence of f,(6,w) we again obtain
that fu(On,, (Ww),w) — fo(€'(w)) = 0. But this equation has a unique solution according
to the condition S. This contradiction shows that '(w) = 6p(w) and On(w) — 6o(w) for
all w € §y and finally proves the 1st part of Theorem 1.

Let us consider the behaviour of deviations.. Again using the method of a common
probabilistic space we can construct the sequence of functions f,(, + v, u) and random
variables 7p(u) on the same probabilistic space {2 in such a way that v, f,(8, + anu,w) =
no(u,w) + Bn(t,u,w), where for each L > 0 and almost for all w €

sup |Bn(u,w)| — 0. (12)
lu|<L

Consider the equation
no(u,w) = —F,(u,w). (13)
Due to the condition S and continuity of left and right parts in (13) as supy, ., [Ba(u, w)| <
§, then at least one solution of the equation (13) exists. Denote it by @, (w). As the func-

tion 7g(u,w) has a reversed function 75’ (u,w) (at least at small enough u) we can re-write
at large n an equation (13) in the form:

U (W) = 15" (—Fn(u,w),w). (14)

According to the relation (12) right part in (14) tends to the value 75 (0,w) = yo(w).
This relation proves the 2nd part of Theorem 1.
O

2.2. Asymptotic behaviour of solutions under stochastic errors

In this part we consider as one of possible directions of applications of the results of
Theorem 1 the behavior of approximately calculated solutions of deterministic equations
under stochastic errors at calculations.

Consider Example 1 from Introduction. Let us study the asymptotic behavior of
solutions of the equation

fa(6) =0 (15)
where the function f,(6) is defined in (2). As before, denote by {f} the set of possible

solutions of the equation (1) and by {6,} the set of possible solutions of the equation (15).
Denote also

Gl6) = - Y &00)

Theorem 2. Let families of random functions {£;(6),6 € ©},k > 1 be independent
(at different k), identically distributed and the following conditions are satisfied:
1. E&4(0)=0,0€0CRY
2. for any € > 0 and any compact set K C ©
cl_ig;ﬁlim sup P{Au(c,(a(), K) > e} =0; : (16)

n—
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3. The function f(f) satisfies the condition S with unique point 6.
Then at n — oo with probability that tends to one the set {6,} is not empty and the
sequence {6,} converges in probability to 8;.

Proof. We represent the function f,(6) in the form f,(6) = f(8) + ¢.(6). ;From
the Law of Large Numbers it follows that at each § € ©
P lim (.(6) =0, (17)

n—oo

and the condition (16) implies that the sequence of functions (,(8) U-converges to 0 in
each compact set K, that is the sequence f,(-) U-converges to f(-). Then our statement
directly follows from Theorem 1.
O
Remark 3. The condition (16) is rather general and in some cases it is not so simple
to check it. But using Chebyshev’s inequality it can be shown that the following condition
is sufficient for (16):

lim EAy(c, &(-), K) =0 (18)

c—+40
for any compact set K C 6.

Remark 4. Suppose that £;(8) = ¢(8,&) where g(6,y) is uniformly bounded and
continuous in @ at each fixed y function. Then the condition (18) is satisfied.

For this scheme the behavior of deviations v, (6, — ) also can be studied.
3. Statistical parameter estimation

Now let us consider applications of Theorem 1 to problems of statistical parameter
estimation. For visualization we consider a one-dimensional case (r = 1). Let su;,k > 1
be a trajectory of some (random or non-random) system with values in R. Let also
{%(c), € R},k > 0 be parametric families of random variables with values in R, which
are jointly independent and independent on s.;,k > 1. For simplicity we assume that
distributions of random variables -y;(a) do not depend on index k.

Suppose that we observe variables s,z and ya = :(sax), k¥ < n, where n is the number
of observations. :

3.1. Moments method (transient case)

At first we study the behaviour of moment’s method estimators in non-stationary
conditions. Suppose that first moment’s functions of variables {y;(a),a € R} exist and
belong to the parametric family of functions {g(f,c), 6 € ©, @ € R} and Eyy(a) =
9(0o, @) = g(c) where 8 is some inner point in the region ©.

Then the moments method estimator is a solution of the equation

n~! ig(ﬁ, Sng) — 0} Zﬂ:yk = (. (19)

k=1 k=1
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Denote as before by {f,} the set of possible solutions of the equation (19). We study
an asymptotic behavior {0,} as n — co.

Theorem 3. Suppose that the sequence sy satisfies the following averaging con-

dition: there exists a deterministic continuous function s(t) on the interval [0,1] such
that

P lim max |spx — s(k/n)| =0, (20)

n—oo OSFFS‘R

variables k() satisfy the following condition: for any L > 0

o sip Bigaleglxdintad) >0} =6, (21)

N_’mfa|

the function g(#, ) is continuous in both arguments (6, ) and there exists § > 0 such
that the equation

[ 600, stw))au — [ glsfu))du = (22

has a unique solution for any |v| < 6.
Then with probability which tends to one a solution of the equation (19) exists and
{Bn} — 90.

Proof. It can be easily seen that under conditions (20),(21) the second term at the
left part of (19) converges in probability to the value - [3 g(s(u))du. The first term for
any L > 0 uniformly in || < L converges to the function [ g(8, s(u))du. And finally our
statement follows from Theorem 1.

O

Let us consider now the behaviour of deviations.

Theorem 4. Suppose that in addition to Theorem 3 the following conditions hold:

1. there exists bounded integrable functions b((%1, ) such that for some 8 > 0 as
h— 40

hP(g(80 + he, ) — g(bo, @)) — sign(e) b(e,a), a € R, (23)
where e = 1 and b(+1, a)b(—1,a) > 0;
2. there exists v, 1 <y < 2, such that at each &
Eexp{iX(11(a) — g())} = 1= |A"a(A, ) +o(|A]", ), (24)

where a(}, @) = ¢(a)(1 — if(a)sign(A)tan(my/2)), ¢(a) > 0,8(c) € [-1,1],
and for any L > 0

lim sup |A|™"o(|A|",@) — 0;

A=0 )<L

Then there exists a solution 8, of the equation (19) such that

njg_‘: (9}1 - 90) g?? Yo, (25)
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where symbol = denotes a weak convergence (in distribution),

_ 1S s
L
5(0) = sin(—gorr), Be) = [ bles (o), e =51, (27)

and the value ( has a stable distribution with characteristic function

E exp{iA(} = exp{—|}A|" /0] a(), s(v))dv}. (28)

Proof. Denote by f,(6) the left part of (19). Put v, = n'5v. Then we can write
representation

v fo(Bo+ v 'w) =n lz'v (9(B0 + v 4, 5n1) — 900, $nk))— (29)

k_

1077 50 (Y (snk) — 9(Bo, 5ni))-1

It is not hard to prove using conditions (20),(24) that the second term at the right
part of (29) weakly converges to the variable { (see (28)).

Condition (23) implies that

V3 (960 + v 'u, @) — g(6o, @)) ~ sign(u) [ul’b(sign(u), o).

According to it the first term at the right part of (29) can be represented in the form
n
n™'y_ sign(u) [u|’b(sign(u), snx) + o(1),

and this term U-converges in any bounded region {lu| < L} to the value
sign(u) |u|Pb(sign(u)). Finally we get a limiting equation in the form

sign(u) [u|b(sign(w)) + =0,

and a solution of it exists and can be written in the form (26).
O
Consequence 2. Suppose that conditions of Theorem 4 hold and there exists a
continuous in both arguments derivative R(6, @) = Z¢(6, ) and a continuous variance

o*(e) = E(y1(a) — g())? Denote

R(6o) = / R(6o, s(v))dv, 3 = / (v))dw. (30)
Suppose that B(f) > 0 and variables 7, (c) satisfy Lindeberg condition: for any L > 0
Jim sup Eyi(a)’x{|m(e)| > N} =0. (31)
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Then there exists a solution 8, of the equation (19) such that the sequence /n (6,—65)
weakly converges to a gaussian distribution with mean 0 and variance R™252.

Proof. We put v, = 4/n, § = 1. Then it can be easily seen using conditions
(20),(31) that the second term in the right part of (29) weakly converges to the gaussian
distribution with mean 0 and variance 2. The first term can be represented in the form

n

n Z R(6 + n YV 2qupu, sn) u
k=1

where |gni| < 1,k > 0, and this term U-converges in any bounded region {|u] < L} to the
value u [j R(6p, s(v))dv = uR(6p). It means that the limiting equation can be written in
the form:

uR(8o) + GN(0,1) =0

where N'(0, 1) denotes a standard gaussian random variable, which proves our statement.
O
Example 3. Suppose that

(9 a)_ g(a)—b(——l,a)|9~90|ﬂ as 0 < Oy,
992 =9 (@) +b(1,a)|0 - Golf a5 6 > by,

where > 0 and b(e, @), g(a) are some continuous functions, b(+1,a) > 0.

Suppose also that for any & Vary(e) = 0%(a) < C < co. We introduce values b(e)
and 2 according to notations (27),(30).

The if condition (20) is true, the equation (22) has a form:

sign(f — 90)3(543“(9 —80))16 — 6ol° =,

and obviously has a unique solution if E(e) e B o %

Further the relation (23) has the same form, in (24) v = 2, a(}, @) = d*(@)/2, the
variable ( can be written in the form ( = GA/(0,1) and the value 7, in (25) can be
represented in the form

GN(0,1)
b(sign(A(0,1))

If functions g(f, @) are differentiable the value 7y has a gaussian distribution.

Yo = | |1/ sign(N(0,1)).

Remark 5. We mention that the condition (20) is satisfied for wide classes of stochas-
tic systems that have a recurrent character of developing (for instance special classes of
Markov systems) and it is mostly oriented on non-stationary (transient) conditions. An
average principle for rather general stochastic recurrent sequences in transient conditions
is given in Anisimov (1991,1995). That gives the possibility of applications to statistical
parameter estimation for these classes of random sequences.
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2.2. Moments method (stationary case)

Analogous results can be obtained when the sequence s, is in some sense ergodic.
Suppose that the following condition holds:

there exists a probability measure m(A), A € Bg such that for any bounded measurable
function p(a),c € R

P lim n™? i o(snx) = j;ltp(a)vr(da) (32)

n—oo
k=1

(for instance s,x can be a Markov ergodic sequence).
Denote g(f) = [z 9(0, )m(dea).

Theorem 5. Suppose that conditions (21),(32) are satisfied, the function g(8, c) is
continuous in both arguments, supy , [g(6, @)| < C, and there exists § > 0 such that the
equation '

g(8) — g(6o) = v
has a unique solution for any |v| < é.

Then with probability that tends to 1 a solution of the equation (19) exists and

{9n} _P* 90-

Proof. Under our conditions the second term at the left part of (19) converges in
probability to the value §(fy). According to Theorem 1 we need to prove that the first
term for any L > 0 uniformly converges in |8] < L to the function g(#). Denote

6(c, L, N) = sup{ |g(61,@) — g(0a,c)| : |61 — 0| <, 1 VO, <L, |a| < N }.

According to continuity of g(6,«) 6(c,L,N) — 0 at any fixed L, N and ¢ — +0. Then

Plimsup n™! sup | > (9(61, 3ak) — 9(6a, 5nk) | <

n—c0 [81—02]<c,01V02<L  p—3

Plimsup, o, ( 8(c,L,N) n™" Tpy x{lsnel < N} +2C 071 $0_ x{lsmel > N }) <
6(c,L,N) +2Cn(z: |z| >.N) (33)
and the right part of (33) tends to 0 as ¢ — 40 and then N — co. Finally our statement
follows from Theorem 1.
E
Let us consider now the behaviour of deviations.

Theorem 6. Suppose that conditions of Theorem 5 hold, the condition 1 of Theorem
4 takes place, the condition 2 of Theorem 4 holds where the function a(), @) is bounded
at each fixed ). '

Then the relation (25) takes place, 7, is given in (26) where for our case

Be) = /R ble, a)m(de), (34)

a1



V. V. ANISIMOV, H. S. KAIBAH

and vector ( has a stable distribution with characteristic function
Eexp{iX()} = exp{—|A["a(})}, (35)
where @(A) = [ga(}, @) (da).

Proof. The proof follows the same steps as in Theorem 4. Put v, = n'%. Then
under our'conditions it can be proved that the second term at the right part of (29) weakly
converges to the variable  (see (35)).

The first term U-converges in any bounded region {|u| < L} to the value
sign(u) [u|?b(sign(u)) where the function b(e) is given in (34). According to Theorem 1
this implies our statement.

O

Analogous results can be given for maximum likelihood and least squares methods
estimators.

We mention that asymptotic properties of parameter estimators for switched by some
ergodic sequence Poisson type processes and asymptotic properties of maximum likelihood
estimators constructed by observations on trajectories of recurrent processes of semi-
Markov type on the base of the same technique (analysis of maximum likelihood equation)
are studied in Anisimov (1991) and Anisimov and Orazklychev (1993).
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OZET

Bu calismada genel rassal denklem ¢6ziimlerinin asimptotik ozellikleri (tutarlihig ve
sapmalarin davramg) incelendi. Bunlardan elde edilen sonuglar, duragan ve gegici du-
rumlarda rassal sistemlerin yoringelerindeki gozlemlerle elde edilen momentler yontemi
kestiricilerinin analizine uyguland.
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Abstract

Let X; Xs,...be independent random variables with a common continuous
distribution function F'(z). Let a is an arbitrary point in the support of the
probability measure. The attention has been focused on random indices of
those X's which tend to a from the left. We study the limiting behavior of
such random indices.

Keywords: Limit theorems, times and values of one-sided successive ap-
proximation, records.

1. Introduction

Let X;, X3, ... be independent random variables (r.v.’s) with a common continuous
distribution function F(z). Let I = (v,8), —o0 < v < f < o0, be a support of the
probability measure. Consider the following sequences of r.v.’s- the sequence of values

of one-sided successive approximations (0.-s.s.a’s) V(‘;] and the sequence of times of
the o.-s.s.a’s T%(n). Let

T(0) =0, Xo="Vg, =1,
To(n+1)=min{j: j > T°(n), Xrepm < X; <a},
1/(:_) = XT“{B) (n = 0, 1, ...),

where a € I. If a = 3 then the values of 0.-s.5.2’s V{3 coincide with the well-known
record values X(n) and the times of 0.-s.s.a’s T%(n) turn out to be the record times
L(n). Many papers have been devoted to the records (see, for example, [2]).

Some results for Vi, and T°(n) have been obtained in [3] and [4]. It was shown
that the behavior of the r.v.’s V2, taken from a sequence of independent X’s with
a common continuous distribution function F(z) is the same as the behavior of the
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record values X{,) taken from a sequence of independent X’s with a common con-
tinuous distribution function F(z)/F(a). As a result all facts known for the record
values could be reproduced for Vi3, for free. Thus, in particular,

~ log(1~F{(2)/F(a))

v leVdu.

1
P{Vey <z} =iy

0

On the contrary the behavior of T%(n) and L(n) is far from similarity. One of the
basic facts known for record times is that the distribution of L(n) does not depend

on the shape of the initial continuous distribution function F(z). In contrast with
this we have for the times of the o.-s.s.a’s [3]

P{T*(1) =k} = (1 — F(a))*'F(a),
P{T*(1) = ku, .y T* (= 1) = by T° (n) > Ko} =
=i (1 —Flayy
= (k= ki)..(kicy — ki) (kigr — K3)eoo(bn — k)

In this paper we study the limit behavior of 7% (n) (n — oo) under some con-
ditions.

2. Results

Theorem 1. Let z(n) = k;(;’;g-‘_'ﬂan and z(n) — oo, 3‘%1 — 0 as k> n and

n — 00. Then

log™%n _2

PAT® (n) =k} ~ 72?1:(11 - 1)!:!:(14,)"3 ’

as n — co.

Let us now we have a sequence of points a, instead of one single point. Let a, — 8
in such manner that

Ji (1 - F(on) = ) (1)

(A > 0). Consider the Poisson’s scheme of independent trials with a common contin-
uous distribution function F(z). The first series runs till Vi) appears, the second one
runs till V(‘;j appears and e.t.c.

Theorem 2. For r.v. A(n) =T (n) — L(n) the following result is valid

P{A(n) =k} — %k!-e"‘

where £k =0,1,... and n — oo.
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3. Proofs

Proof of the Theorem 1. M. Westcott [5] has discovered that

log ™ 2m
P {L(n) =m} ~ -2 (2)
(m > n, n — o). It was shown in [3] that
P{T* (n) = k| L{n) = m} = CEP F™(a)(1 — F(a)}*™. 3)
Taking into consideration (2),(3) and the formula of total probability we get
cm=h=—L & cppm b log™ 7
PAT () = B} = gy 5, CRF™ @1~ PP 5 (g
Let z(m) = ——2=%F)__ Using the techniques of the De Moivre - Laplace theorem

VkF(a)(1-F(a))
(see [1]) we can approximate our sum by an integral. Under the conditions

z*(m)
/k

the equality (4) can be rewritten as the expression

P{T®(n) = k} ~

=0

z(m) — oo,

N 1 7 -z log "3(kF(a) + z1/kF(a)(1 — F(a))dx
Vork(n—2) kF(a)+ zy/kF(a)(1— F(a
i (a) + 24/kF(a)(1 — F(a))

Using the substitution

y = kF(a) + z/kF(a)(1 — F(a))

we get
P{T*(n) =k} ~
~ 1 i - y kF( ))3 log“‘zy
Vark(n — 2)/kF(a)(1 - { ( 2kF(a)(1 - F(a))) W

If we are interested in funding the basic term of the expression we can reduce it to

log™%n

V2rk(n — 1)!3:(11)‘3

I
o

P{T"(n) = k} ~
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Proof of the Theorem 2. It is true that

P{A(M) =k} = § Ch oy F™(am)(1 — F(an))*P {L(n) = m}

we focus our attention on the term

=(m+k—1)..(m+1).m.(1 - F(an)).
According to (1)

An — X (m—o0) and F™(ap) — e

It follows that

Sl LIS AEe—A
P{A(n) = k}——)Z P{Ln)=m}= o
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OZET

X1, X3, ... birbirinden bagimsiz ve aym siirekli F(z) dagihim fonksiyonuna sahip
rasgele degiskenler ve a, olasihk Glglisiiniin tanim uzayinda keyfi bir nokta olsun.
X’lerin rasgele indislerinin a’ya soldan yaklastigi durum dikkate alinarak, bunlarm

limitsel davramslan arastirilmistir.
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Abstract
The discrete Fourier transform is used in many statistical inference prob-
lems. An approximation of the dicrete Fourier transform becomes very im-
portant especially in approximating the spectral density function and deriving
some distributional properties. In this study, it is shown that a similar approxi-

mation derived for stationary time series is also valid for periodically correlated
series.

Key Words: Discrete Fourier Transform, Spectral Density Function

1. Introduction

There are occasions when a pair of real-valued time series can most generally
be rega.rdéd as a single complex-valued series. In general we are faced with strictly
real-valued data. These can always be regarded as complex numbers with zero imag-
inary parts, although this may seem an unnecessary. technicality. However, certain
algebratic simplifications that arise make the required stretch of the imagination in-
terestingly appealing.

Many problems of statistical inference for time series are based on the frequency-
domain properties of the series. Spectral analysis for time series and in particular
the estimation of the spectral density function, depends heavily on the asymptotic
distribution as n — oo of the periodogram ordinates which is defined in terms of the
discrete Fourier transform of the series {Xp, X3,..., Xn-1}. Given a set of observations
{Xo,X1,...y Xn-1} the discrete Fourier transform of the series is defined by

n—1

dx(f) = = 3 X~ (1)

t=0
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where f = 0,1/n,2/n,...,(n — 1)/n ( known as fundamental frequencies or Fourier
frequencies and) ¢ = \/—1.

In this paper, we study the asymptotic behavior of dx(f) for periodically corre-
lated time series with a known period 7. A stochastic process {X;:t € T} defined
on a probability space (2, <, P) and having finite second moments for all ¢ is called
second order stationary (sometimes covariance stationary, or simply stationary), if
the following conditions hold:

1. E(X;) = p for all ¢ (that is, the mean is constant in time)

2. ‘T(h) = CO‘U(X{,XH.,-) for all ¢

and the process is called periodically correlated (PC) with period 7, if

IGE(Xg) = E(XH..,-) forall ¢

2a. Cov(Xy, X,) = Cov(Xiyry Xotr) for all ¢ and s.

Without any loss of generality, we can assume E(X;) = 0. Then (2a) reduces
to E(X:X?) = E(Xi4-X7,,). Here X* denotes the complex conjugate of X. In
the above definition, if T' is taken to be integers, then the process is called peri-
odically correlated random sequence, and if T' is taken to be all the real numbers,
then {X; : ¢ € T'} is called continuous time periodically correlated stochastic process.
The periodically correlated processes are also known as periodically non stationary
processes, cyclostationary, or sometimes periodically stationary time series. Some of
the properties of the PC processes have been discussed extensively by many author.
Gladyshev (1961) gives the necessary and sufficient conditions for a function to be
a correlation function of some periodically correlated series and provides a represen-
tation of a PC process in terms of a stationary time series. This is a very useful
representation between the PC processes and stationary time series and this will be
the key result in our study. Hurd (1989) gives a representation of a continuous time
strongly harmonizable PC process and their covariances. Troutman (1979) considers
a representation of a PC process as an infinite linear combination of independent, pe-
riodically distributed random variables. Jones and Brelsford (1967) give a method of
prediction of time series with periodic structure. Bloomfield, Hurd and Lund (1992)
look at the periodic correlation in the stratospheric ozone data. Brockwell and Davis
(1987) give a good summary of the discrete Fourier transform of a time series in the
context of Hilbert spaces and present some of its consistency properties. For a sta-
tionary time series a powerful identity is used in many statistical inference problems.
Now, we will consider a stationary time series and review some of the properties of
the identity mentioned above.

For an illustration assume that the set of random variables { Xy, X3, ... X—1} come
from a stationary first order auto regressive time series X; = ¢ X;_;1 + ¢ with |¢| < 1
and that €js are independent and identically distributed random variables with mean
0 and variance 0?. When we write the discrete Fourier transform for this series

n.--l 'n—l
f) = Z Xie et E((P.Xt 1+¢€ )C TRV
t"Q t-O
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n—1

=9 2 Xiae 4 d{f) = e dx(f) + ol ) ~ pXuae70"

This implies that when f is taken to be 0,2, 2, ... 2=1 (known as Fourier frequen-

cies or harmonic frequencies) and using the Euler’s 1dentity (e = cos(z) + ¢sin(z))
we have

(L= e de( ) = () - 9 Ko

and

Vhdx(f) = VA f) = VKo

1 — pe~2mif nl— e
This can be written as

Vads(f) = ra(f)df) + Bin, )

where a(f) = = W_g,ﬂ, and R(n = ﬁl_w;_zm-,){ﬂ_l. Using the stationarity of
X,, we can show that R(n, f) 5 0 as n — oo and y/na(f)d.(f) = Op(1).

It can easily be shown that for any stationary process we have the following

identity holds:
Vdx(f) = Vna(f)de(f) + R(n, f) (2)

where R(n, f) E0asn— oo. The periodogram ordinates of the series is defined
in terms of the discrete Fourier transform as I(f) = n|dx(f)|* and the spectral
density function is the expected value of the periodogram ordinates. When ¢s is
a sequence of independent and identically distributed random variables with mean
zero and variance 0%, we have E(n|d(f)[?) = o? and the spectral density function of
the series {X;:1=0,1,2,..,n— 1} can be approximated by S(f) = o%|a(f)|*. The
spectral density function of stationary first order auto regressive time series can be
seen to be 5(f) = +2:>2cos(2w 7y~ Thus the discrete Fourier transform of the series

{X;:t=0,1,2,...,n— 1} can be written as dx(f) & /S(f)de(f) where d(f) is the

discrete Fourier transform of the white noise sequence and the penodogram ordlnate

of the series is approximated as Ix(f) & Sx(f)I.(f). Here S(f) is the spectral density
function of the series {X; : t = 0,1,2,...,n — 1} which is sometimes written as S(f) =

5 v(R)e= "t where 4(h) = Cov(X;, Xi44) is the autocovariance function of the
h=—00

series. Qur purpose is to derive an identity similar to (2) for periodically correlated
time series.
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2. Periodically Correlated Series

As already mentioned, there is a useful representation between the periodically

correlated series and stationary series. Gladyshev (1961) gives such a representation

as
e |

E zk 2mikt/T (3)

where 2f is the kth component of a T-dlmensiona.l stationary (in the wide sense)
vector process Z; = (20,2},...,277')". Obviously, if a vector process is known to
be stationary, then each component is marginally stationary. Therefore, for each k,
(k =0,1,2,...,7 — 1) zF is a univariate stationary time series and we can apply (2)

to 2f
Vdyi(f) = vnar(f)dex(f) + B*(m, f) (4)

where R¥(f,n) 5 0 as n — co. Using the equations (1) and (3), we obtain

n—171-1
Z X -—27r:ﬁ Z sze%nfktlf —2mift
t-ﬂ t=0 k=0

71 n—1

Z Yoate ""”-Edk(f k/7) (5)

=0 =0 k=0

foreach k (k=0,1,2,...,7—1),dx(f — k/7) satisfies the identity (2), and thus from
(5) we get

Vadx() = Vi S da(f = 1)
—f;i:a(f k/r)da(f - k/7) +ZR’°(n f - ki) (6)

In the final equation R¥(n, f —k/7) 5 0 as n — oo without depending on . Since
the summand ranges from 0 to 7 — 1, the summation will go to zero in probability
because the period 7 does not depend on n. Thus we can give the following theorem
which give the identity we seek:

Theorem: If the time series {X; :t =0,1,2,...,n — 1} is periodically correlated
time series with a known period 7, then

-1

Vndx(f) = vn Ea(f k[7)dee(f — k[T) + ER"f k[7) (7)

where €* is a white noise sequence corresponding to the kth component of the -

7—1
dimensional stationary vector time series, and Y RF(f — k/7) L0asn— oo
k=0
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3. Examples

1. Assume that a set of random variables {Yp,Y,...,Y,—1} form a first order
moving average time series Y; = f¢;_1 + €; , where ¢ is a sequence of independent
and normally distributed random variables with mean zero and variance ¢?. The
autocovariance function of this moving-average series is

c3(1+6)2 h=0
%l k= £1

0 elsewhere

1r(h) =
The spectral density function can be calculated as
SY(f Z 7(}1 —2mifh __ =0 (962’"f + 1+62 +9e—21nf)

h=-

e2mif 4 o=2nif
2

We can find the spectral density function by using the discrete Fourier transform
of the series. The discrete Fourier transform is given by

= g2 (1 +6%+26 ) = o%(1 + 6% + 20 cos(27 f))

dy(f) = lﬂi Yie 2t = = Z(q + 06 1)e” ™ = dy (f) + — 05 Z €q8
n o M i=o
=d(f) + be ~amis 1 E T L Ef.=,,.~_ = (14 6e7*)d.(f) + R(n, )
= 0(f)d(f) + R(n, f)

where R(n,f) & 0 asn — oo and 8(f) = 1 + fe~2™/ _ It is easy to see that
v/nde(f) = Op(1). Defining the periodogram ordinate in terms of the discrete Fourier
transform Iy (f) = n|dy(f)|* and using the fact that E(I(f)) = o we can write the
spectral density function of the series as follows:

S(f) = o*0(f)|* = o?(1 + 0e*™F)(1 + fe~2™F) = (1 + 62 4 20 cos(27 f)) which
is the same as before.

2. Now we consider the first order periodically correlated moving average series
with period 2. The series Y; = €; + 0¢;; satisfies the conditions that the series to be
periodically correlated, since mean is constant and

GOU(YH-T: Y;-{-'r) — OOU(E‘C-I-T + 9€t+-r—1; €str T+ Gea-{-f—l)
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= Cov(e + Oy, €5 + Oe,y) = Cov(Y, Ys)

From (7), we can write

Vndy (f) \/‘Eef k/2)da(f — k/2)+ZR‘=f k/2)

k=0 k=0

and the periodogram ordinate is

Iy(f) = nldy(f) —nlzﬂf k/2)da (f — k/2)]" (8)

k=0

If ¢ and € independently distributed random variables then the identity (8)
implies that the spectral density function can be written as Sy(f) = 20%(1 + 6?).
Now, assume that the vectors

0 2
€ = (z) are ¢.2.d with ((g), [ 0;) (fz D

under the circumstance the spectral density function of the series can be calculated
as follows:

S¢() = E {nldy (P} = nE{| T 0(F - b/2)da(f - b/2)P}
=B {(8()da () + f = 1/2)da (f = 1/2))" (O )do()) +0(F = /2)da(f - 1/2))

= |0(f)*E{nldoa(£)*} + 10(f — 1/2)E{nlda(f - 1/2)*}

+n0*(£)0(f —1/2) E{d% (f)da (f —1/2)} +n8*(f = 1/2)0(f) E{ds (f —1/2)de (f)}
From the Euler’s formula a(f—1/2) = 1-fe~?"f and d. (f—1/2) = %:g(—l)‘e}e‘z“‘f*

Since

n—1 -1
E{d%(f)da(f - 1/2)} = E{l Zeo 2mfti Ee} —2mis(f— 1/2)}
t=0 s=0

n—1 n—-1n—
{Zf? Zmﬁz &(~1)° —sz} 1 EIZI 5 g’if(“’)E{e?e:}

s=0 t=0 s=0

(Z ez-m_ft) (Z( 1 s -2mfs) — 0 because Ee%zft = () for f k/n
t=0

t=0

Then the spectral density function becomes
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S(f) = 16(f)PE{nlds (f)1?} + |6(f — 1/2)*E{nlda(f —1/2)|"} = 207(1 + 67)

Since

| a(f —1/2)]2 = |1 — e 2™/ |2 = (1 — fe?™f)(1 — fe—2mf) = 1 + 62 — 20 cos(27 f)
and

la(f)2 = |1 + Be=27f |2 = (1 + 8e>™7)(1 + fe~2"F) =1 + 6% + 26 cos(27 f).

Hence, the spectral density function is

Sy(f) = 20%(1 + 62).

Conclusion

In this paper, the discrete Fourier transform approximation is applied to the
periodically correlated time series. For an illustration, periodically correlated first
order moving-average series is discussed.
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OZET

Kesikli Fourier doniisiimii birgok istatistiki sonug gikarim problemlerinde
kullamlmaktadir. Kesikli Fourier déniisiimiiniin bir yaklasim ozellikle
spektral yogunluk fonksiyonunun tahmininde ve bazi dagihm ozelliklerinin elde
edilmesinde 5nemli olmaktadir. Bu ¢alismada, duragan zaman serileri igin var olan bir

yaklasimin benzerinin periyodik zaman serileri i¢in de gecerli oldugu gosterilmistir.
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Abstract

The influence of moments on the rate of convergence of bootstrap dis-
tribution function, F}(z), of standardized arithmetic mean to its true dis-
tribution function Fy,(z) is studied in the case of i.i.d random variables
X1,X3, ..., Xn with E(X) = 0 and E(X?) < oo. It is verified that the ex-
istence of moment E|X|?>*4 is sufficient to have the rate of convergence to
be o(n~%/2) almost surely (a.s.) for 0 < 6 < 1.

Key Words: Edgeword expansion, central limit theorem, characteristic
function.

1. Introduction

Let, X3, X3, X3, ..., X, be a sequence of independent and identically distributed(i.i.d.)
random variables(r.v.’s) with a symmetric distribution function(d.f) F(z) and EX; = 0,
EX} = 0 < oo. Define, Ty = 3°7_, Xj, X = n"'Ty, S3 =n1 30 (X, — X5)%. The
distribution function of the standardized arithmetic mean will be denoted by Fi(z) =
P(T,/\/no < z). The specified r.v. of interest for the bootstrap is T,,/\/no. Let Fy(z)
denote empirical distribution function of X, X, X3, ..., X,, the distribution that puts
mass 1/n at each point. The bootstrap is the name of a variety of resampling methods,
namely, simple random sampling with replacement from the original sample. It is to
approximate the d.f. of T,/v/no by T7/\/nSn under Fy(z) where T = n~? i1 X;
Here, X§, X3, X3, ..., X2 is a random sample of size n from F,(z). We use notation F*(z) =
P(T%/\/nSy < z) for the bootstrap approximation of F,(z). The main concern of this
paper is to find the conditions by means of the moments to have

(=~}
Z n~148/2 sup| Fu(z) — Fy(z)| < o a.s.

n=1

where 0 < § < 1. This requires finding some sort of lower bound for the rate of convergence
of the bootstrap approximation Fi;(z) to the true distribution F,,(z). The studies of this
kind date back to 1960’s and its development can be found in Hall(1982). The rationale

of considering such a summation for the rate of convergence of sup, |Fyp(z) — Fi(z)| can
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be explained by the words of Baum and Katz(1965): One way of measuring the rate of
convergence of non-negative and bounded sequence {c,} is to determine r > —1 the series

Y mey BTy converges if there is any. The idea of connecting the rate of convergence to the
moments however, mainly due to Ibragimov(1966).

2. Bac-kground and Result

There are several results on the issue which are related with the result of this paper.
Freidman, Katz and Koopmans(1966), Ibragimov(1966), Heyde(1967) gave connected re-
sults on the rate of convergence of Fy,(z) to the normal distribution function ®(z).The
following result belongs to Heyde(1967):

Theorem 2.1. LetX;,i=1,2,3,... be a sequence of i.i.d. random variables with EX? =
0? < 00, EX; =0, Then

Zn'“‘* sup|Fu(z) — ¥(z)| < 0,0< 6 < 1

n=1
if and only if E|X;|?*% < 00, 0 < § < 1, EX?In(1 + | X;]) < o0, § = 0.

This result has been extended for the difference between Fy,(z) and a portion of its
(k+1) term Edgeworth expansion, Gin(z), by Galtsyan(1971) and Heyde and Leslie(1972)
independently of the other. This will be given below for the sake of completeness and to
give some idea about the possible extensions:

Theorem 2.2. In order that

Lo o]

Z n 1 EHO/2 gup| Fo(z) — Gin| < o0

n=1 L

where k is a non-negative integer and 0 < § < 1, it is necessary and for k=0 or for
distributions satisfying Cramer’s condition also sufficient that E|X;|*+5+?) < co.

The last theorem was established for the case § = 0 in both Galtsyan(1971), Heyde
and Leslie(1972)

An another exploitation of the forementioned results is to set up them as theorems to
find out the rate of convergence to zero of sup_|F(z) — F,.(z)l; the rate of convergence
of naive bootstrap approximation Fyi(z) to the d.f. of the standardized arithmetic mean
Fy(z). One result has been obtained by Hall(1988) (Theorem 3.1.i) in this direction. It is
excerpted from Hall(1988):

Theorem 2.3. Let X1,X3,X3,..., X be a sequence of i.i.d. r.v.’s with d.f. F(z) and
EX; =0, EX} = 1, and define the bootstrapped T, as Ts = n~/2Y % . X? and its d.f.
F}(z). Then,

sup  |FA(e) - {8(c) - n-lﬂgi(f . T}l s ) 0.
. —oo<r<00
as n — oo if and only if E|X;|® < co and EX? = 8.

What Hall is utilized as a technique to derive this result is called leading term approach

and it is a bootstrap counterpart of Theorem 2.2. above for § = 0 and k = 1. Next, we
will state the result of this work.
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Theorem 2.4. Let X1, X5, X3,...,Xn be a sequence of i.i.d. r.v.’s with a symmetric d.f.
F(z), EX; = 0, EXJ? = 0% < oo and Fy(z) denote symmetrized empirical distribution

function. Then,
o0

>, n-1+4 sL;p[F:(:z:) — Fu(z)| < 00 as. (2.1)

n=1
if B|X;|*** < oo, where 0 < § < 1.

Remark 1. The symmetry assumption in Theorem 2.4. on the underlying distribution is
not indispensable. It can be eliminated as it is done in Heyde(1971).

Remark 2. No further justification is needed for the existence of the second moment;
hecause, it has been shown by Athreya(1987) that naive bootstrap fails unless EX 2 <0
in approximating the d.f. of the appropriately normalized X,,.

The empirical d.f. to resample is symmetrized in order to comply with the underlying
df. F,(z). The symmetrization can be achieved by following either Efron(1979)’s or
Babu and Singh(1984)’s suggestions. According to the first suggestion the both positive
and negative values of the differences |X i(w) — X',,,| are taken into the consideration in

constructing symmetrical empirical df. Fy(z). In this case the symmetrical empirical d.f.
is formed as the following:

2n
A 1

Fofe) = & Zr(xj(w) ~X,<1).

Babu and Singh’s method(1984) corrects the skewness as follows:
a 1 - A =
Falz) = E[Fn(:c) + Fo(2z — X,)).

The first approach will be preferred in the proof of Theorem 2.4. The result of this paper is
a verification the bootstrap approximation Fy(z) of Fy(z) is as close as the approximation

supplied by the normal theory by means of sufficient moment condition ElX s |2+5 < oo for
0<o<l.

3. Proof

It will be convenient to give the main ingredients of the proof before outlining it.
Three lemmas will be stated below.

Lemma 3.1. Let Q(t/\/no) and Q*(t/\/nsy) be the characteristic functions of the r.v.’s
T./+/no and its bootstrap counterpart respectively. If E|X;| < co then

sup{|Q*(t/v/nsa) — Q(t/v/no)| : [t| < VAoM} = o(1)
a.s. as n — oo for a real number M > 0.

The proof of the lemma is made by combining the discretization method given by
Babu and Singh(1984) and Lemma 4.2 of Lahiri(1989). This lemma is used for the proof
of Lemma 3.2 in the sequel , and given as:
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Lemma 3.2. Let X1, X5, ..., X, beasequence of i.i.d. random variables with a symmetric
df. F(z) and EX; = 0, E|X;|” < oo for a real number r > 2. Let &} denote sth
order cumulants of the X} with the symmetrized empirical d.f FX(z). The characteristic
function of r.v. X} — X, can be written as

Q°(t) = evm SFRHITT O

as n — oo Here, v*(t) = o(1) a.s. ast — 0, n — oo and there exist € > 0 small enough for
which |y*(t)] # 0 a.s. n — oo. Under the same assumptions, the characteristic function
can be represented as

* : (Zt)’ * T A%
Q)= —ru +IB(®)
s=1
a.s. asn — oo where p} is the s th order expected value of the r.v. X7 — X, and similarly

|,6*(t)l = 0(1) as ast— 0andn — co.

The detailed proof of the lemma can be found in Karabulut(1995). It is a modified
form of Theorem 1.6.1. of Ibragimov(1966) or Heyde and Leslie(1972).

Lemma 3.3. If 52 — 02 and 0 < u < /nS,, then
le"%"zns'zi - e_k“z“"z' =0o(1) a.s.

It is a simple result of Proposition 1.2.16. of Rao(1987)
Now we are ready to give the outline of the proof of Theorem 2.4. of this paper. It

will follow the line that of Heyde (1967). That method is based on the development made
by Ibragimov(1967). First, note that

m:pIFn(z) — Fi(z)| < sgp'Fn(a:) — &(z)| + Sl;p'F:(m) — &(z)|.

The result related for the first term on the right hand side provided by Heyde(1967), so it
is enough to consider the results related with the second term on the right hand side. The
outline of the proof begins with the verification of the following lemma.

Lemma 3.4. Let X, Xo,..., X, be a sequence of r.v.’s as in Theorem 2.4. and v*(t) as
defined in Lemma 3.2 The series in (2.1) converges if and only if

/A 1Mdu < 00 (3.2)

ults

as asn—ooforareal A>0and0<é<1.

Using this lemma, it will be shown that (3.2) is equivalent to the existence of the
moment condition of Theorem 2.4..
First assume that the series in (2.1.) is convergent, i.e.

Z n~ ¥/ 25up| FA(z) — &(z)| < 00 a.s. (3.3)

‘n=1
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Now, it will be shown that (3.3) and

oo 1
t 2 2
n~116/2 / g —e Pt Pt < 00 3.4
; . | n_( \/Hsn) | ( )
a.s. are equivalent. By employing Parseval relation(see Feller(1971)) to (3.4) one can have
Zn—1+5/2][ Q* _ __e—t2/2)e—t2/2dt|

_E “1+5/2|\/_/ (Fr(z) — ®(z))ze™" ﬂdx‘

n=1
< En Lhe/2 sup| w(z) — ®(z)|

When Mill ratio is used the equivalence of (3.3) and (3.4) follows. Because of the symmetry
assumption in Lemma 3.2, the sign of the integrand in (3.4) does not change in intervals

(0,€) or (—¢,0), and thus in the interval 0 < ¢/4/nS, < €. If some manipulations is made
on the integrand of (3.4) to be able to use the inequality

|1 - e" < |z|e!’|

and using the fact that we can find a constant (possibly random) ¢ > 0 such that

<1/2 as. (3.5)

o<t/,/‘s <ec h (J_S
as n — oo. Using (3.5) and the transformation u = t/1/nS,, (3.4) becomes

oo

1/v/nSa
En%(l"'"a)_/ ,S'alu |v*(u)|du < o0 a.s. (3.6)
0

n=1

Siuce the sununand in (3.6) is monotonically decreasing, by Lemma 3.2 |y*(u)| — 0 a.s.

as u — 0 in addition to decreasing upper limit of the integral. The summation in (3.6)

can be changed to integration by the integral test theorem as in Apostol (1974). To do so

n is replaced by z > 1. Let [x] denote integer valued function and remember that [:c] £

z < 14 [z]. Also it is possible to find a constant ¢ > 0 such that (n+1)7(1+9) < en? $01+9)
Therefore, by making use of these results it is seen that

x 1/\/Z5
/ g3(1+9) (f u? |‘y*(u)[du) dz
0 0

f 230+ / e u?|y*(u)|du) dz

1/v/nSa

<ndte0 [T e

n"l

n—l
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and

o 1//Z5n
/ 3:’5(1"'5)([ u?ly*(u)|du)dz < co a.s.
1 0

When w tends to infinity we should have

2w 2 1/\/55!1
/ I§(1+6)(/ u?|y*(u)|du)dz — 0 a.s. (3.7)
w 0

The integration in the parenthesis is monotonically decreasing. Therefore, the transforma-
tion v = 75‘1—"5— after x is replaced by 2w in the upper limit of the integral gives that

1 ¢ "
m](} w?|y*(u)|du — 0

as v — 0. If the partial integration is performed to (3.7) after making transformation
v = 7—— and taking A = S;;! at the end we obtain (3.2).

For the sufficiency we will begin with the use of Berry- Esseén Lemma 16.3.2 of
Feller(1971). To do so first, take the integral limit as T = B4/nS, with the constant
B > 0 and make use of Lemma 3.2 again to choose a constant c, (possibly random)
satisfying 0 < ¢ < B. Hence,

o 2
Qa) - e < S (38)

t
7S, )| a.s
The second term on the right hand side of Berry - Esseén inequality can be neglected
because of o(n~1/?) a.s.. Replacing (3.8) in (2.1) by using the symmetry property of (3.8)
and omitting all the constants we find the inequality

2 \/‘ES“
—1+,/ “(t)”e dt < -1+z/ Hhy () dt.
2;1 | | Zn A Ir*( \/ﬁsﬂ)l

By changing variable, u = ’:Sn and changing the order of summation and integration, the

positiveness of all terms permits this, the right hand side of the last inequality becomes

o T * N —t2/2
Zn'“‘% / IQ“(t) i |dt < .5'2_/ hr (u)|[z nie—1s “Si]du
n=1 = ¢ n=1

An Abelian theorem in Apostol(1974) will be utilized with the random terms to simplify
the right hand side of the last inequality above. Now, Lemma 3.3. is invoked to make sure
that the random sum is finite. Combining all the forementioned results together with the

fact that 1 —e™® > ¢ —2%/2 and 1/45%u® < 1 for n large enough we can find a positive
constant ¢ such that

0o T *(4) _ o—t2/2 c *
7 t o u(+d)(1 - 15242)(1+3)

n=1
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The result follows after taking partial integration of the right hand side of the inequality
and using (3.2).

The next part of the proof will be completed by showing that (3.2) is equivalent to
the existence of the moment with the stated order in Theorem 2.4..

By replacing (¢*/2)|y*(t)| in (3.2) with its equivalence in Lemma 3.2 and remembering
that Fy,(z) is symmetric, the following calculation is possible. Assume that ¥*(t) < 0 with-
out losing any generality and make use of that (cosz —1+22/2) > 0 (see Ibragimov(1967)
or Hall(1982)) to reach the following

2 p 1(1+8) $+(3+86)

O, /cf_ (R 1 R isrelyib(e) |

C(cosw— 1+%£§%§1ﬁ) .

a.s. as n — oco. After applying partial integration two tlmes to the integral on the right
hand side

c(X X) ,-—X)

n Zl (2 + 5)C(z+6) )

—(X; —X») Sinc(xj—f(,,) £ c(x,- _f_{“)z

Sn A 32
al 21 6)c@ )
HX;-X
N ( ¢ (X; — Xn)*(1 - cos MK n) oA ))dt)
@+ 8)cE

is obtained. The verification of the existence and finiteness of integral placed on the
most right will give the necessary and sufficient condition which we seek. By making
transformation v = {(X; — X,)/S, we get

elX;=Xnl/Sn 1 _ cosp
(2+6) _
I3 g | el
J-—-

The integral is finite and it can be neglected. Hence at the end, the integral in (3.2) is
finite a.s. if the summation is finite a.s.. It is to be finite we should have

—Z|X %" - B|x;| 0 <

7=1

by the strong law of large numbers. Thus, it is true that E|X;|**®) < oo is sufficient to
have (2.1).
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f)zet

Birbirinden bagimsiz ve aym dagiimh ve EX = 0, EX? <
oo olan X1, X3, ..., X, rassal degigkenlerinin aritmetik ortala-
malarina ait bootstrap dagilim fonksiyonu Fj(z)'in yine bu
rassal degiskenin dagihmi Fj(z)’e yakinsamasinda beklenen
degerlerin etkisi aragtirildi. Yakinsama hizinin hemen hemen
heryerde o(n=%/2) olabilmesi igin 0 < § < 1 olmak iizere
E|X|?*% < 0o olmasmin yeterli oldugu gosterildi.
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Abstract

This paper presents a level crossing predictor for Gaussian ARMAX
processes, which is optimal in the sense that it minimizes the number of
false alarms for a given probability of detecting the level-crossings. It is
applied to real data for predicting and warning for high water levels at the
Danish coast in the Baltic Sea. The optimal alarm system is shown to work
better than a simpler and more conventional alarm system. A method
to optimally predict the crossings also when the external signals are not
known is presented. In this particular case most of the variability of the
predictions are due to system noise, so the performance of the system with
predicted external signals are almost identical to the performance when
the external signals are known. A smaller simulation study shows that the
water level process is hard to predict and that the choice of model can be
rather important.

Key Words: level crossings, flooding alarm, catastrophe prediction,
optimal alarm, ARMAX process.

1. Imtroduction

A flooding incident can be disastrous, especially if people are not warned. Hence, in many situations
it is important to be able to give an alarm some time before the incident occurs. It is also important
to give as few false alarms as possible, but still find a sufficient number of the flooding incidents.

In a more general setting, the problem is to predict level crossings, catastrophes, of a stochastic
process a sufficient time in advance. This catastrophe prediction problem was treated by de Maré
[2] and Lindgren [3], and a definition of the optimal catastrophe predictor was given as the predictor
that gives a minimum number of false alarms for a given detection probability. This idea was further
treated in Svensson, Holst, Lindquist & Lindgren [7], and leads to an explicit catastrophe predictor
for Gaussian ARMA processes with constant catastrophe level. Since the construction of the optimal
catastrophe predictor requires quite 2 large amount of calculations, two suboptimal predictors were
also introduced. In Svensson & Holst [6] the technique was extended to cover both ARMAX and
SETARMAX processes with a deterministic but changing catastrophe level. This made it possible to
use the optimal catastrophe predictor on real data, describing water levels in the Baltic Sea, presented
in this paper. Modelling of the water levels in the Baltic Sea is treated in Berntsen [1], Nielsen [4] and
Spliid & Nielsen [5]. A complication with ARMAX processes is that the external signals might not be
known in advance, which means that they have to be predicted too. An idea how this can be treated
in the same framework as above is also included in this paper and applied to the data sets used.
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2. The data set

The data sets used in this paper are from 1978, 1979 and 1980. They consist of the following mea-
surements.

Tocation Water | Head | Side | Air | Temp.
level | wind | wind | pressure

Korser X

Rgdbyhavn X

Gedser X

Visby X

Kadetrenden/ Maribo (78) X X X X

Mgn-Sydgst lightship (79,80) X X X X

Mgn lighthouse: X X X X

Christiansg lighthouse X X X X X

Hammer Odde lighthouse: X X X X

Only three of these signals are used in the final model describing the water level at Rgdbyhavn.
They are the water level at Rgdbyhavn, the head wind at Christiansg lighthouse and the air pres-
sure at Kadetrenden/Maribo (78) or Mgn-Sydgst lightship (79,80). The original data sets contained
measurements every hour, but since the process is oversampled, only one sample per 3 hours was
used for modelling the water level. Before they have been used for modelling, the mean value
using data from all three years has been subtracted. However, the catastrophe levels used later
are related to the original data. In Figure 1 the water level at Radbyhavn is shown for the data
set from 1978. The complete data sets with a short description can be found at the address:
htip://www.maths.lth.se/matstat/staff/anderss/data/data.html.

Water level at Rodbyhavn, 1978
150 T T T T T T T

100

=% 50 100 150 200 250 300 350 400

Figure 1: The water level at Rgdbyhavn during the period that is covered by the data set from 1978.
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3. The models

The water level at Rgdbyhavn has been modelled as ARMAX and SETARX processes, denoted X,
with two external signals, denoted u; ; and ug ;. The structure of an ARMAZX(p,q,m1,m2) process is

Xi+arXea+...+ GPX¢_p =
broure+ .-+ b Uttr 2ozt ...+ b2 Uz, +Co8 + ... T+ Crt—g,

or shorter
A(z™Y) X, = By(z7Yuge + Ba(z 7 Vuge + C(27 ey,

where {e; }$2_, is white noise and e; is uncorrelated with X, u1 s and uz s for s < ¢. It is furthermore
assumed that e; € N(0,1).
After trying a number of different models three were chosen and estimated on the data from 1978,

and optimal alarm systems were calculated. The models are ARMAX(2,1,1,1), ARMAX(4,2,1,1) and
SETARX(2;2,2;1,1). The noise is assumed to be independent and Gaussian with variance 1.

The ARMAX(2,1,1,1)-model is

A(z™') = 1.0000 — 1.2794z~! + 0.378622
C(z™') = b5.5678 + 3.1836z7"

Bi(z7') = -—0.0072z7"

By(z7') = 0.0232z7!

The empirical density functions for the one and two-step prediction error for the data set from 1978
are shown in Figure 2, together with the normal density function, and normal probability plots. It
can be seen that the residuals have slightly heavier tails than in the normal distribution. However, in
spite of these deviations the normal distribution has been used for modelling and calculation of the

alarm systems. It seems to work rather well.

Normal Probability Plot Normal Probability Plot

[=1=1= =Tt

B & 5 BRiEzER

Probability

O moo o

05 |-
0% +
o R e

H
[=]

One-step Prediction Error Two-step Prediction Error

Figure 2: The one and two-step prediction errors for data78, when modelled as ARMAX(2,1,1,1).
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The ARMAX(4,2,1,1)-model is

A(z™') = 1.0000 — 1.7227z~ ! + 1.7602z % — 1.5950z* + 0.6652z ~*
C(z~') = 5.1942+ 0.4259z" + 3.7263z2

Bi(z”') = —0.0074z!

Ba(27') = 0.0225z7L.

The SETARX-model is composed of two ARX-models where

A(z7') = 1.0000 —1.5280z"" + 0.6137z~2
C(z™Y) = 6.0661
Bi(z™!) = —0.0049z7!
By(z~') = 0.0155z7
is used when the process value X; 5 < 30 and
A(z™') = 1.0000 — 1.4226z~* + 0.743422
C(z™') = 6.0661
Bi(z7') = 0.0202z71

By(z7') = 0.1312z71
when the process value X;_» > 30.

In cases when models for the external signals are needed these signals have been modelled as
AR processes. The model for the head wind at Christiansg lighthouse is an AR(3) process with the
parameters

Ay(z7') = 1.0000 — 1.7042z! + 0.5411z~2 + 0.1713z 3
Ci(z7) = 7.7460

and the model for the air pressure at Kadetrenden/Maribo (78) or Mgn-Sydgst lightship (79,80) is an
AR(1) process with the parameters

As(z71) = 1.0000 - 0.9657z*
Ca(z™') = 27.8675.

Tt could be considered using one model for the air pressure at Kadetrenden/Maribo (78) and another
model for Mgn-Sydgst lightship (79,80), but since the locations are rather close to each other, the
same model has been used. This also requires fewer calculations.

4. The optimal alarm system

The optimal alarm systems used in this paper are optimal in the sense that they minimize the prob-
ability of false alarms for a given probability of detecting the catastrophes. Optimality is reached by
the alarm system defined through the likelihood ratio,

dPye—k) (¥|C})
dPy (e—k) (y|C:)

where Y (¢) denotes the available information at time ¢, C; is the event that a catastrophe occurs at
time ¢ and C; is the complementary event that no catastrophe occurs at time ¢. This condition can
be simplified, so that the alarm system can be based on only the predictor (Z¢—1,Z:) of the process
X, at times ¢ — 1 and ¢, instead of all the available information Y (¢). The result is

< constant,

P(C|2¢-1,24) > B,
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which was shown in Svensson et al. [7], to be the optimal alarm system for ARMA processes with a
constant catastrophe level. It is then possible to calculate the alarm region in advance, which makes
the alarm system rather fast. A typical alarm region in the (%:—;, Z:)-plane is shown in Figure 3. The
model is the ARMAX(2,1,1,1) described above, with the influence of the external signals subtracted.
The predictor is using 6 old process values and the prediction horizon is 2. This idea was further

Alarm region, cat(t-1)=0, cal(t}=0
T T

xhai{l)

-40 -30 -20 -10 o 10 20
xhat(t-1)

Figure 3: A typical optimal alarm region for an ARMA-process with catastrophe level 0 at times ¢t —1
and ¢ (the region above the solid line). The model is the ARMAX(2,1,1,1) described above, with
the influence of the external signals subtracted. The predictor is using 6 old process values a.nd the
prediction horizon is 2.

developed in Svensson & Holst [6], to cover ARMAX and SETARX processes when the external
signals are known and the process is stationary.

5. Alarm system using predicted external signals

Since predictions of the process values are needed in the level crossing predictor, also predictions of
the external signals are needed when the external signals are not known in advance. In case of known
external signals, the effect can be included in the catastrophe level, giving a catastrophe level that
changes through time, see Svensson & Holst [6]. However it is not that simple in case of stochastic
external signals. A few assumptions on the signals have to be added in order to get an explicit level
crossing predictor.

If we assume that the external signals and the process are stationary Gaussian processes, the
covariance of the process value predictor Cov(#;—1,%:) will include both the effects of the process
noise and the external signals.

Suppose the process can be written,

Az )X, = Bz Y)u+C(z Ve
A1z Ny = Ci(z7Hwe.

Due to linearity, X; can be decomposed into one part, X, describing the influence of the external
signals and one part, X, describing the influence of the system noise.

X = Xu.t"'xe.t
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A(z"l)X,,t = C(z’l)e;
A(z'l)Al(z'l)Xu,t = B(z‘l)Cl(z_l)wt.

The same deductions can be done for the predictions, leading to
X, = j{u,t +Xe,£-

If the noise processes e; and w; are assumed to be independent, the covariance of the predictions
5:;._1,53; is

Cov(Zi—1,8:) = Cov(Eyg—1,%ut) + Cov(Eei—1,Fe,t)-

This means that if X, can be optimally predicted, the technique presented in Svensson & Holst [6],
can still be used and thus the resulting critical levels for the stochastic part of the process will be

[Leat(t — 1)t — k), Leat (2]t — k)] = [L(t — 1), L()] — [Zu(t — 1|t — k), Zu(t]t — k)] .

The catastrophe level L(t) for the original process, is assumed to be deterministic and known, and
need not be predicted. The part of the process that is due to the external signals, influences the mean
value of the process and will thus enter as an addition to the catastrophe level. Predictions for times
t — 1 and ¢ are needed and the information is available up until ¢ — k.

One model, the ARMAX(2,1,1,1)-model with the external signals modelled as AR(3) and AR(1) as
above, have been tested and the results are shown and compared to the other alarm systems in Table 1,
Table 2 and Table 3. The alarm system works well for the data set that was used for estimating the
model, but poorer for the other two data sets. The reason for this could be that the fixed models
for the process and the external signals are not totally correct. This is similar to the alarm system
where the external signals are not predicted, which is expected since almost all the variability is due
to process noise.

In order to check how much the departures from normality and model type influence the per-
formance, a smaller simulation study based on the ARMAX(2,1,1,1) model above with the external
signals simulated as AR(3) and AR(1), was also performed. It shows that the process is very hard
to predict, and will give a large amount of false alarms if a high detection probability is desired. An
alarm is denoted false if it does not predict the catastrope exactly in time. The influence of the inputs
are rather easy to predict when the prediction horizons are short, leading to almost the same alarm
system as for known inputs. The variability of the predictions of process values is almost entirely
due to the influence of the system noise, e;. The results from the simulation are shown in Table 1.
When the wrong model is used the detection probability can become a lot lower than calculated.
This is obvious, especially for the SETARX model. The performance would have been better if the
models had been estimated on the simulated data and not on the water data. Worth noting is that
the maximal detection probability for the naive-naive alarm system is 0.29, so it is not comparable to
the other alarm systems.

Alarm system Alarms Catastrophes
False Total | Detected | Total
best naive-naive 628 (0.92) 685 | 36 (0.29) 195

ARMAX2111pred (70%) | 1676 (0.93) | 1808 | 132 (0.68) | 195
ARMAX2111 (70%) | 1676 (0.93) | 1808 | 132 (0.68) | 195
ARMAX2111 (90%) | 3218 (0.95) | 3400 | 182 (0.93) | 195
ARMAX4211 (90%) | 2860 (0.95) | 3019 | 159 (0.82) | 195

SETARX (90%) 4119 (0.98) | 4218 | 99 (0.51) | 195

Table 1: Results for the naive-naive alarm system, compared to the optimal alarm system using
three different process models, and one with predicted external signals. Simulated data from the
ARMAZX(2,1,1,1) process has been used in all the simulations. The alarm systems have been con-
structed to give the detection probabilities in paranthesis if the data comes from the models abaove.
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6. Results

The optimal alarm systems for the different models were compared to some simpler alarm systems.
The simplest alarm system, called the naive-naive alarm system, gives an alarm when the process
value k steps before a possible catastrophe crosses a certain level. This alarm system did work, but
not as well as the optimal alarm systems. The most important disadvantage is that the naive-naive
alarm system will have a2 maximum detection probability, that cannot be exceeded and is rather low.

Another simple alarm system models the process and gives alarm when the predicted process values
crosses a level, that was determined from the data sets. This alarm system did not work, hence it has
not been included in the tables below.

The optimal alarm system has a nonlinear alarm region, that changes depending on the catastrophe
level and the process values. This makes the optimal alarm system rather complex. In many cases
when the performance is important this is the alarm system that ought to be used. In other cases
it might be good to compare a proposed simpler alarm system to the optimal in order to check how
close to the optimal the simpler alarm system is.

The parameters describing the process have all been estimated on the data set from 1978, and then
tested on all three data sets. The alarm level for the naive-naive alarm system has been optimized
over the three data sets together. As can be seen in Table 2 the naive-naive alarm system has a rather
low maximal detection probability, and thus is not possible to use if a high detection probability is
required. The performance of the optimal alarm systems for these three data sets does not differ
very much from each other and they have almost the same number of false alarms. The detection
probabilities used are shown in parenthesis. They were in most cases set to 90%. ARMAX2111pred
is the alarm system where also the external signals are predicted.

The optimal alarm systems with the highest detection probabilities have quite a few false alarms
according to the strictest definition, where an alarm is considered false if it does not predict the
catastrophe exactly right in time, but it could be questioned if all of these should be considered false.
In Figure 4, it can be seen that a few of the so called false alarms are early alarms, or alarms given
when the levels are still critical. In case of early alarms, at least for one or two steps early which
means 3-6 hours early, the additional cost should not be too large. Also, the confidence in the alarm
system will not be damaged too much. In the case of alarms when still over the critical level, it means
that it will take a little longer to get back to normal state from the emergency state, caused by the
process being alarmed. The cost should be small compared to the cost of the catastrophe. If these
ideas, i.e. one and two steps early alarms are counted as correct alarms and alarms given when in
catastrophe state are not counted at all are taken into account, Table 2 will turn into Table 3.

The alarm level for the naive-naive alarm system is optimized over all three sets. It only reaches
a total detection probability of approximately 40 %, which is far below the detection probabilities
reached by the different optimal alarms. However, a higher detection probability will inevitably lead
to more false alarms, and that is a trade-off that has to be made in each individual case.

In Figure 5 close-ups at some different times are shown to give an explanation for the rather
high rate of false alarms. 95% one-dimensional confidence intervals based on the one and two step
predictions are also shown. The process is rather hard to predict which leads to wide confidence
intervals and a high number of false alarms if a high detection probability is wanted.

7. Conclusions

This paper has presented an optimal alarm for processes described by linear or piecewise linear pro-
cesses applied to prediction of high water levels in the Baltic. The optimal alarm technique gives as
few false alarms as possible for a given probability of detecting the catastrophes.
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Alarms and catastrophes for ARMAX(2,1,1,1) and data78
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Figure 4: Part of the data set from 1978. The detection probability was set to 90 % and the prediction
horizon was set to two steps. The circles denote the actual catastrophes i.e. the crossings of level 100,
and the stars show the predicted catastrophe times.
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Data are collected in the southern part of the Baltic and high water levels in Rgdbyhavn in Denmark
are to be predicted.

The models that are used to describe the water levels all contain external variables, with future
values that are unknown at prediction time. This means that also these external signals have to be
predicted, which influences alarm levels and probabilities for detection and for alarm. Three different
models for the water level have been considered.

The optimal alarm systems presented in the paper work well, and have the ability to reach any
specified detection probability. The more conventional alarm algorithm that the optimal alarm is
compared to, i.e. the alarm is sounded when the process reaches a certain level, has a maximal
detection probability which in these cases is rather low. This means that if a high detection probability
is required, the optimal alarm system has to be used. A drawback with a high detection probability
is that the number of false alarms also becomes rather large, even though the optimal alarm systems
give a minimum of false alarms. In particular the SETARX model for the water level shows this
balance, it has a fast response and detect almost all catastrophes on all datasets, but at the expence
of giving a high amount of false alarms, in particular on a dataset (from 1980) to which the model

was not adapted.

A possibility to lower the number of false alarms is to find a better model, e.g. by using more
external information for the predictions or by taking the timevariations of the water level process
into account. Furthermore, in the flooding data case the prediction errors are not exactly normally
distributed, which introduces further approximations in the calculations.
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Alarm system Alarms Catastrophes
False | Total | Detected | Total

Data78 and cat=T70

naive-naive (44) 2 (1.00) 2| 0(0.00) 2
ARMAX2111pred (70%) | 3 (0.75) 4| 1(0.50) 2
ARMAX2111 (70%) 3 (0.75) 41 1(0.50) 2
ARMAX2111 (90%) 5 (0.83) 6| 1(0.50) 2
ARMAX4211 (90%) | 4 (0.80) 5| 1(050) 2
SETARX (90%) 9(0.90) | 10| 1(0.50) 2
Data79 and cat=70
naive-naive (44) 6 (0.86) 7| 1(0.50) 2
ARMAX2111pred (70%) | 6 (0.86) 7| 1(0.50) 2
ARMAX2111 (70%) | 7 (0.88) 8| 1(050) )
ARMAX2111 (90%) |15 (0.88) | 17| 2(1.00) 9
ARMAX4211 (90%) | 14 (0.88) | 16 | 2 (1.00) )
SETARX (90%) 28 (0.93) 30 | 2(1.00) 2

Data80 and cat=T0

naive-naive (44) 13 (0.80) 16 | 3 (0.50) 6
ARMAX2111pred (70%) | 26 (0.84) | 31| 5(0.83)| 6
ARMAX2111 (70%) | 26 (0.84) | 31| 5(0.83)| 6
ARMAX2111 (900%) |64 (093)| 69| 5(083)| 6
ARMAX4211 (90%) |48 (091) | 53| 5(0.83)| 6
SETARX (90%) 71(093)| 76| 5(083)| 6

Data78 and cat=100

naive-naive (70) 1 (0.50) 2| 1(0.33) 3
ARMAX2111pred (70%) | 0 (0.00) 1| 1(0.33) 3
ARMAX2111 (70%) | 0(0.00)| 1| 1(033)| 3
ARMAX2111 (90%) | 5 (0.62) 8| 3(1.00) 3
ARMAX4211 (90%) | 5(071)| 7| 2(067)| 3
SETARX (90%) 4 (0.57) 7| 3(1.00) 3
Data79 and cat=100
naive-naive (70) 1 (0.50) 2 | 1(1.00) 1
ARMAX2111pred (70%) | 2 (0.66) 3| 1(1.00) 1
ARMAX2111 (70%) | 2 (0.66) 3| 1(1.00) 1
ARMAX2111 (90%) | 5(0.83)| 6| 1(100)| 1
ARMAX4211 (90%) | 4 (0.80) 5| 1(1.00) 1
SETARX (90%) 8 (0.89) 9 | 1(1.00) 1
Data80 and cat=100
naive-naive (70) 6 (1.00) 6 | 0(0.00) 1
ARMAX2111pred (70%) | 9 (1.00) 9| 0/(0.00 1
ARMAX2111 (70%) | 9(100)| 9| 0(0.00) 1
ARMAX2111 (90%) | 17 (1.00) | 17| 0 (0.00) 1
ARMAX4211 (90%) | 15 (1.00) | 15| 0(0.00) 1
SETARX (90%) 17 (0.94) 18 | 1 (1.00) 1

Table 2: Results for the naive-naive alarm system, compared to the optimal alarm system using three
different process models, and one with predicted external signals. The stricter definition of correct
alarm is used.
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Alarm system Alarms Catastrophes
False Total | Detected | Total
Data78 and cat=70
naive-naive (44) 0 (0.00) 1| 1(0.50) 2
ARMAZX2111pred (70%) 1(0.33) 3| 1(0.50) 2
ARMAX2111 (70%) 1 (0.33) 3| 1(0.50) 2
ARMAX2111 (90%) 1 (0.25) 4| 1(0.50) 2
ARMAX4211 (90%) 2 (0.50) 4 | 1 (0.50) 2
SETARX (90%) 5 (0.62) 8| 1(0.50) 2
Data79 and cat=70
naive-naive (44) 5 (0.83) 6| 1(0.50) 2
ARMAX2111pred (70%) | 6 (0.86) 7| 1(0.50) 2
ARMAX2111 (70%) 7 (0.88) 8| 1(0.50) 2
ARMAX2111 (90%) 13 (0.87) 15 | 2 (1.00) 2
ARMAX4211 (90%) 13 (0.87) 15 | 2 (1.00) 2
SETARX (90%) 25 (0.86) 29 | 2 (1.00) 2
Data80 and cat=70
naive-naive (44) 11 (0.79) 14 | 3 (0.50) 6
ARMAZX2111pred (70%) | 20 (0.71) 28 | 5 (0.83) 6
ARMAX2111 (70%) 20 (0.71) 28 | 5(0.83) 6
ARMAX2111 (90%) 52 (0.85) 61 | 5 (0.83) 6
ARMAXA4211 (90%) 38 (0.81) 47 | 5 (0.83) 6
SETARX (90%) 60 (0.85) 71 | 6 (1.00) 6
Data78 and cat=100
naive-naive (70) 1 (0.50) 2| 1(0.33) 3
ARMAX2111pred (70%) | 0 (0.00) 1| 1(0.33) 3
ARMAX2111 (70%) 0 (0.00) 1| 1(0.33) 3
ARMAX2111 (90%) 2 (0.33) 6| 3(1.00) 3
ARMAX4211 (90%) 2 (0.50) 4 | 2 (0.67) 3
SETARX (90%) 0 (0.00) 6 | 3(1.00) 3
Data79 and cat=100
naive-naive (70) 1 (0.50) 2| 1(1.00) 1
ARMAX2111pred (70%) | 1 (0.50) 2 | 1(1.00) 1
ARMAX2111 (70%) 1 (0.50) 2 | 1(1.00) 1
ARMAZX2111 (90%) 4 (0.80) 5| 1(1.00) 1
ARMAX4211 (90%) 4 (0.80) 5] 1(1.00) 1
SETARX (90%) 5 (0.62) 8 | 1(1.00) 1
Data80 and cat=100
naive-naive (70) 5 (1.00) 5| 0 (0.00) 1
ARMAX2111pred (70%) | 8 (1.00) 8 | 0(0.00) 1
ARMAX2111 (70%) 8 (1.00) 8 | 0 (0.00) 1
ARMAX2111 (90%) | 16 (1.00) 16 | 0 (0.00) 1
ARMAX4211 (90%) 14 (1.00) 14 | 0 (0.00) 1
SETARX (90%) 16 (0.94) 17 | 1 (1.00) 1
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Table 3: Results for the naive-naive alarm system, compared to the optimal alarm system using three
different process models, and one with predicted external signals. The alternative definition of correct
alarm is used.

Bu galismada Gaussian ARMAX siiregleri i¢in yanhis alarmlarin sayilarinin mini-
mize edilmesi anlaminda optimal kestiriciler incelenmistir. Sonuglar Baltik
Denizi’ndeki su seviyelerinin kestirimleri igin uygulanmis ve burada verilen optimal

alarm sisteminin daha basit sistemlere gore daha iyi sonug verdigi gozlenmistir.
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Abstract

This paper presents a new identity related to permutations. The identity
is considered to be a useful tool in combinatorial analysis and hence in the
algebra of some probability distributions.
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Introduction

A new identity is obtained on the basis of results of Henkel and Lacki (1986).
This new identity seems to be useful in computation of sums of factorials. These
sums are obviously well-known and the way of calculation of these sums are ob-
tained in terms of Bernoulli polynomial coefficients and Bessel differential equa-
tions (c.f. , e.g. Prudnikov, Brickov, Marichev (1981),p.596) and hypergeometric
families (c.f. Damjanovic (1986)). However, the new identity we developed has
~some advantage over the earlier-mentioned approaches in that calculations are
carried out in an easier and less time consuming manner.

Given the positive integers n and k, it is well known that one can get the
following sums which we come across in probability distributions such as Binomial,
Poisson and many other discrete probability distributions.

n n n n
Z k', Z k2, Z B,.. Z k™ where m is a positive integer m > 1.
k=1 k=1 k=1 k=1
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However, the derivation of these sums are cumbersome. There are closed

forms for calculations of the sums )5 k. f: k3, f} k3, but for large n, even the
k=1 k=1 k=1

computers have difficulties in calculating the sums f: k™ for large n and m i.e,

k=1
m > 3 and for large n. However, using the results of the theorem given below, any

sum in the form of f} k™ can be easily calculated for any n and m. An identity is
k=1
obtained below, by means of which these sums can easily be derived by utilizing

the equation 2" — 1 = 0. Through the factorization techniques, 2™ — 1, can be
written as

—1=(z-1)(1+z+22+...+2"7). (1)
Similarly, given the positive integers m, k and complex number w = e/ |
(1) and the Euler’s identity (e* = cos(z) + ¢sin(z)) yield the following result

n—1

n=1+) 2(1-v*)7, (2)

k=1

which can be obtained through routine calculation. The identity to be discussed
in the following section can easily be applied to this problem, so we may get the
result quickly.

2. The Identity

As discussed above, there is a useful identity which is often used in many
mathematical and statistical problems. Hence, we state the following theorem

Theorem. For a complex number z and positive integers n and m, the fol-
lowing identity holds:

m n—1m-1 n—-1m

[I(n =)0 = (m+1) 3 T] (k=)™ + (2 = 1) 3 JI(k — )z~

j=0 k=0 j=0 k=0 3=0
where m and n are positive integers. From this equations we can find

n n n n
1. Lk, YK Y K., Y k™, without doing excessive computation.
k=1 k=1 k=1 k=1

n-1
2.n=1+ kz 2(1 — w*)~! where n and k are positive integers and w =
=1

exp(2nik/n).
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Proof. Consider the equation z"—1 = Q or 2"—1 = (2—1)(1+2+22+...+2"1).
We may write this equation in a compact form as

n—1 n—1 n—1
-1=(z-1)Y. =Y F1-Y 7 (3)
k=0 k=0 k=0

Now taking the first derivative of (3) with respect to z, we have

n—1

n—1
—122 +z—lezk' —Zk-l-l Zkzk_ (4)
k=0

Taking the first derivative of (4) with respect to z, we obtained

n-1

n—1
n(n—1)z Zkz"1+2kz“ (z=1)3 k(k —1)252
k=0

which, after some simplifications, boils down to

n(n—1)z""?% = 25 k2" 4 (2 - I)E k(k —1)z%2, (5)
k=0 k=0

Again taking the first derivative of (5) with respect to z, one can obtain

n(n—1)(n—2) “‘3—-2Zkk 1) “+Zkk 1) “+Zkk 1)(k—2)z*-

=0 k=0
n—1
_Ekk+1 Zk —1)(k - 2)z
n—1 -1
n(n—1)(n—2)2"3 =33 k(k-1)"?+ (2 Zk —~1)(k —2)z*3 (6)
k=0 =0

and taking the first derivative of (6) with respect to 2, we then have

n(n —1)(n — 2)(n — 3)24 = 45 Bk — 1)(k — 2)2+-2

He=1)T Kk -1k =2)(k - 3) = bk +1)(k- D (1)

= X k(k — 1)(k - 2)(k - 3)2**

79



A USEFUL IDENTITY IN COMBINATORIAL ANALYSIS

Finally if we take the repeated derivative of (7) with respect to z we can get
the desired result

n—1m-1 n—1m-1

H(n —§)2" ) = (m+1) > [ (k—7)z 4 (2=1) > ] (k=)= )zF-(m+1) (g)

7=0 k=0 j=0 k=0 ;=0

If we set z = 1, the equation (8) becomes;

ﬂ(n—ﬂ=(m+1)§ﬁ(k—

Now, let m =n — 1 then

n—-1m-2
Hn H=n) [[(k-7j a.nde j) =n!
Jj=0 k=0 7=0
Therefore,
ol = E (k(k = )(k = D)k = (n ~2)
=0
(n-1)'="S T (k- )
k=0 j=0
And hence, ﬁ (n—7)=(m+ l)nz_)l n_ﬁl(k —7)
J=0 k=0 3=0

Example For any polynomial f(k), f( ) = k™ +ar k™t ak™ 2+ tank ;

where a1, ag, ..., G, are integers, the sum E f(k) can easily be calculated by using
k=0

the theorem without doing excessive calculation through the following formula
which is a trivial result of the theorem

m—1 n—-1m-1
[[(r—3j)=Pn,m+1)=(m+1) (k—7)
7=0 k=0 3=0
where
Pn,m+1)= !
AR S
For example if m = 3, we may desire to find the value of
n—-1m-1 '
(m+1) (k- 7).
k=0 j=0
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Now by putting m = 3 in the equation, we have

k=0 3=0
and, after some simplifications,
1 n—1 n-—1 n—1 n—1
~“P(n,4)=> k(k—1)(k—=2)=> K-> 3K+ > 2k (9)
4 k=0 k=0 k=0 k=0

_n*(n—1?% 3nrn—-1)(2n—-1) 2n(n—1) n(rn-1) ,

= 7 - 5 + 5 == (n® — 5n + 6)

As it can be noted, the RHS of the equation (9) is cumbersome to tackle but
the LHS of the equation is less time consuming and much easier to compute.
Finally if we set m =n — 1, then we can write a more compact form of (8)

n—1n-—2 n—1n-—2
P(nm—i—l)—n'“nzn(k—ﬂ or P(n,m)=n) [[(k—7)
=0 j=0 k=0 j=0

and m — 1 < n. Note that it will be an interesting task to seek for a relationship

between this new identity and Legendere polynomial approximation to sampling
distribution.
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OZET

Bu ¢alismada permutasyonlara iliskin yeni bir 6zdeslik sunulmustur. Bu 6zdesligin
kombinatorik hesaplamalarda ve dolayisiyla baziolasihk hesaplamalarmda yararholabilecegi

dusintimektedir.
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