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Abstract

Let X1, X9, ... be independent random variables with a common distribution
function F'. We study the second records time for this sequence in the case when
F contains several atoms. We pay special attention to the case when the last
point of increase is an atom. '

Key Words: Record times, generating functions, moments.

Let X;, X, ..bea sequence of independent identically distributed random vari-
ables with common distribution function F(z) = P {X < z}. The sequence of record
times L(n) and record values X, is defined as follows:

L(1) =1, Xu = X,

Lin+1) =min{j:j > L(n), X; > Xim},
Xy =Xy (n=1)

The sequence of record times has been thoroughly studied in the case of continuous
F. In this paper we consider L(2) when F is an arbitrary distribution, i.e. F(z)
contains discrete, absolutely continuous and singular components simultaneously. Let
T = {ay, 0, ...,a,} be the full set of atoms of the distribution (a; < a3 < ... < ay).

Theorem 1. The following equality is valid

P{L(@2) =k} = -k_(klj)’k
n (FFl(a) - P e 10) | F(as) — F¥(0s+0)
+:‘:1( vk~ k )+
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+ 3 (F(a: +0) — F(a)) F**(a; +0) (1 — (a: + 0)) (1)
i=1
Proof. We prove our result when the set T’ contains only one element a. We have

P{L(2) = k} = P{L(2) = k, X < a} + P{L(2) = k, X)) = a}+

+P {L(Z) = k,X(l) > 0,} =f Fk_z(x) (1 = F(m)) dF(z)+

+(F(a+0) — F(a)) F*?(a+0) (1 — F(a+0))+ / F*2(z) (1 — F(z))dF (z)
a+0
It can be obtained from the last equation that
1 F¥1(a) — F¥~1(a + 0)

PLL@Y =R}= gyt k—1 -

F*(a) — F*(a+0)
- k

+ (F(a+0) — F(a)) F¥2(a +0) (1 — F(a +0)).

Remark. Let 7 be the very left point of F'(z) (if exists). Let v = a and L(1) = k
where k = min {i : X; # a}. Then the record values and times turn out to be the
values and the times of one-sided successive approximations (see [3,4, 5]).

Theorem 2. The generating function of L(2) is

G(s) = Est® =

=5+ (1—9)log(1 —5) — (1 - ) 2} E (1 :i(;z;)m)

", 5% (F(a: +0) — F(a:)) (1 — F(a: +0))
+Z 1—sF(a;+0) 2)

i=]

Proof. Here we also consider the situation when F'(z) has only one atom a. So

oo

B _$2 & .\ i s* (F'k‘l(a) — F*1(a + 0)) B
Scklb—1)" =5 k—1

0o Sk ka, -—-kal it
(@ -C0) | (rar0)- Fla) 35 P ar0) (3

k=2- k=2
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The first term of the sum corresponds to the generating function of L(2) in the case
of continuous distribution (see [1])
0 k

2 Ek=T)

k=2

= s+ (1— 8)log(l — s).

Using the formula

Z%=—Iug1—?)

we get
o s (F¥~'(a) = F¥(a+0)) 1 — sF(a+0)
2 F-1 ““’g( 1~ sF(a) )
o gk (Fk(a) — FF¥(a+0 1 — sFl(a
}; ( )k ( ))=s(F(a)FF(a+0))—log(l_T_—:Ep(%)0)")'

The last sum of (3) can be easily found by virtue of

fo) 2
k k-2 _ 8
2 B8 (a+o)—1—sF(a+0)

k=2

Corollary 1.

B 1 “_11~F(a£+0)
Sl (1 “Fa) 4 1= Fla) ) -

+n‘l (F(a; +0) — F(a:)) (2 — F(a; +0))
1— F(a; +0)

i=1
if the last point of increase of F(x) is an atom.

Proof. From Theorem 2 we get

e 11— sF(a; +0)
G(““)—log(l—sn 1— sF(a;) )+

=1

(1=-8)F(a; +0) 1—3F(a,)
+; 1 - sF(a;+0) g 1— sF(a;)
+SX“: (F(a; +0) — Fa)) (2~ S;F(GH'O))?

(1— sF(a; +0))
the proof is completed if we put F'(a, +0) =1 and s — 1.

The existence of EL(2) when the last point of increase of F'(z) is an atom could
be mounted further.
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Theorem 3. All possible moments of L(n) do exist if the last point of increase
of F'(z) is an atom.
Proof. The direct proof of the theorem for £ L(2) is possible by means of formula

E{L2) (L(2) = 1) .. (L(2) — k + 1)} = GP(s)us (k> 1).

and Theorem 2. The proof for any n for one particular case is presumably to be
presented in Journal of Applied Statistical Science.

Corollary 2. The following formula is valid

1 1 2 (1- F(a:)’ (log (1 — Flas)) — 3) + 3 — 2F(a)
E{L(2)+1}=Z; 2F2(a; +0) -

n (1- F(a;))* (log (1 - F(a;i +0)) — 3) + 5 — 2F(a: +0)
-2, 2F2(a; + 0)

i=1

+

+3 (F(a: +0) ;fl??ﬁl = F@) (1 — (14 F(a; +0))?

—2log (1 — F(a; +0) (4)

Proof. We can exploit the equality

1 8
Ed———m?= :
{L(2) ¥ 1} (] G(T)dm)
0 s=1
proving (4).
Remark. Formula (4) reduces to

E{L(2)1+1}=11_1

in the case of continuous distribution (see [2] for comparison).
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OZET

{Xn},>; bagimsiz ve ayni F' dagilimina sahip olan rasgele degiskenler dizisi ol-
sun. Bu dizinin ikinci recor zaman F' dagilimimnin sonlu sayida atomlarimn oldugu
durumda incelenmistir. Dagilim fonksiyonunun en son artma noktasinin atom oldugu
hal icin 6zel irdemeler yapilmistir.
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Abstract

Mathematical aspects of the computer method of the diagnosis of breast
cancer (CMG) and fibroadenomatosis (FAM) based on a single analysis of pa-
tient’s buccal scrapes are discussed. The method of hypothesis verifing based
on the simultaneous application of the quadratic, linear and order tests are
developed. The algorithms of the construction of the confidence intervals and
confidence ellipses is considered. .
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1. Mathematical means of the computer diagnosis: confidence intervals

Many problems in the natural sciences and technology reduce to the following:
stipulate an interval I = (a,b) that contains the value x of general population GG with a
given probability 8 (for example, 3 = 0.95), p(x € (a,b)) = (. This interval I = (a,b)
is called a confidence interval for the population G (or simply a confidence interval),
the numbers a and b are called the lower and upper confidence limits respectively,
the number 3 is a confidence level and the value a =1 — 3 is the significance level.

The confidence interval I = (a,b) can be constructed with the aid of the Cheby-
shev inequality [1]

1 1
p(z—m()| > Ao() < 55 (then @ < 35),

however. the confidence level is very crudely estimated. In this connection a large
number of Chebyshev-type inequalities have been derived that refine the Chebyshev
inequality under certain restriction on the distribution of z [1]. Nevertheless, these
modifications of the Chebyshev inequality do not allow us to justify the empirical
34 rule’. which asserts that for distributions occurring in practice

p(|z — m(z)| 2 30(z)) < 0.05.

where m(z), 0%(x) are the expectation and variance of x, respectively.
Many mathematicians think that for any random variables z € S,,, where

n
S, = {-.r . =3 Y, Yi independent, F,. = F(u)}
i=1
the 73 rule” is fulfilled since the limit theorems are valid, but this is not correct.

Indeed, the following assertion is proved [2]: for all A > 1 and every natural number
n the following inequality holds .

S > - > )\2
:élgp(lw m(z)| 2 do(z)) 2 —37

Thus, for every natural number n

Aup p(lz — m(z)| = 30(z)) =

~ 0.0987.

| oo
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DIAGNOSIS OF BREAST CANCER 1

The problem of the justification of the ”30 rule” has been successfully solved for
unimodal distribution in the way suggested by C.F.Gauss.

Recall that the random variable z is said to be unimodal if its probability density
f(u) has only one local maximum. More precisely, the variable z is unimodal if there
exists a point a such that the distribution function of z is convex in the domain
(—00,a) and concave in the domain (a, +00).

It turns out that the classical Gauss inequality

4
p(lz = m(x)| 2 Mo(2)) 2 535

which is valid for all symmetric unimodal random variables will be correct for all

8
unimodal (not necessarily symmetric) random variables z, for all A > \/; [2,3]. In

particular, for A = 3
4
p (|l —m(z)| = 30(z)) = R 0.49 < 0.05.

This refinement of the Gauss inequality is called the Vysochanskij-Petunin in-
equality [4,5]; at present there exist many generalizations and extensions of this in-
equality [4-6].

Another idea for solving the problem of construction of the confidence limits
containing the bulk of the general population is based on the order statistics. Suppose
G is some general population with unknown distribution function F' (u), &1, 2, ..., Ts
is a sample obtained from G as the result of simple random sampling. If we rearrange
the sample values in increasing order z(1) < Z(2) < ... < (n) then we obtain the order
statistics z(,% = 1,2,...,n. It is shown 3,7] that for a population with a continuous
distribution

P (.’L‘n—i—l € (-’B{i),m(j})) = ;’:; zl (2 <J), (1)

where is a sample z,,; value that does not depend on the sample z;,2,,...,Z,
obtained by means of simple random sampling.
Consider two measurable (Borel) functions of n variables satisfying the inequality

[ (ur,ug, o ttn) < g (ug, 9, oo tn) (Y (u1,us,...,un) € B");

with the help of the functions f (u1,us,...,u,), g (U1, Us, ...,u,), and the sample
Z1, Ty, ..., T, We can construct the random confidence interval

I= (f (:L'],Cla'g, veey xn) g (:I:l-,n Iy, ..., Tn))
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for the bulk of the general population G; this interval [ is said to be an invariant
confidence interval if

p(.’l:n+1 € I) = p(x € (f (35'1,172, ---;In) :g(ml!"x"?: :‘I"ﬂ))) = const

for any general population G with the continuous distribution function F'(u).
It is shown [8] that the following statement is true: let f (uy,us,...,u,) and
g (u1,ug, ..., u,) be continuous symmetric functions satisfying the inequality

[ (u1,un,.0,un) < g (u,u2,.0,un) (Y (u1,us,...,u,) € RY),

which coincide on the set from R™ with zero Lebesque measure. In order that the
confidence interval I = (f (z1,Z9,...,Zn),9 (21,29, ..., 2,)) be invariant it is neces-
sary and sufficient that f (21,22, ...,2Zn) = 2@), g (@1, %2, ..., 2n) = z(j) (¢ < j) where
T(:), T(j) are some order statistics constructed with the help of sample 1, s, ..., Zn.
Therefore, a set B, of all confidence intervals consists only of rational numbers,
namely

1 2
B, = {o—__ 1}_
n+1 n+1

2. Statistical tests

The classical theory for the test of hypothesis using statistical criteria was created
in the first half of XX century and was based on the Neumann-Pearson fundamental
lemma [9]. This lemma allows one to obtain a powerful test in the case of two sim-
ple alternative hypotheses I and H . We can construct this test and calculate its
probability of errors of the first and second kind if we know the distribution functions
Fy (uy,u9, ..., Uy) , F' (), Us, ..., up) corresponding to these hypotheses exactly. Un-
fortunately in practice of the statistical calculations we never know these distribution
functions that is why it is necessary to construct the statistical criteria for the test of
hypotheses which are based on training samples but not on the distribution functions
Fr (u1,ug, .., un) , Fyr (ug,ug, ..., ).

Suppose G and G are two general populations and let z = (zy,2s,...,2,) and
y = (y1,Y2,.--,Yn) be samples from G and G', respectively. We shall assume for
simplicity that these samples are obtained with the help of simple sampling. Let
z = (21, 22,..., 2x). be a sample from the general populations GG or G (we don’t know
where the general population are from). Denote H = {z € G} and H' = {z € G‘}.

Suppose that (a, b) is a confidence interval for the bulk of G and (af , b’) is a confidence

interval for G'. We can construct these intervals with the help of the estimations of
the mathematical expectation and variance in accordance with the 3o rule” (or,
more precisely, the ”3s rule”)
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DIAGNOSIS OF BREAST CANCER 1

(a,b) = (— 38,7 +3s), (a',0)=(F —3s,7 + 35),

where
1 n 1 n
T=— Y o, 8=—— 3 (@ — %),
n k=1 n—1 1
[ L N2 1 n N2
* nkzzllmk’ (S) n—lkgl(k :I.‘)

or with the help of the order statistics a = z(), b = z() (i < J), a = 3::(,,), b=
a:'(t_) (r <1).

Assume for simplicity that z = z; (i.e. k= 1). Then the statistical criterion based
on the training samples has the form

1)ifz€ (a, a,f) then H is accepted;

2)ifz€ (b, b’) then H' is accepted;

) zE (a’, b) then decision is not accepted.

The probability of the error of the first kind is

o =p(H’lH) =p(z € (b,b')lH) <p(z¢(a,b)|H) =0
(@' = 0.05 for example),

where is « a significance level of the confidence interval (a,b). Similarly the
probability of the error of the second kind is

= (1) =p(s € (0.0)| H) < p(s ¢ (&8)] ) =

(@' = 0.05 for example),

Now, let us consider a general case where k is any natural number . If the order
statistics (1), Z(n)> Y(1)> Y(m) satisfy the inequality

z1) L Ya) < Tn) < Ym),

then a = @), b= Z(n), a = Yay, b = Y(m)-

Let 9 be any number from [0,1) and k > 2. Define a number 7 by the formula
r=r(d,k) = [lf_—ﬁ] , where [a] is an integer part of the number a. A statistical
criterion Ty for the test of hypothesis H and H " on the basis of the sample z =
(21, 29, ---, i) is defined in the following way (10]):

1) H is accepted if at least r sample values of the sample being investigated
z = (21,22, ..., 2x) belong to the interval (—oo,ym);

9) if at least 7 value from the sample z = (21,22, ..., 2) belong to the interval
(:z:(n}, -l—oo) then the hypothesis H " is accepted;

3) in any other cases the decision in not accepted.

The probability of the error of the first kind is
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B (H;IH)_B(n—l—k—r—Fl,r)"_ (k—r+1)(k—7r+2).k B
e T Bh-r+1,r) (a+k—-r+l)(n+tk—r+2)..(n+k)
1
nf—l

and the second kind is
k— 1
( |H)'— m+ r 4+ T)

k—r41r
(k—’r+1)(k—'r+2) X " )__ 1
(m+k—r+1)(m+k—7+2)..(m+k) _o(m"‘l)

where B(a,b) is a beta-function.

Denote be C'D a procedure of the non-acceptance decision. Assume that the
simultaneous distribution functions Fg (u1,us, ..., un) and Fgr (u1,us, ..., un) of the
samples z = (21, 22,...,2s), when z € G and z € @, are known and we construct
the statistical criterion T for the test of hypothesis H = {z € G} and H' = {z € G’}
satisfying the following conditions

p(i 1) <a p(|H) <5
and
p(CD|H)+ p(CD |H) — min,

where o and 3 are fixed number. This criterion is called an optimal one.

Denote by W,V,T C R*: WU VUT = R" the reglons of the decision acceptance of
the criterion 7" : 2 € W = H is accepted, z € V = H' is accepted, z € T = decision
is not accepted. It is shown [11] that these regions are defined by the likelihood ratio

[t (w1, ug, ..., Un)
fu (u1,ug, ..., un) 7

h(u) =

where fy, [y are probability densities.

Consider the following criterion for the test of hypothesis H about equality distri-
bution functions F (u) and Fg (u) of the general population G and G’ respectlvely
[12]. Let z = (;c;,:cg,.. ) €Gandz = (wl,wz,..., m) €G,zuy <z <. <
L) $(1) < :z:m <. < :r( ) be order statistics. Suppose that Fg (8) = FG: (u)
Then on the strength of the formulae (1)

p(Ai) =p (SCL- € (w(i):m(ﬁ)) =Dij = i J_r 11
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If we have the sample z' = (m’l,m.;,...,ﬂ:;n)we can find a frequency h;; of the
random event A;; and confidence limits pg), pf‘?) for the probability p;; corresponding

to given significance level §: B = {p;-j € (pg); PE_?})} ,p(B) =1— . These limits
have been calculated by the formulae [9]:

@y hm+0.5g2 = gy/hi; (1 — hyj) m + 0.25¢7

Py = m+ g ’ )
o hi;m + 0.5g% + gy/hij (1 — hij) m + 0.25¢
i m+ 92 ;

where ¢ satisfies condition ¢ (g) = 1— E . ¢ (u) is a function of the normed normal

distribution (if 7 is small then according to "3c rule” g = 3).

It should be noted that the confidence limits (2) are not exact confidence limits
corresponding to the given significance level even for the Bernoulli model but they will
be the asymptotic confidence limits; in our case a calculation of the exact confidence
‘ntervals is based on the investigation of the so-called generalized Bernoulli model
[13-16] (Matveychuk-Petunin model, or MP model, by terminology N.Johnson and

S.Kotz [15,16]) and represents very difficult (almost hopeless) problem.
-1
Denote by N a number of all confidence intervals Ii; = (pﬂ), pg}) SN = 8 (n2 )

and L a number of those intervals I;; which contain the probabilities p;;; put h =

p(Fe,Fg')=p (3:, af:’) = % As far as h will be a frequency of the random event B =
{pi; € L;;} having the probability p(B) = 1— 3, then by setting h;; = h, m = N and
g = 3 in formulae (2) we get a confidence interval I = (p(l), p(ﬁ}) for the probability
p (B) which have confidence level approximately equal to 0.95. A criterion for the test
of hypothesis H with significance level approximately equal to 0.05 may be formulated
by the following way: if the confidence interval / contains the probability p (B), then
hypothesis H is accepted, otherwise it is rejected. The statistics h is called p-statistics
(Petunin’s statistics); it is a measure of the proximity p (:B, :1:;) between the samples

z and T .

The last test described above is applied in diagnosis of breast cancer on the basis of
the concentration of DNA in the interphase nuclei of the epithelial cells from mucous
coat of the stomach and epithelium of ductus and lobes of the mammary gland under
pre-tumor and tumor processes in these organs.
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3. The proximity measures between a sample and a set of the training
samples used in the computer diagnosis of the breast cancer

A process of the diagnosis of the cancer tumor in the mammary gland consists of
three stages.

1). First, on the basis of a scrape from a mucous coat of the oral cavity we must
obtain a data set investigating about 10-30 cells.

2). On the second stage. by using the Feulgan reaction we obtain the DNA
(deoxyribonucleic acid) scanogram of the intrephase nuclei of these cells zy, 2, ..., 215
then we are recording the main indices (all together 15) of the scanograms of the
interphase nuclei of these cells: (in detail the scanograms and these indices will
be described in part II of this paper. (see also [17.18]). We shall call the vector
Xe = (21,29, ..., 215) the indication vector of the cell C'. There is no need to use only
these indices: it may also be suggested others indices. which will be more informative
and will be able to give more accurate description of the nuclei texture (see, for
example. texture descriptors in [19]). Thus we get for every cell (for example, a cell
number i) 15 indices .-r,(li)..r_g), 15‘5) where i = 1,2,...,n, 10 <n < 30.

3). On the third stage we apply the special algorithms of the’statistical and
geometrical theory of the patter recognition for the detection of the changes in somatic
nonmalignized cells under the breast cancer and fibroadenomatosis. These tests and
algorithms will be considered in more detail in the next part; in this one we describe
three stages of the above mentioned tests and the main proximity measures on which
theyv are based.

1) At the first stage we form two groups of the patients (G and Gy ; the first group
(3, consists of the patients which are suffering from the cancer of the mammary gland
(CMG) and the second one Gy consists of patients having the fibroadenoma (FAM)
(the diagnoses of the patients of each group must be verified exactly!).

These are so-called training or standard groups; on the basis of these groups we
will be diagnose the diseases.

2) At the second stage with the help of the p-statistic (Petunin’s statistics) we
calculate distances (measures of proximity) between the index of the scanograms of
the patient and the corresponding indices of patients of the groups (1 and G,. This
is made in the following way. Assume that the patient @); belongs to the first group
G1 = {Q1,Q,...,Qn}. We exclude this patient from the group (; so that we get the
group GV = {Q1,Q2, -, Qi-1,Qit1, -, @n}-

Let
1 1 1
XCkl = (;ng), .'Egk), vy 3’.‘551‘:)

(2) (2 (2)
Xg'z = (x]k !mgkjr "‘13:1555)
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X5, = (0,250, ., 8

(k=1,2,...,m; 10 < jx < 30) be indication vectors of the cells of the patients Q.

Here X, = (zﬁ?,mé‘f, . 3:1(,‘5)&) is an indication vector of the cell C; of the patient .

Then we form the training samples for every index z;, ¢ = 1,2, ..., 15; the first training
sample for the index z; be

1 1 2
X0 = (o2, .

1 1 2
X = (elf o, .o

(from the second patient)

S e

(from the second patient)

.........................................................................

XS;U — (T%L)’xﬁ), (from the n-th patient);

the second training sample (for index ) be

) (
(
Xf?') = (Igil)amgzl)a ==ny ] })
b3 )

from the second patient)

1 2
- (o0, o

e

from the second patient)

.........................................................................

X — (1311)»-17(21 ,:r(-’“ ) (from the n-th patient);

and so on. Finally, we get last training sample, i.e. training sample for the 15th
index X" x{"® _ XU5% (n is the number patients of the group G;). Now we can
calculate the values of the p-statistics for the samples of the i-th patient and the
corresponding samples of other patients with number k(k # i) (7 is fixed!):

o) =p (X, XY, o = p (X2, XP), ., 457 = p (X, %)

and find the values of the averaged p-statistics

1 1 L 1 1
iV=— > p(X7X0),
n—1 k=1k#i
(2) _ 1 = x® x@
pc ﬂ.-lk:]Z:Jc;éip( T 2 k)
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(i is fixed!) which represent the measure of the pro:urmty between the patient Q;

(more precisely between its indices) and the group GP i=1,2,.
Replacing the patient Q); by a patient QJ from the group G‘z (remmd that Ga
consists of the patients with.fibroadenomatosis) we get similar averaged p-statistics

for the group Go:

1 n i
ﬁ;(al} e 5 (X;I)’X’(cl)) ’

..................................................

where j = 1,2,...,m; m = card Gy, —Xﬁt) (t=1,2,...,15) is a corresponding index
of the patient Q;. If we replace the group G: by G5 and perform the similar cal-
culations, we obtain the averaged p-statistics dﬁ ),d_?), - d_g-ls) (7=1,2,..,m) and
a» @ . d™ (i=1,2,..m)

B Stk T

1 m
dd = 2 (X(-I) Xil)) ,

m— 1 k=1k#j

..................................................

..............................................

1 m [
3&15) LB, (Xiw),X,-{ls)) .

m k=1

3) At the third stage of the test we produce coupling of these averaged p-statistics
(pft),p‘ )) (ﬁgt),ﬁgs)) ,i=1,2,...,n;5 = 1,2, ...,m; similarly we get points (dg ),dgs)) ,

(d?),dgs)) Ji=1,2,..,n;j = 1,2,...,m. After we construct so-called confidence

ellipses Ey, (8,5 = 1,.,...,15) containing the averaged p-statistics (pft),p?)) i =
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i, 23...,??, for the group Gy, i.e. the ellipse with minimal area containing the points
(p? ; pgs)) ,i=1,2,...,n. Then we construct the confidence ellipses Fys for the aver-

aged p-statistics (‘ﬁgt),'ﬁﬁs)) ,7=1,2,...,m; and similar ellipses Ej, and E., by using

the points (dgt),dg-s)), (aﬁ”,&?’) ,i=1,2,..,n;7 = 1,2,...,m. More precisely we
construct ellipses with the help of the algorithm which gives the approximate solu-
tion of this problem [20,21]. This part of the test we shall call as quadratic test
because it is pased on quadratic discriminant function.

In addition, as the second part of the test, we consider a linear discriminant Fisher

functions fi, (u,v)and ff (u,v) separating the set M{, = {(pﬁ"’),pﬁ“’)} i=1,.,n

from the set M% . _(-t),,ﬁ(f") ,j = 1,...,m and the set M, = E(.",Eg’)
ts p i ] ts T T

J

i=1,...,n from the set Mf = {(d?), d;‘q))}, 4 = 1,...,m respectively. The function
fis (u,v) is constructed such way that straight line Il = {(u,v) : fis (u,v) =0} is
perpendicular to a segment connecting the centers of the sets M?, and M,,, and
passes through the middle of this segment; similarly, f}; (u,v); in addition the centre
of the set M, belongs to the lower halfplane 7, and the center of the set M, belongs
to the upper one A (similarly 7;, Af,). Thus we have for the 15 indices 210 pairs of

the ellipses (Ets,Ets) and (E* ‘E_zs) ,t < s;t,s = 1,2...,15 and moreover 210 pairs

?

tsr
of the half-planes (7, Aes) and (5, Af,) , t < 8; 1,8 = 1,2...,15. We shall name this
test as linear test.
Let Q be a patient suffering from the cancer of the breast (hypothesis Hi) of the
fibroadenomatosis (hypothesis Hy). By using the algorithms mentioned above we can

calculate for this patient the averaged p-statistics pg),dg), t=12,..,15:

> o (X, X9, dY == % p(X(”,Yff)),

W _ 1 1
n k=1 m k=1

Pg =

where X g) is a corresponding index (sample) of the patients () and form the points
(pg), pg)), (dg), dg}) ,t<s;t,s=1,2..,15. Consider the following random events

A ={(p0.rg) e B}, AM={(sg0Q) € B}
Ay = {(s8),p8)) € s =B}, Ar={(05)) € Ees — Bur},
Ay ={(dg,dg) e B}, A5 ={(dg.dQ) € i,

3= {(49,49) € By, - EL}, A3 = {(d0,dQ) € B, - B},
B ={(o5. ) €mu},  Ba={(hG:A5)) € Mo},
B = {06 ag) emif,  Ba={(oF) € Xt <
an

Cl=A3UA4, 02:A4UA§,C3=A1UA;,
Cy = A UAY ,Cs =B, UB;, Cs =B UB;j .
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Denote by h; = h(C;),i = 1,2,...,6 a frequency of the event C; under 210 tests
(experiments) when t,s = 1,2,...,15;t < s. By using the formulae (2) we can get
the asymptotic confidence limits corresponding to the given significance level for the
probability p; = p(C;) on the basis of the frequency (in this connection we must
take h;; = hj,m = 210); these limits will be apparently too wide. We shall call
the frequency h; the index of CMG (briefly CMG) and h; - the total CMG (briefly
TCMG) as far as these indices are the proximity measures between the scanograms
of the interphase nuclei of the cells of the examined patient ) and the corresponding
scanograms of the patients which are suffering from carcinoma of the mammary gland;
by virtue of the similar arguments we shall denote the frequencies hy and h4 as the
FAM and the total FAM (TFAM) index, respectively. By analogy we shall call
frequencies hs and hg the linear CMG (LCMG) and the linear FAM (LFAM) index.

The third part of our test is so-called order test. The first stage of this test is
the same as the previous tests. Let in s m&‘g,zg’g,...,mﬁ‘gk) s 8= 12 T k=
1,2,...,n be an indication vector of the cell C; of the patient @ from the group G
and Y3 = (v},08),98%),1 = 1,2,...05 k = 1,2,..,m be the corresponding
indication vector of the cell D; of the patient Q, € Gs.

At the second stage the averaged indication vector

o= 1 Jk o — =t ot
A(kJ = — Z Xé't = (mlka$2k1 "'1‘7"’15’5)
Ik t=1

for every patient Q; € G, is calculated; similarly for every Q,. € G, the averaged
indication vector Y*) has the form

= 1 L T -
Y® = 02 Y5, = Gk, Por, -, Pisk) -

k t=

Put

ot = e (), 280, 80P ) s k= 1,2, M7 £ = 1,250,155
o = max (2§, 20, ., 28}, k= 1,205 £ =1,2,..., 15;

in . 1 2 ] . " . -
yp = min (v, 42, ... v8) , k=1,2,..,m; £ =1,2,..., 15;

1 2 ]

B = rne (U s o B L b= 12, ey B= 1,2, 18
azuin = min (wﬁin,xgjn’ '":xtk' ) ] a:nax = max (wﬁm’wgm’ "‘!‘T?Ilcm E
k=12 .0 twl 2..15;
DR = i (a3 €2 ..., ), B = maea (P, BB e B )
k=1,2,...,nt=1,2,...,15; _ . .
Pl = min (2=, y3=, ..., yE) , 3P = max (yE=, 8", ..., yE"),
k=1,2,..,mt=12,..,15

B = min (Y2, 5™, .., YE™), B = max (u3, 45, -, ¥E™),
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k=120 § =12, 15
C?jn = min :’th];,C?ax = max Em,ﬁ?‘jn= min gtk;

i P k=1,...,n k=1,..,m
™= max Yu,i=1,2,..,15.
k=1,...m

Then affi®, P, gin, gax, ppin, pmax FA™ G cmin, cmax zmin, zmox wil] be min-
imal and maximal order statistics, respectively. By means of these order statistics
the confidence intervals a; = (atmin, a}m"), B = (bi“in, by ) 5 P = (C{“i“}b?‘“),
B = (ain, ), By = (B 5), 7, = (29,2 e formed.

Let @ be an examined patient and Xo, = m{li),a:g),...,mg? L8 =12 g
i=1,2,...,j be indication vectors of this patient. At the third stage of the order test
we calculate the averaged indication vector of the Q):

X = N XC: = (513521 very E1..”11)

t=1

| —
Mu.

and indices #7"™ = min_ x| pmex = max_ 9 t =1,2,....15 and then we define
t=k...;3 =k

the indicators of the falling outside the limits I/™® I, I®* (t = 1,2, ...,15):
Imin — 1) ?’f x:nm ¢ at} I — 11 1‘.[ Et ¢ fyt: Imgx — 11 ﬁf 'T:nax ¢ ﬁt;
4 U? ?’f m;mn & Oy, o 01 i'f ﬁjt (= Yt» S 0? ?‘f x;ﬂm = Bﬂa

Similarly the indicators T:_nm, 1, T,™ are defined. Then we evaluate the indices

15 rmin e 15 /—min ¥ —Fmax
o =3 (Imn + L+ I} ),azzgl (7" + T+ ™).

These indices are also the proximity measures between the scanogramms of the
interphase nuclei of the cells of the examined patient () and the corresponding
scanogramms of the patients who are suffering from breast cancer and fibroadenoma
of the mammary gland, respectively.

These proximity measures permit us to obtain algorithms and test for recognition
of the differential diagnosis for breast cancer (the main hypothesis H) and fibroadeno-
matosis (the alternative hypothesis H'). The test of the acceptance of the hypothesis
H has the form: if the training samples of patients suffering from breast cancer and
fibroadenomatosis have equal size (approximately equal to 25 patients) then hypoth-
esis H is accepted if hy > hyg or a1 < ay. Investigations of the scanograms of 104
patients suffering from breast cancer and fibroadenomatosis show that the probability
of the first kind of error is approximately 0.06, the probability of non-acceptance of
decision is approximately 0.06 provided the hypothesis H is true, and the probability
of the second kind of error is practically zero. Details of the statistical tests of the
proposed method will be described in the Part 2.
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OZET

Gogiis kanseri teshisi (CMG) ve FAM igin bilgisayara dayal yontemlerin matem-
atiksel yonleri incelenmistir. Karesel, dogrusal ve sira istatistikleri testlerinin esanh
nygulamalar1 hakkinda bir hipotez testi yontemi gelistirilmigtir. Giiven araliklan ve
giiven elipslerinin kurulmas: igin algoritmalar ele alinmusgtir.
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Abstract

A computer method of the diagnosis of breast cancer (CMG) and fibroade-
nomatosis (FAM) is developed, based on a single analysis of patient’s buccal
scrapes. The probability of error in the diagnosis of CMG and the probability
of non-acceptance of decision do not exceed 6%. For FAM the probability of
error in the diagnosis is practically zero, and the probability of acceptance of
decision is 43%. The computer method of diagnosis is supplementary and can
be applied to mass screening of patients for early of breast cancer and to the
selection of patients who are in a high risk category.

Key Words: Breast cancer, malignancy-associated changed, buccal scrapes,
confidence limits, discriminant analysis, proximity measure, training samples.
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1. Biomedical background

It is well known that an organism has a potential capability to respond to changes
of the external /internal media, which act on the organism in the whole or on some
of it’s internal system (nervous, endocrine, immune, etc.). This capability is called
the reactivity of the organism [1]. The reactivity is generally different for different
types of systems, organs, or cells of the organism. By biological reactivity we shall
mean the changes arising in the cells in response to diverse factors. The problem
of cytological reactivity during the formation of a malignant or benign tumor in the
organism is rather complicated and many questions remain unanswered despite recent
attempts to study the problem. The buccal epithelium is an indicator of common
somatic diseases. There are many papers devoted to studing of morphological and
functional states of the epithelium, however, in these investigat ons the subjective
factor is predominant, while the quantitative methods can procuce more objective
estimation of the epithelium state. The DNA content in the nuclei of the cells is such
index. H.Nieburgs, Ogden G.R., Cowpe, Green M.W. et al. (-ee detail bibliography
in [1]). Investigated characteristic changes in the cells of the Lrccal epithelium of the
patient with tumors localized out of the oral cavity and they named these changes as
malignancy associated changes (MAC). These changes are characterized by increasing
of the epitheliocytes nuclei size, discontinuous nuclear membrane, increasing of the
zone sizes of the connected chromatin surrounded by the light areas. We investigate
MAC as a basis of the computer-aided cytogenetical disgnosis of the breast cancer in
women.

2. Material and method

For purposes of our investigation we considered women patients from 25 to 53
years old, who were suffering from breast cancer (second and third stage) and fi-
broadenomatosis (altogether 103 patients) were taken. Scrapes from various depths
of the spinous layer were obtained (conventionally they were denoted as median and
deep), after gargling and removing the superficial cell layer of buccal mucous. The
smears were dried out under room temperature and fixed during 30 min in Nikiforov
mixture. Then, the Feulgen reaction was made with cold hydrolysis in 5 n. HCI for 15
min, under the temperature t=21-22 °C. Optical density of the nuclei was registrated
by a cytospectrophotometer using the scanning method with wave length 575 nm
and probe diameter 0.05 mcm. We investigated from 10 to 30 nuclei in each prepara-
tion. The DNA- fuchsine content in the nuclei of the epitheliocytes was defined as a
product of the optical density on area. Based on the investigation of the interphase

nucleus we obtained a scanogram of the DNA distribution which is represented by a
j=in

rectangular matrix R = “rij”i:l_m’

where r;; characterizes the DNA content in the
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grid cell with index (4, j), m and n are the rows and columns of the matrix R. In the
‘formation of the training samples to validate their statistical homogeneity this size
varied in sufficiently narrow limits from 56 to 81.

3. Morpho- and densitometric indecies of nuclei

The scanogram, or a numerical portrait of a cell, is given by the matrix R =
||1",J||':"jl'—::1 , where r;; are values of pointwise optical density of chromatin in inter-
phase nuclei of the buccal cell, expressed in terms of conventional unit of measure;
n and m are numbers of points in the scanogram along vertical and horizontal lines,
respectively.

On the basis of these cytophotospectrometric indecies we calculate the following
morpho- and densitometric indecies that characterize structural and textural pecu-
liarities of chromatin [2-5].

1. Area of nuclei z; is a number of elements of R where r;; > 0.08.

2. Area of condensed chromatin z, is a number of elements of R where r;; > 0.35.

3. Area of decondensed chromatin z3 is a number of elements of R where 0.08 <
Tij < 0.35.

4. Area of strongly decondenced chromatin z, is a number of elements of R where
0.08 < r;; < 0.15.

5. Specific area of condensed chromatin:

6. Specific area of decondensed chromatin:

I3
g = —
I

7. Integral density:

™3

(]
Tr=y, >, Tij,
i=15=1

where the summation is taken over indecies ¢ and j for which r;; > 0.08.
8. Mean density:
I

Tg = 3
nm-—p

where p is a number of the elements r;; < 0.08.
9. Averaged sum of overfalls:
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q
Z Uk,

k=1

Tg =

o | =

where ¢ is the number of the elements such that

min (7ij, Tit14> Tig41: Tar15+1) = 0.08;

U = mMax ('Pij,T:‘+151?”z'j+1,'f='+15+1) — min (Tija"‘H—ljﬂ‘ij4-1,?"e+1j+1) k=1,q.
(The summation is taken over elements mentioned above).

10. General cluster index:

12. Index of overfall variation:
T1p = Tg + T11-

13. Relief index:

m n
2. 2 |?’=‘j = T:?-—ljl

i—25=1
2mn —m+n—q)

T3 = (

where g is a number of the points (7, j)such that max (r35,7i-15) < 0.08 .
14. Textural coefficient:

T13 1 m n
T4 = — E = Pas = I
: e’ mn — p El_-,-;(” )

where p is defined as for 2z and the summation is taken over indecies i and j for
15. Coefficient of mutual disposition:

B

15 =

3

bx

el
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where
m n m n TiiTki L T Tkl

= +

B e T i~ s (k_z-)2+(;_j)2)>
m n m n 1 m o n 1

b= -+ )
3:13% E;:;,Zil (k—13)°+(1—-7)" w2l (k—i)2+(l—j)2)

moreover, the summation both for a and for b is taken over elements such that

min (r;;, 7)) > 0.875 max min Tiie
(t‘h “) i=1,2,...n;j=1,2,...,myr;; >0.08 b

4. Calibration of training samples

The proposed diagnosis of oncological diseases is based on the tests and algorithms
of the statistical and geometric theory of pattern recognition.

On the first stage we form two groups of patient’s scanogram A = {X;}, i =

2,..,N and B = {Y;},j = 1,2,.., M whose diagnosis must be verified exactly.
Below, for definiteness, we shall suppose that the group A (or B) contains the
scanograms of the patients suffering from the cancer of mammary gland - CMG
(or the fibroadenomatosis - FAM). After the procedures of the registration and mea-
surement of the morpho - and den51tometnc indecies, we obtain so-called training
samples for every index z; (k = 15): G(l) G(z) G(w) for the patients of
the group A (CMG-samples) and G(l) (2), ...,G(m} for the patients of the group B
(FAM-samples). :

Consider the problem of determining what should be the number of training sam-
ples in the groups A and B to insure sufficiently high level of reliability of the diag-
nosis.

At the beginning it is naturally to suppose that the number of samples in the
groups A and B must be equal. To accept or reject this hypothesis we have proposed
a procedure of calibration of training samples, which consists of the following stages.

1. Exclude patient X;,i=1,2,..,N (or Y;, j=1,2,..,M ) from the set AU B.

2. On the basis of the set of samples {AU B} \X; (or {AU B}\Y;) construct the
tests using pairs of ellipses (EM,EH), ( ;S,ﬂa) and half-planes (s, Ass), (75, A%)-

3. Calculate statistics for patient X;,i=1,2,...,N (or Y;, 1=1,2,...M ).

4. Return patient X;,i=1,2,..,N (or Y;, j=1,2,...,M ) in the set AUB and
repeat this procedure for the next pat1ent

The results of calibration in the case when the set A consists of 25 scanograms
of patients suffering from CMG (so-called CMG-patients) and the set B consists of
25 scanograms of patients suffering from FAM (FAM-patients), are given in Tables 1
and 2.

Now let us consider the following criteria of diagnostics

1) quadratic: hg > hy = CMG; hs < hy =FAM;
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N [ h; (CMG) | h; (FAM) | h; (TCMG) | hy (TFAM) | ks (LCMG) | hs (LFAM)
1 [ 0.00052 0.00476 | 0.98571 0.98095 0.38005 0.61905
2 | 0.05238 0.17143 | 0.75238 0.87143 0.22857 0.77143
3 | 0.02857 0.00000 | 0.99524 0.96667 0.74762 0.25238
4 | 0.00952 0.33810 | 0.65714 0.98571 0.44986 0.55714
5 |0.03333 0.18095 | 0.81429 0.96190 0.23810 0.76190
6 | 0.00052 0.04762 | 0.93333 0.97143 0.42857 0.57143
7 | 0.02857 0.00476 | 0.99524 0.97143 0.70000 0.30000
8 | 0.04762 0.13810 | 0.82857 0.91905 0.60476 0.39524
9 |0.01429 0.08095 | 0.91905 0.98571 0.69524 0.30476
10 | 0.04762 0.07619 | 0.90476 0.93333 0.78571 0.21429
11 | 0.06667 0.10476 | 0.87619 0.91429 0.64286 0.35714
12 | 0.08095 0.00524 | 0.86667 0.88095 0.70952 0.29048
13 | 0.02381 0.01005 | 0.96190 0.95714 0.34286 0.65714
14 | 0.00000 0.01905 | 0.98095 1.00000 0.86190 0.13810
15 | 0.08571 0.23333 | 0.70476 0.85238 0.72857 0.27143
16 | 0.07143 0.07143 | 0.81905 0.81905 0.66190 0.33810
17 | 0.00476 0.00000 | 1.00000 0.99524 0.49048 0.50952
18 | 0.00476 0.03333 | 0.96190 0.99048 0.34762 0.65238
19 | 0.02381 0.01905 | 0.98095 0.97619 0.83333 0.16667
20 | 0.00000 0.00000 | 1.00000 1.00000 0.42381 0.57619
21 | 0.00476 0.03810 | 0.95238 0.98571 0.54762 0.45238
22 | 0.10476 0.04286 | 0.93333 0.87143 0.71905 0.28095
23 | 0.04762 0.25714 | 0.61905 0.82857 0.40952 0.59048
24 | 0.01905 0.08571 | 0.88571 0.95238 0.58095 0.41905
25 | 0.00000 0.01905 | 0.98095 1.00000 0.40952 0.59048

Table 1: Values of the statistics hx = h(Cx), k = 1,2,...,6 for the CMG-patient’s
scanograms under calibration of the training samples (24 CMG and 25 FAM)

2) linear: hs > hg ==CMG; hs < hg =FAM.

Denote by D; the diagnosis of ’"CMG” and by D, the diagnose of ”FAM”. Let vy;
be the frequency of the event D; for the CMG-samples, v5;the frequency of the event
D, for the CMG-samples, vy, the frequency of D; for the FAM-samples, and vy the
frequency of D, for the FAM-samples.

Analysis of the results of calibration of the samples from groups A and B of equal
size (Table 3) allow us to make the following inference:

1. In overwhelming majority of cases we observe the predominance of the statistics
hs (total FAM) over hs (total CMG), and statistics hy (FAM) over hy (CMG) (we
shall call this phenomenon the effect of stable predominance). However, for the group
A we do not detect this effect.
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N |y (CMG) | hy (FAM) [ hs (TCMG) [ hy (TFAM) | hs (LCMG) | hs (LFAM)
1| 0.00000 0.03810 | 0.96190 1.00000 0.25238 0.74762
2 | 0.03333 0.35238 | 0.56667 0.88571 0.33810 0.66190
3 | 0.00000 0.31429 | 0.68095 0.99524 0.21429 0.78571
4 |0.03333 0.08095 | 0.89524 0.94286 0.83333 0.16667
5 | 0.00952 0.01905 | 0.98095 0.99048 0.50952 0.49048
6 | 0.00476 0.02381 | 0.95714 0.97619 0.70476 0.29524
7 | 0.00000 0.03810 | 0.96190 1.00000 0.25714 0.74286
8 | 0.03810 0.20952 | 0.75238 0.92381 0.22857 0.77143
9 | 0.04286 0.24762° | 0.56190 0.76667 0.30476 0.69524
10 | 0.05238 0.19048 | 0.43333 0.57143 0.20476 0.79524
11 | 0.04286 0.03810 | 0.90952 0.90476 0.59048 0.40952
12 | 0.03810 0.05714 | 0.91905 0.93810 0.80952 0.19048
13 | 0.00476 0.05238 | 0.94762 0.99524 0.86667 0.13333
14 | 0.10000 0.10052 | 0.87143 0.88095 0.58095 0.41905
15 | 0.01905 0.21420 | 0.78571 0.98095 0.42857 0.57143
16 | 0.04286 0.00952 | 0.98571 0.95238 0.68095 0.31905
17 | 0.06190 0.00952 | 0.97143 0.91905 0.79524 0.20476
18 | 0.01429 0.03333 | 0.96667 0.98571 0.91905 0.08095
19 | 0.01429 0.02381 | 0.96667 0.97619 0.53333 0.46667
20 | 0.07143 0.13333 | 0.70952 0.77143 0.45238 0.54762
21 | 0.03810  [°0.00952 | 0.96667 0.93810 0.63810 0.36190
22 | 0.04286 0.10000 | 0.88571 0.94286 0.20476 0.79524
23 | 0.16190 0.14762 | 0.60000 0.58571 0.92857 0.07143
24 | 0.05238 0.20048 | 0.42381 0.66190 0.27143 0.72857
25 | 0.00952 0.11420 | 0.88571 0.99048 0.24762 0.75238

Table 2: Values of the statistics for the FAM-patient’s scanograms under calibration
of the training samples (24 CMG and 25 FAM)

Criteria

/11

Vn

99

V12

Quadratic
Linear
Combined

0.28
0.56
0.72

0.72
0.44
0.28

0.80
0.48
0.80

0.20
0.52
0.20

Table 3: Frequencies of the random events Dy, k = 1,2, ..., 6 under calibration of the
training samples (24 CMG and 25 FAM)
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2. In the case of the linear criterion, the events Dy and D, are nearly equiprobable
both for group A (training samples of the CMG-patients) and for group B (training
samples of the FAM-patients). Therefore, this criterion is unfit for the differential
diagnostics of CMG from FAM.

3. The quadratic criterion for group B gives much better results, i.e., in 80% of
the cases we obtain correct diagnosis (event D, occurs) and in 20% of the cases the
diagnosis is incorrect (event occurs). However, for group A the results are reversed,
i.e., in 28% of the cases we obtain correct diagnosis and in 72% incorrect diagnosis.
Therefore, this criterion is also unfit for the differential diagnostics of CMG from
FAM.

Since using groups of training samples A and B of equal size with only linear
or quadratic criteria did not produce acceptable results, we calibrated the training
samples for the case when the group A (25 scanograms of the CMG-patients) was
approximately twice as large group B (12 scanograms of the FAM-patients). This
selection of sizes had to provide predominance of the statistics hg (total CMG) over
statistics hy (total FAM) and also hy (CMG) over hy (FAM). The results of calibration
of these samples are shown in the Tables 4-6.

Based on the analysis of these results we can conclude that:

1. In the overwhelming majority of cases for group A we observe the predominance
of the statistics hy (total CMG) over hy (total FAM) and also hy (CMG) over hy
(FAM), i.e. the effect of stable predominance occurs. For the group B this effect
does not occur.

9. For the linear criterion the events D; and D, are practically equiprobable
therefore it is unfit for the differential diagnostics of the CMG from the FAM.

3. The quadratic criterion for the group A provides good results (in 90% of the
cases we obtain the correct diagnosis, i.e. the event D; appears and in 8% of the
cases the incorrect diagnosis is detected, i.e. the event Dy occurs). However, for the
group B we determine the correct diagnosis in 59% of the cases, and in 44% of the
cases the computer diagnosis is not correct. Therefore, this criterion is also unfit for
the differential diagnostics.

It should be noted that the effect of stable predominance of the statistics hg over A4
for the group A, mentioned above, is observed only where the areas of the scanogram
registration field vary in a rather narrow range (in the above case - from 56 to 81).
If this principle is violated, then the statistically non-homogeneous sample is formed
and the effect of stable predominating becomes slightly marked.

In summary, we must established that for the samples A and B such that size ratio

1
is 2:1 (more exactly, such that [Eca'rdA] ~ card B , where [z] denotes the integer

part of the number z), the use of both quadratic and linear criteria alone does not
permit to obtain acceptable results. Nevertheless, the above mentioned effect of stable
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N | 71 (CMG) | hy (FAM) | hs (TCMG) | hy (LFAM) | hs (LCMG) | he (LFAM)
1 | 0.16667 0.01905 | 0.97143 0.82381 0.42381 0.57619
2 | 0.14286 0.08095 | 0.81429 0.75238 0.27619 0.72381
3 |0.07143 0.00000 | 0.99524 0.92381 0.80952 0.19048
4 |0.12857 0.25714 | 0.69524 0.82381 0.41905 0.58095
5 |0.23810 0.11905 | 0.77143 0.65238 0.26190 0.73810
6 |0.05714 0.01905 | 0.93810 0.90000 0.55238 0.44762
7 | 0.34286 0.00952 | 0.90095 0.64762 0.80952 0.19048
8 | 0.20476 0.04286 | 0.82381 0.66190 0.60952 0.39048
9 |0.18095 0.04762 | 0.91429 0.78095 0.85238 0.14762
10 | 0.26190 0.06190 | 0.89048 0.69048 0.83333 0.16667
11| 0.27143 0.02381 | 0.85238 0.60476 0.68005 0.31905
12 | 0.35714 0.04286 | 0.88571 0.57143 0.75714 0.24286
13 | 0.23333 0.01905 | 0.95714 0.74286 0.33810 0.66190
14 | 0.29524 0.00000 | 0.97619 0.68095 0.91429 0.08571
15 | 0.32381 0.07619 | 0.70952 0.46190 0.79524 0.20476
16 | 0.21905 0.00476 | 0.80952 0.50524 0.65238 0.34762
17 | 0.15238 0.00000 | 1.00000 0.84762 0.51905 0.48095
18 | 0.11905 0.00476 | 0.98095 0.86667 0.40000 0.60000
119 | 0.13810 0.00476 | 0.99048 0.85714 0.83810 0.16190
20 | 0.00952 0.00000 | 1.00000 0.99048 0.66667 0.33333
21 | 0.16667 0.01905 | 0.97143 0.82381 0.61905 0.38095
22 | 0.17143 0.03333 | 0.92381 0.78571 0.71905 0.28095
23 | 0.15714 0.22381 | 0.67619 0.74286 0.38095 0.61905
24 | 0.20000 0.04286 | 0.89048 0.73333 0.60000 0.40000
25 | 0.08571 0.00952 | 0.97143 0.89524 0.41905 0.58095

Table 4: Values of the statistics hy = h(Cy), k = 1,2, ...,6 for the CMG-patient’s

scanograms under calibration of the training samples (25 CMG and 12 FAM)
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N [ h; (CMG) | h, (FAM) | hs (TCMG) | hy (TFAM) | hs (LCMG) | he (LFAM)
1 |0.04762 0.06100 | 0.92857 0.94286 0.34286 0.65714
2 | 0.10000 0.25714 | 0.58571 0.74286 0.31429 0.68571
3 | 0.02857 0.29048 | 0.69048 0.95238 0.21429 0.78571
4 |0.20476 0.02857 | 0.91429 0.73810 0.86667 0.13333
5 |0.05238 0.01905 | 0.97143 0.93810 0.71429 0.28571
6 |0.11905 0.00952 | 0.93333 0.82381 0.80476 0.13333
7 | 0.05238 0.07619 | 0.91905 0.94286 0.34762 0.65238
8 | 0.00524 0.20952 | 0.72857 0.84286 0.27143 0.72857
9 |0.14286 0.04286 | 0.50000 0.40000 0.37143 0.62857
10 | 0.09524 0.04286 | 0.43810 0.38571 0.13810 0.86190
11 | 0.24286 0.01905 | 0.92857 0.70476 0.55238 0.44762
12 | 0.21905 0.01420 | 0.95714 0.75238 0.85714 0.14286

Table 5: Values of the statistics by = h(Cy), k =
scanograms under calibration of the training samples (25 CMG and 12 FAM)

Criteria | vy

V9

Va2 V12

Quadratic | 0.92
Linear
Combined | 0.92

0.68

0.08
0.32
0.08

0.42 | 0.56
0.58 | 0.42
0.08 | 0.42

1,2,...,6 for the CMG-patient’s

Table 6: Frequencies of the random events Dy, k = 1,2, ..., 6 under calibration of the
training samples (25 CMG and 12 FAM)
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predominance that is observed for training samples of equal size (card A ~ card B Y,
1
and for training samples such that [acardA] ~ card B, allows us to formulate the so-

called filtering criterion. The principal idea of this criterion consists of the following.

Consider first the calibration results for the training samples of equal size. As
was shown in this case, for the gronp B (FAM-patients) we have the effect of stable
predominance of the statistics hy (total FAM) over hg (total CMG), whereas for the
group A (CMG-patients) the effect is missing. Let @ be a patient whose disease
we try to diagnose. On the basis of the groups (training samples) A and B, we
compute the values of the statistics hs (Q) and hy (@) for this patient. Suppose
that hs (Q) > hs(Q). Which hypothesis (D, or Dy ) is in better agreement with
experimental results? As far as the effect of stable predominance h3 (Q) < ha (Q) for
the group B is observed, the probability of the event ”patient @ is suffering from the
same disease as patients in the group B (i.e. FAM)” will be small. Hence, it is more
probable that this patient is suffering from CMG. So, the hypothesis D, will be in
better accord with the experimental results. But if for this patient A3 (Q) < hg (Q),
then we cannot accept any decision about the patient’s disease on the basis of the
group A and B of equal size (i.e. we cannot diagnose the disease), because such data
may be inherent both in the CMG-patients and the FAM-patients.

Now, let us define the so-called A-filter, which can be used to diagnose CMG for
examined patients in some cases. We shall say that a scanogram passes through the
filter if and fails to pass if hs (Q) < hs (Q)-

Next. let us describe the B-filter. To this end we use another pair of training
1
samples A and B of size [EcardA ~ card B , i.e. the size of the A twice as large

as that of B. Calibration results in this case show that the reverse effect of stable
predominance hz (Q) > h4(Q) for the group A is achieved. Hence, values of the
statistics 1 (Q) and hj (Q) satisfying the inequality h3(Q) < hj(Q), obtained for
the examined patient with the help of this pair of the training samples A and B,
indicate higher probability for the diagnosis of FAM than CMG. Finally, if h3 (Q) >
h; (Q) than we cannot diagnose the disease (non-acceptance decision). Thus, we have
described the second part of the filtering criterion (so-called B-filter), which allows
us in some cases to diagnose FAM in the patients. We shall say that the scanograms
of the examined patient pass through the B-filter if A3 (Q) < hj (Q) and faile to do
so i 13 (Q) > 15 (Q).

In view of the above, the quadratic filtering criterion may be described as follows:

1. Form two pairs of the training samples A and B with the sizes card A= card B

1 a
and J:?-cardA] ~ card B, respectively. The first pair is used in the construction of

the A-filter, the second one in the construction of the B-filter.
2. Perform the above-mentioned process of filtration of the patient’s scanogram

through the A-filter and B-filter. If the scanograms pass through the A-filter, than the

97



Yu. PETUNIN, D.KLYUSHIN, K.GANINA, N.BORODA Y, RANDRUSHKIW

diagnosis of CMG ais indicated. If they pass through B-filter, then FAM is indicated.
Otherwise, if neither filter is passed, the diagnosis is not made (non-acceptance of
decision).

The quadratic filtering criterion is interesting, but it cannot be considered accept-
able for clinical medicine, since the probability of the non-acceptance of decision is
too high. This brings us to idea of using a combined filtering criteria (quadratic and
order), which can be described as follows.

The combined filtering criterion also consists of two filters: A-filter and B-filter.
Let h;, 2 =1,2,...,6 and a3, oy be the statistics of the examined patient () obtained
with the help of the training samples A and B of equal size (card A ~ card B) and
denote by i, 7 =1,2,...,6 and af, a; the corresponding statistics obtained with the
help of the training samples A and B, such that cardA = 25, card B = 12. We shall
say that the scanograms of the patient () pass through the A-filter if at least one of
the following inequalities is true:

hy > hy; oy < ay

(the proposition hy > hy& a7 < «y is true), and that they pass through the
B-filter if at least one of the following inequalities is true:

h; < hy; of > o3

(the proposition hi < h} & af > aj is true).

The combined filtering criterion is formed in the following way: if the scanograms
of the examined patient pass through the A-filter, then the diagnosis is CMG. If they
pass through the B-filter, then the diagnosis is FAM. Otherwise, we cannot diagnose
disease (non-acceptance of decision).

For the experimental testing of the quality of the proposed criteria we have selected
17 CMG-patients and 7 FAM-patients. All these patients did not belong neither to
the A-group or the B-group. The A-filter have been constructed on the basis of the
24 CMG-scanograms (the group A) and 25 FAM-scanograms (the group B), and B-
filter have been constructed on the basis of the 25 CMG-scanograms (the group A)
and 12 FAM-scanograms (the group B). The results of testing for both the filters are
shown in Tables 7-11.

Analysis of the experimental results show that in the case of combined filtering
criterion we can have three possible decisions: 1) to diagnose FAM in the examined
patient; 2) to diagnose CMG and 3) fail to diagnose any disease (non-acceptance of
decision). If we obtaine a diagnosis FAM for a patient who is suffering from CMG,
then this produces a so-called error of the first kind. If a diagnosis of CMG is obtained
for a patient suffering from FAM, then this produces an error of the second kind. On
the basis of the experimental results we can conclude the following statements (see
Tables 7 and 8): the probability of the first kind of error is approximately 6% and the
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N | by (CMG) | h, (FAM) | h; (TCMQG) | hy (TFAM) | hs (LCMG) | he (LFAM) | oy
1 | 0.01905 0.01429 0.54286 0.54286 0.42381 0.45714 )
2 | 0.00000 0.01429 1.00000 0.64762 0.27619 0.35238 1
3 | 0.02857 0.07143 0.71429 0.40000 0.80952 0.60000 6
4 | 0.02857 0.14762 0.72381 0.27143 0.41905 0.72857 6
5 | 0.06667 0.20000 0.52857 0.23333 0.26190 0.76667 13
6 | 0.01905 0.10952 0.91429 0.32857 0.55238 0.67143 i
7 | 0.02381 0.06190 0.68571 0.66667 0.80952 0.33333 7
8 | 0.02857 0.01905 0.97143 0.77143 0.60952 0.22857 1
9 | 0.06190 0.22381 0.47619 0.24762 0.85238 0.75238 14
10 | 0.02381 0.00476 9.97143 0.44762 0.83333 0.55238 0
11| 0.07143 0.01905 0.83333 0.31905 0.68095 0.68095 2
12 | 0.00952 0.25238 0.61429 0.34286 0.75714 0.65714 13
13 | 0.03810 0.09048 0.77619 0.80000 0.33810 0.20000 5
14 | 0.01905 0.12857 0.65714 0.51429 0.91429 0.48571 9
15 | 0.07619 0.05238 0.60952 0.41905 0.79524 0.58095 10
16 | 0.00952 0.12381 0.80000 0.25238 0.65238 0.74762 8
17 | 0.02857 0.11905 0.69524 0.24286 0.51905 0.75714 11
Table 7: Values of the statistics hy = h(Cy), k = 1,2,...,6 for the CMG-patient’s
scanograms under testing by A-filter (24 CMG and 25 FAM)
N [ hy (CMG) | hy (FAM) | by (TCMG) | hy (TFAM) | hs (LCMG) | hg (LFAM) | o
1 | 0.00000 0.04762 0.95238 1.00000 0.59524 0.40476 1
2 |0.03333 0.37619 0.28571 0.62857 0.17143 0.82857 19
3 | 0.01905 0.21905 0.56667 0.76667 0.26667 0.73333 16
4 10.00476 0.08571 0.91429 0.99524 0.17143 0.82857 1l
5 | 0.00000 0.39524 0.60476 1.00000 0.88571 0.11429 1
6 | 0.00000 0.53810 0.45714 0.99524 0.16667 0.83333 5
7 | 0.00000 0.10952 0.89048 1.00000 0.18571 0.81429 3

Table 8: Values of the statistics hy = h(C), k = 1,2,...,6 for the FAM-patient’s
scanograms under testing by A-filter (24 CMG and 25 FAM)
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N [ oy (CMG) | hy (FAM) | hs (TCMG) | hy (TFAM) | hs (LCMG) | hg (LFAM) | oy
1 |0.18095 0.00000 0.80952 0.62857 0.35238 0.44762 5
2 | 0.08095 0.01429 0.98571 0.91905 0.71429 0.28571 1
3 10.17143 0.04286 0.66190 0.53333 0.40476 0.59524 6
4 |0.12381 0.10476 0.60000 0.58095 0.30476 0.69524 6
5 | 0.21905 0.12381 0.41905 0.32381 0.28095 0.71905 13
6 | 0.20952 0.10952 0.79524 0.69524 0.34286 0.65714 T
7 10.17143 0.04762 0.60952 0.48571 0.67619 0.32381 7
8 |0.20476 (.00000 0.97143 0.76667 0.87143 0.12857 1
9 |0.17143 0.10476 0.35714 0.29048 0.27619 0.72381 14
10 | 0.14286 (0.00000 0.98571 0.84286 0.50000 0.50000 0
11 | 0.20952 0.00476 0.89048 0.68571 0.35238 0.64762 2
12 | 0.12857 0.16667 0.36190 0.40000 0.37143 0.62857 13
13 | 0.28095 0.02857 0.72381 0.47143 0.77143 0.22857 5
14 | 0.10476 0.05714 0.52381 0.47619 0.55238 0.44762 9
15 | 0.19048 0.01905 0.60476 0.43333 0.46667 0.53333 10
16 | 0.19524 0.07143 0.70476 0.58095 0.30000 0.70000 8
17 | 0.23333 0.07619 0.63810 0.48095 0.29048 0.70952 11
Table 9: Values of the statistics hy = h(Ck), k = 1,2, ...,6 for the CMG-patient’s
scanograms under testing by B-filter (24 CMG and 25 FAM)
N [ hy (CMG) | hy (FAM) | by (TCMG) | hy (TFAM) | hs (LCMG) | he (LFAM) | o
1 | 0.10476 0.02381 0.95714 0.87619 0.69048 0.30952 1
2 |0.11429 0.29524 0.32381 0.50476 0.22381 0.77619 19
3 10.17143 0.18571 0.56667 0.58095 0.29524 0.70476 16
4 | 0.06190 0.07143 0.86190 0.87143 0.18095 0.81905 11
5 | 0.35714 0.08571 0.59524 0.32381 0.93810 0.06190 1
6 | 0.09524 0.24286 0.40476 0.55238 0.20476 0.79524 5
7 0.20476 0.09048 0.86190 0.74762 0.29048 0.70952 3

Table 10: Values of the statistics hy = h(Cy), k =

scanograms under testing by B-filter (24 CMG and 25 FAM)

Criteria | v | vy

V99 V9

Linear

Quadratic

Combined

0.06
0.06
0.06

0.29
0.35
0.94

0.22
0.67
0.43

0.11
0.11
0.00

1,2,...,6 for the FAM-patient’s

Table 11: Frequencies of the random events Dy, k = 1,2,...,6 under testing of the
patient’s scanograms by A- and B-filters
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probability of the second kind of error is practically equal to 0%. This means that
the probability (more exactly, frequency) of the FAM-diagnosis for the CMG-patients
is approximately equal to 0.06 and probability of CMG-diagnosis for FAM-patients
is equal to 0.00. In addition, the probability of diagnosing the disease (acceptance of
decision) is equal to 94% for CMG-patients and 43% for FAM-patients. Thus, based
on the analysis of the above process, we can diagnose cancer of the mammary gland
with high probability after single analysis, however for more accurate determination
of fibroadenomatosis we must repeat the process.

5. Repeated analysis

The repeated analysis is produced in the following cases:

1) Sequential analysis. If after first analysis the decision is not accepted we repeat
taking scrape, construction of scanogram. calculation of its indices and test procedure.

2) Multiple analysis. To increase the accuracy of diagnosis (i.e., for decreasing of
the probability of the false-positive and false-negative diagnosis) and to decrease the
probability of non-acceptance of decision we take several scrapes at once, construct
the corresponding svanograms and so on.

First, consider how we can to exclude completely the non-acceptance of decision
and to produce definite diagnosis (CMG or FAM) by sequential analysis. Hereinafter
we assume, that size n of the group of examined patients so large, that the frequency
h and corresponding probability p of the event (correct diagnosis, misdiagnosis and
non-acceptance of decision) are practically coincide. Suppose, that after the first
analysis the probability (frequency) of misdiagnosis equals to «, the probability of
non-acceptance of decision equals to 3, and the probability of correct diagnosis is
equal to 7, so that &+ 3+ = 1. Let n be a size of group of examined patients, i
the number of misdiagnoses, mmy the number of non-acceptance of decision and [ the
number of correct diagnoses obtained under the k-th repeatition of the analysis. We
suppose that under repeating of analysis the frequences c, 3, vy are constant. Then
1= an, m = ﬁn: L= T, ig = aﬁn: me = ﬁgn: ly = 'Y;Bna 13 = aﬁznl mg = ﬁanv
la =v8%n, ... ,ix = affn, my = Bn, l; = v3*~1n as far as the repeated analyses
are used only for the patients with indefinite diagnoses (non-acceptance of decision).
After N repetitions of analysis the number of misdiagnoses i (N) has the form

_ BN-1
1-p3 N
1-p L—g
since under large N the number SV~! is negligible, and the number of non-

acceptance of decision m(N) = my = Vn = 0.
Thus, under the large N the probability of misdiagnosys ay satisfies the inequality

i(N)=3 s=an 3 1=
= k=an 3 [ Qart
k=1 k=1
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Ny =gt o
Ty 1-7 <1—}6”

and the probability of non-acceptance of decision fx is given by

an

o= g

7

1 it - :
so that, under 8 < 5 the probability of misdiagnosys increases less than twice,

and the probability of non-acceptance of decision is negligible (since BN very quickly
tends to zero, then under N = 5 as a rule B = 0 ). Hence, the probability of the
correct diagnosis v = 1 — any — .

For example, according the resul's obtained for the patients suffering from CMG
we have @ = 0.06, 3 = 0.0, v = 0.94 (see Table 11), so for the sequentional two-step
analysis the theoretical estimations of the probabilities are invariant. But, for the
patients suffering from FAM o = 0.0, 8 = 0.57, v = 0.43 (see Table 11), and

ay = 0.0, B = 0.3249, vy, = 0.6751,
Oy = 0.0, )33 = 01852, Ya = 0.8148,
s = 0.0, By = 0.1056, vy = 0.8944,
g = 00, /36 = 00602 Yo = 093981
as = 0.0, G = 0.0343, v, = 0.9657.

An estimate for the number of repeatition of the analysis depending on the sig-
nificance level 3* for the probability of the non-acceptance of decision, has the form:

_|Inp*
v-[28]

Consider now the repeated analysis in the case of multiple analysis. It should be
stressed, that in this case, in contrast to sequential analysis, the repeated analysis is
obtained for all patients at once. Let A; denote a misdiagnosis under the first analysis
("the first” and “the second” refers only to the order number in series scrapes for
multiple analysis), let Ay denote a non-acceptance of decision (indefinite diagnosis),
and As be a correct diagnosis. In accordance with the above notations the probability
of these events is: p (A1) = a, p(4;) = B, p(A3) = 7. As a result of multiple analysis
can be occured 9 events: AE” A?), i,7 = 1, 2,3 where the product of events means that
they occure simultaneously, the upper indecies mean the order number of analysis.

Suppose, that patient P suffers from CMG. Then the event A;means the misdiag-
nosis "FAM”, and Aj is the correct diagnosis "CMG”. After series from two analysis
the misdiagnosis "FAM” is made in the following cases: A&”A?), Aﬁ”Agl), AS)A?).
That is why the probability of the misdiagnosis is equal to
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p=p(APAD + AP AL + AP AP) = p (AP AP +p (AP AD)+p (40 4P) =
(p (A"))" +2p (4AP) p (45”) = a2 + 205,

provided that the results of the repeated analyses are independent events (as

above, we suppose that under repeating of analysis the frequences «, 3, v are con-
stant).

The non-acceptance of decision arises in cases A,gl)A(f}, A(II)A?), A&”AE‘”, and the
probability of this event is given by
2
2 = p(ADAD + ADAD 4 AD AP = (p (AD))! + 20 (AP) p (4) = p 4+
2arry.
At least, the correct diagnosis "CMG” is made in the cases AE)AEE’, Ag]}lgz),
Aé”A?f’, and the probability ps of the correct diagnosis is:

ps =72+ 2B7.
If

a+268<1,2ay<B(1-0), (1)

then py = o® + 208 < o, ps = B+ 20y < B,p3 = ¥V* + 2By > 7. So, the

probabilities of the misdiagnosis and non-acceptance of decision decrease. Note, that
1

nonequalities (1) are always true provided that 0 < § < # < - and « is near zero.

The similar situation arises for the patients suffering from FAM.

Thus, according the above-mentioned results for the patients suffering from CMG
we have o = 0.06, # = 0.0, v = 0.94 (see Table 11), so for double analysis the
theoretical estimates of the probabilities are the follows:

p1 = 0.0036, p, = 0.1128, p; = 0.8836.

For the patients suffering from FAM a = 0.0, 8 = 0.57, v = 0.43 (see Table 11),
and

p1 = 0.0, p; = 0.3249, p; = 0.6751.

Calculation of the changes of the probabilities ¢, 3, and v under multiple analysis
is produced according to above mentioned scheme.

CONCLUSIONS

In summary, the above investigations have been shown that the proposed com-
puter method for the diagnosis of breast cancer (CMG) and fibroadenomatosis (FAM)
allows us to identify with high probability the diagnosis of breast cancer, based on
a single analysis of patient’s buccal scrapes (the probability of error in the diagnosis
and the probability of non-acceptance of decision do not exceed 6%). In the case of
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patients suffering from FAM, the probability of error in the diagnosis is practically
zero, however the probability of non-acceptance decision based on a single analysis
of buccal scrapes is 43%.

If decision is not accepted, we must repeat the analysis by taking more trials

(buccal scrapes) If the results of the analysis are similar after n trials, then the

1
probability of non-acceptance of decision is approximately equal to (E) provided
that the results were obtained independently (so-called independent trials). If it is
. A"
known that the patient is suffering only from one disease, then the value (5) quickly

tends to zero and, as a rule after 5-6 trials (buccal scrapes), we can diagnose FAM.

The computer method of diagnosis is a supplementary method that can be used
only in conjuction with other methods of clinical examination of patients (mammog-
raphy, ultrasound examination, etc). The proposed method can be applied also to
mass screening of patients for the early detection of breast cancer, or to the selection
of patients who are in the high risk category.
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OZET

Gogiis kanseri teghisi (CMG) ve FAM igin bilgisayara dayah yontemlerin matem-
atiksel yonleri incelenmisgtir. CMG’nin tespiti ve kabul etmeme karar: hata olasiliklarimin
%6’dan biiyitk olmadign gosterilmistir. FAM igin teghis hatas1 olasihiginin pratik
olarak sifir, kararin kabul edilmesi olasihiginin %43 oldugu belirlenmistir. Teshis igin
bilgisayar yontemi sunulmustur. Bu yontem yiiksek risk simfinda olan hastalarin
erken gogiis kanseri teshisi amaciyla uygulanabilmektedir.
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Abstract

In this study the bandwidth selection methods for the kernel estimation of
the probability density [unction are discussed. lLeast-squares cross-validation
method, biased cross-validation method and bootstrap method are reviewed,

compared and their applications are presented.
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1. Introduction

Let X;,Xo,..., X, be a random sample from an unknown absolutely continuous
distribution with probability density function f. The kernel estimate derived from

this sample is
~ 1. 2 X— Xi
f(””h):EZK( h ) o)

i=1
Here, K is the kernel function such that it is usually a probability density func-
tion unimodal and symmetric around zero. h is the window width which is called
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the bandwidth or also called smoothing parameter because it controls the degree of
smoothing in data for the kernel estimation.

The kernel estimation at a given point is weighted mean which is calculated by
overlapping the mean point of the kernel function with the given point and taking

account the other observations with certain weights which are obtained according to
the kernel function and bandwidth (Toktarms, 1995).

Kernel estimation method is one of the non-parametric methods to estimate proba-
bility density function and it was suggested first in 1956 by Rosenblatt and theoretical
properties were investigated by Parzen in 1962 (Rosenblatt, 1956; Parzen, 1962).

In application, K and h are selected by the users. For different choices of K and
h, the estimates of the density function differ. The way of choosing K and h has been
the interest of many studies. The choice of the kernel function K was studied first by
Epanechnikov in 1969. Epanechnikov showed that there exists an optimal kernel in
some sense,but there are other kernels which give almost optimal results (Epanech-
nikov, 1969). It is quite satisfactory to choose a kernel for computational convenience
or differentiability properties. For this reason, the choice of kernel function is not as
important as the choice of bandwidth in application (Silverman, 1986).

The choice of bandwidth has a very important place in the kernel density esti-
"mation. Boneva and his colleagues showed that small changes in bandwidth could
change estimates on large scale (Silverman, 1978). A lot of methods were suggested
and investigated to select the bandwidth. But there has been no commonly accept-
able method up to now. In this study, the most commonly used methods will be
investigated, compared and some applications will be presented.

2. Bandwidth selection methods

To examine the performance of kernel estimator, several criterions related to the
deviation of f from the real probability density function f were considered. Com-
monly used one of these criterions was suggested by Rosenblatt and it is known as
the mean integrated squared error (MISE). MISE is a preferable criterion because it
is mathematically simple. It is defined as follows:

MSE{f(z,h)} = /E{f(m,h)—f(x)}Qd:c

= (nh)™ 7 K (u)?du + t—llh" Uﬂ

-0 — o0

uzK(u)du} f M (z)dz +o{(nh) + '} (2)
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And, the asymptotic mean integrated squared error (AMISE) is defined as follows
(Wand and Jones, 1995):

AMISE{f(z,h)}-= (nh)™! f K(u)zdwih‘* j uzK(u)du] f M(x)%dz. (3)

The most appropriate way to select bandwidth is to find h value which minimizes
MISE. Optimal h value obtained from (2) is given as, hop ,

—2/5 ¢ o 1/5 ¢ oo —-1/5
{ / K(u)2du} { / f"(z)ma:} a5 (4)

As it can be seen from this equation, the optimal h value depends on the second
derivative of the unknown density function f. For this reason different methods are
suggested to select h value. Some of these methods will be given in the following
sections.

| — [ / u?K (u)du

—00

2.1. Least squares cross-validation

As a data method, the least-squares cross-validation (LSCV) was suggested by
Rudemo (1982) and Bowman (1984), independently each other. Let f be a kernel
estimator of a probability density function f. Then MISE can be written as follows:

MSE{f(z,))} = B ] f(a,h)%dz — 2B [ f(z,h)f(2)dz + / fl2)%dz.  (5)

Here the aim is to find A value which minimizes MISE. Selection of h value which
minimizes MISE is equivalent to the h value which minimizes the following expression

MSE {f(z,h)} - / f(z)z = E f f(z, h)2dz — 2 / f(z,B)f(2)dz.  (6)

The right-hand side of the (6) depends on f | it is not known. But it can be shown
that an unbiased estimator for the right-hand side is,

LSCV(h) = / f(z, h)2dz — 2n~ X;“ Foi(Xah). (7)

Here %=
foi(Xa b K (=5
g2
and it is a kernel estimate obtained by using all observations with X; deleted. This is
the reason for the term “cross-validation” which refers to the use of part of a sample
to obtain information about another part. (7) is called least-squares cross-validation

function and because of (7) gives an unbiased estimator of (6) it is also called unbiased
cross-validation function (Cula, 1998).
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2.3. The bootstrap

The bootstrap (B) is based on the following base : Main simple was assumed to
be a population. Several samples were drawn from main sample with replacement.
For each of the drawn sample. related estimators are calculated. If the bootstrap is
used to estimate MISE. then bias component can not be calculated. For this reason,
the procedure to choice of the bandwidth A is different than the ordinary bootstrap
and it is called as smoothed bootstrap. In this method the bandwidth h for sample
{X;} by using one of the preceding methods used to find the kernel estimate f .
The bootstrap sample {X} is chosen from density f using the following algorithm
(Faraway and Jhun, 1990).

Step 1 : An integer j is chosen from {1, 2,...,n} with equal probability.

Step 2 : A random variable @ is derived from the probability density function K.
Step 3 : Set Xj — X;+ho

Then many samples are obtained by repeating the preceding procedure and tak-
ing expected value MISE is calculated. Taylor said that if the standard probability
density function is taken as the kernel function. the for bootstrap estimate of MISE
it is not necessary to take a sample over again. If the standard normal probability
density function is used for the kernel function, then bootstrap estimate of MISE is,

sl ) spe)

L,J

B(h) =
272;2 h Vo

+\/_Zexp{ — (@ — =) }+mf (10)

(Taylor, 1989). It can be seen that if observed values are replaced in (10), then only
a bootstrap function depending on h is obtained. The bandwidth which minimizes
this function is found and this bandwidth is shown as hg

2.4. Comparison of bandwidth selection methods

In the theoretical point of view, various estimators are compared according to the
rate of convergence of some non-random error criterion, such as MISE, to zero. The
concept of rate of convergence is an asymptotic concept. For this reason, the concept
of rate of convergence is used for large sample sizes. For small samples, comparisons
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The basic principle of least-squares cross-validation is to find the kernel estimates
from the data for various h values and to select h value which minimizes (7). Band-
width obtained by this strategy will be shown as hrscv.

The least-squares cross-validation function can have more than one local mini-
mum. Researchers show that in this case it is appropriate to take the largest local

minimizer of LSCV. Because the largest local minimizer is the nearest bandwidth to
the optimal bandwidth obtained from MISE (Wand and Jones,1995).

2.2. Biased cross-validation

AMISE, which is a simple formula with respect to MISE, also depend on j? M(x)%dz
oo
like MISE. Scoot, Tapia and Thompson have taken for [ f"(z)%dz the integral
—oo

[ f*(z)*dz by using kernel estimator f in order to obtain the bandwidth. Scott and
Terrell said that this estimator is deficient asymptotically and it is appropriate to use

7 M (z)de = f Jid :1:)2a':r—~— / K" (z)2dz 8)

=-=00

o0
for the estimate of [ f™(z)2dz (Scott and Terrell, 1987). (8) is the adjusted value of

_o_cf: f™(z)2dz. Then biased cross-validation (BCV) function is obtained by substituting

(8) into the asymptotic expression and is given as follows:

BCV(h) = — f K(u 2du+ih“ [7 (u)durz (z)%dz (9)

—CO

In this study, the bandwidth value which minimizes the function given by (9) will be
ShOWl’l as hgcv.
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are made with respect to simulation studies. The commonly used method to choose
a bandwidth was LSCV criterion between the years 1982-1988. General performance
of this method is not satisfactory very well. The rate of convergence of the estimator
of LSCV is O(n~'/1%) (Wand and Jones, 1995). To obtain optimal bandwidth, very
large sample size is needed (Chiu, 1992).

An unpleasant aspect of LSCV and BCV. which has been noticed in simulation
studies and in applications to real data sets. is that the LSCV function and BCV
function often have more than one local minima. BCV selection method has also the
same rate of convergence of order n~!/10 like LSCV method (Hall and Marron. 1991).
The studies show that the bandwidth which is obtained by BCV is larger than the
bandwidth which is obtained by LSCV. One advantage of BC'V method is to have
small variance with respect to LSCV. Scoot and Terrell showed that an attractive
property of 1;2.3(_‘\,' with respect to h-Lsm-' is that hyey has minitmm asvmptotic vari-
ance. In this case. hpcoy is more stable than hpsey (Chao et al.. 1994). Itom the
simulation studies. it was seen that these selectors are to be directed to select small
bandwidth with respect to asymptotic theorems. Density estimate which is obtained
by using small bandwidths show spurious structure (Chin, 1991). Researchers show
that these selectors have an unsatisfied performance with theoretical and practical
points of view. Performance of B method is better than the performance of LSCV
and BCV for some distributions because of the standard deviation of bootstrap’s
bandwidth selectors is small (Faraway and Jhun, 1990).

The bandwidth value which is obtained by B is larger than the bandwidth values
which are obtained by LSCV and BCV. The bootstrap bandwidth has smaller variance
but computational cost of bootstrap is higher than LSCV and BCV criterion.

3. Application

The optimal bandwidth, A, , which minimizes (4) is

oo -2/5 ¢ oo 1/5 ¢ oo ~1/5
hopt = [ / u’K (u)du] { / K(u)zdu} { ] f“($)2dg;} n=1/5

—_00 — 0O

If it is assumed that probability density function is known as a normal distribution
with sample mean 100 and variance 4 and kernel function is assumed as a standard
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normal distribution, then optimal bandwidths for sample sizes n = 50,100,250 and
500 can be obtained as follows by using the formula above:

hope = 0.969240 for n = 50

hopt = 0.843773 for n =100
hopr = 0.702486 for n = 250
hopt = 0.611549 for n = 500

For example, if the probability density function is an exponential distribution
with parameter A = 1, then for n = 50,100, 250 and 500 optimal bandwidths will be
obtained as follows :

hopt = 0.407868 for n = 50

hopt = 0.355070 for n = 100
hopt = 0.295615 for n = 250
hopt = 0.257348 for n. = 500

In fact the kernel estimation was used when the sample was taken from an un-
known distribution. In this study, samples with several sizes were drawn from known
distribution and optimal bandwidths were obtained using (4). The bandwidths which
were obtained by using the methods of LSCV, BCV, B were both compared with each
other and investigated the closeness of them to optimal bandwidth.

First 350 samples were drawn from the normal distribution with mean 100 and
variance 4 for each sizes n = 50, 100, 250 and 500. By taking standard normal distrib-
ution as kernel function, for each 350 samples with n = 50 bandwidths were obtained
by using the methods of cross-validation, biased cross-validation and bootstrap and
their distributions were found. These procedures were repeated for n = 100, 250 and
500. The distributions of bandwidth are given in the following Figure 3.1.
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Figure 3.1. The distributions of bandwidths for each 350 samples from the
normal distribution with sample sizes n = 50, 100, 250, and 500 by using the methods
of LSCV, BCV, and B.

For each bandwidth distribution, mean and variance are obtained. These values
are given in following Table 3.1.
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Table 3.1. Means and variances of the bandwidth distributions which are found
for samples from normal distribution with various methods.

LSCV BCV B
n=50 h=1821407 h = 1,943505 h=3,529612
varli)= 0649172 Var(i)=0721859 varli)=0.127460
n=100 h=1328485 h=1765337 h=2981763
var(h)=0,282590 Var(h)=0495502 varlh)=0,383692
n=250 h= 0822881 h = 1387032 h = 2,430861
varlp)=0071172 varlr)=0376796 Varli)=0.06767
n=500 h= 0623642 h= 0953251 h = 1837037

Varlh)=0,02995

Varlh)=0,106302

Varli)=0,04729

From these figures, it can be seen that when sample size increases, then the band-
widths which are obtained from each of 350 samples have more smooth distribution.
It is seen that bandwidths which are obtained by using BCV criterion are greater
than the bandwidths which are obtained by using LSCV criterion and the band-
widths which are obtained by using B criterion are greater than the bandwidth which
are obtained by using BCV criterion. From these figures and table it can be seen that
the variance of the bandwidths of B is small. This shows that the estimation is more
stable. When the sample size is increasing, then the variance of the bandwidth is de-
creasing for all methods. But when n = 50, in samples out off 350 samples bandwidth
can not be obtained with bootstrap method. For the other samples, bandwidth can
not be obtained with bootstrap method. For this reason when n = 50 , the variance
of the distribution of bandwidths is smaller than others in the table and this is a
fallacy.
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As seen from the table the method which gives the faraway bandwidth from the
optimal bandwidth is the bootstrap method. For example , for n. = 100 f:,q,, L
0.843773. hysov = 1.328485, fupey = 1.765337, and hy; = 2.981763. When the sample
size is small, then the variance of LSCV selectors is greater than the variance of BCV
estimators. But when the sample size is increasing LSCV selectors is closer to the
optimal bandwidth and have small variance with respect to BCV selectors.

If the probability density function shows a symmetric and smooth distribution as
in the Figure 3.1, it can be said that LSCV’s bandwidth in large sample is closer to
the optimal bandwidth.

Secondly, 250 samples were drawn from a non-symmetric distribution with para-
meter A = 1 for each sample sizes n = 50,100,250, and 500. By taking standard
normal distribution as kernel function, for each 250 samples by using the methods
of cross-validation, biased cross validation , and bootstrap, the bandwidths were
obtained and their distributions were found. These distributions are given in the
following Table 3.2.

n =50
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Figure 3.2. The distributions of bandwidths for each 250 random samples from
the exponential distribution with sample sizes n = 50,100, 250, and 500 by using the

methods of CV, BCV, and B.
For each bandwidth distribution the mean and variances are obtained. These

values are given in Table 3.2.

Table 3.2. : Means and variances of the bandwidth distributions which are found
for samples from exponential distribution
LSCV BCV B
n=50 h=0,18028 h=0313036 h = 0,705556
var(i)=0006111 var(i)=0.029497 varlh)=0047312
n=100 h=0,14644 h=0,210843 h=0.539259
varlh)= 0002624 Var(#)=0,008596 var(s)=0036186
n=250 h=010672 h = 0,130600 h = 0,953080
varlh)=0,00063 varli)=0.001119 Var(p)= 0022534
n=500 h=00820 h=0,10060 h = 103492
var(s)= 0000255 var(i)=0,000712 varlh)= 0014567
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In this case it can be seen that biased cross-validation’s bandwidths are larger
than cross-validation’s bandwidths, and bootstrap’s bandwidths are larger than bi-
ased cross-validation’s bandwidths. From the table and figures, we can see that the
variance of cross-validation’s bandwidth are smaller than the variances of the other
method’s bandwidth distributions. But the method which gives the nearest band-
width to the optimal bandwidth is biased cross-validation method. For example, for
n = 100, hop = 0.35507, hpscy = 0.14644, hpey = 0.210843, and Ay = 0.539259.

If the probability density function shows a non-symmetric distribution, for large
samples BCV method’s bandwidth gets closer to the optimal bandwidth.
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OZET

Bu ¢aligmada olasihk yogunluk fonksiyonlarinin gekirdek tahmin edicileri igin
bant genisligl se¢cimine yonelik yontemler ele alinmgtir. En kiigiik kareler, capraz
dogrulama ve bootstrap yontemleri tamtilmig ve karsilagtirilarak uygulamalar yapilmstir.
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Abstract

We consider a population of n individuals. Each of these individuals generates
a discrete time branching stochastic process. We study the number of ancestors
S(n,t) whose offspring at time ¢ exceeds level 6(t), where 0(t) is some positive
valued function. It is proved that S(n,t) may be approximated as ¢ — oo by
some stochastic processes with independent increments if 7 — oo depending on
the time of observation.

Key Words: Population, ancestor, branching process, Poisson process, Brown-
ian motion, Binomial process, exceedance

1. Introduction

We consider a population containing n individuals of the same type at time zero.
Each of these individuals (ancestors) initiates a discrete time branching population
process. Let 0(t),t € INg = {0,1,...} be a positive valued function and S(n,t) be the
number of ancestors having more than 6(t) descendants at time 2.

Branching processes started by the initial ancestors may be considered as population
processes describing population growth in different regions of an area R. Then it is
easy to see that S(n,t) is the number of regions of R whose population at time %
exceeds level O(t). Process S(n,t) can be associated with a problem on the number of
vertexes of rooted random trees as well. In fact each realization of the scheme under the
consideration can be interpreted as a forest containing n rooted trees. Consequently a
realization of S(n,t) is the number of trees in the forest having more than 0(t) vertexes
of the level t.

We note here the rise of interest in recent years to problems concerning extrema in
branching stochastic processes. For example the recent publications in this direction
have been devoted to the asymptotic behaviour of the expectation of the maxima of
branching processes (Borovkov, Vatutin (1996), Pakes (1998)), to the limit distribution

123



I. RAHIMOV AND H. HASAN

for the maximum family size (Arnold, Villasenor (1996), Rahimov, Yanev (1999)) and
to other problems. Limit distributions for the index of the first process in a sequence of
branching processes exceeding some fixed or increasing levels were obtained in Rahimov,
Hasan (1998). Thus the study of S(n,t) can be considered as a contribution to this
program of investigation of the extrema in population processes.

It follows from well-known properties of branching processes (see Athrey, Ney
(1972), for example) that if n is fixed and the process is critical or subcritical, then
S(n,t) in the long run equals to zero with probability 1, for any level function 8(t).

What happens if the size of the initial population is large? In other words what is the
asymptotic behaviour of S(n,t) if the number of initial ancestors increases depending
on the time of observation? To answer these questions we consider family of stochastic
process y(z,t) = S([m(t)z],t), where z € [0,00) and m(t) — o0 as t — oco. We
approximate y(z,t) by some known processes with independent increments. Behaviour
of the parameter m(t) and the form of limit processes naturally depend on criticality
of the initial branching process. It turns out that, if the process is supercritical, then
y(z,t) may be approximated by either a “binomial process” (process with independent
and binomially distributed increments) or by the Brownian motion depending on the
behaviour of m(t). If the process is subcritical or critical, then the approximating
process is either a Poisson process or the Brownian motion.

Now we give a rigorous definition of the process S(n,t). Let A} be the random
population at time ¢ generated by i-th initial ancestor, ¢ = 1,2,...,n. For any positive
valued function 6(t) functional S(n,t) = S(n,t)[f] can be defined as following

S(n,t) = #{i: card A: > 6(t)}.

Let X;(t) = card A! be ¢-th branching process and X (t) be a branching process

such that X () 4 X;(t) for all i > 1. We denote {P;,k > 0} the offspring distribution
of X(t) and put

£(S) = i BS*. R(z,t) = P{X(t) > z},Q() = R(O,0),

A = Y kB, =) k(k-1)F.
k=1

k:l

2. Critical processes

First we consider the critical case, i.e., the case of A =1, 0 < 0% < co. We assume

that there exits the following
o(t
Jim —%—} =0 € [0, 0] (1)

and consider y(z,t) = S([tz], 1), i.e,, m(t) =t.
Theorem 1. If A =1, 0 < 0 < oo and (1) is satisfied, then y(z,t) > y(z) as
t — oo, where D means convergence in the weak sense and y(x) is the Poisson process
with Ey(z) = 2zexp{—20/0®}/o? for 6 € [0,00) and il is a “zero process” (i.e.,
y(z) = 0 with probability 1 for all z € [0,00)) for 6 = oc.
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Theorem 1 gives an approximation of S(n,t) for the case when n = o(t) or n =<t
as t — oco. Now we consider the case when n/t — oo, t — co. More precisely we put

m(t) = a(t)t, where a(t) — co. We define the stochastic process Wﬁ(])(m) as follows

Wt(l)(m) _ S([La(t):z], z’) — [ta(t):n]R(@(t),t) i

Va(t)

where R(0(t),t) = P{X(t) > 0(t)}, z € [0,00).

Theorem 2. If A=1, 0 < 02 < 0o and (1) is satisfied, then W' (z) B W(z) as
t — oo, where D means, as before, convergence in the weak sense and W) (z) is the
Brownian motion with zero shift and with the diffusion parameter 20~2 exp{—20/0?}
for 8 € [0,00) and il is a zero process for § = cc.

Proof of Theorem 1. Since the lives of individuals are independent and identically
distributed we obtain that

ESS™ = [1 — (1 - S)R(6(t), t)]". (2)

We use the following well known results for critical branching processes (see Harris
(1963), pp. 19-22). If A =1,0 < 0? < oc. then for any fixed z > 0

PIQ)X () > 2 X(t) > 0} ~ ™, Q(t) ~2/0%, as t—ox. (3)

It follows from (3) that under the condition (1)

2 20
R(6(t),t) ~ 5, ©XP {—;}t — 00. (4)
Therefore
Jim In ESYet) — lim [#t] R(O(t),t)(1 — 5)
2 2
= -3¢ Wfes(] —a) (5)

for 6 € [0,00). Consequently the generating function of y(z,t) tends as t — oo to
2T 99/
exp {_0'_28 (s — 1)}

which is the generating function of the one dimensional distribution for Poisson process

y(x).
Now we consider
P{y(mht) = ki: Z = Oal)‘ 4. 1T}7

where 0 =29 < zy <--- <z, <00, 7=1,2,... First we prove that

2(xy — 2
Jim ESYE074EY = exp {—(mﬂ 21) g1 5 1)} - (6)
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In fact, since
[zqt]

Y(z2,t) — y(z1,t) = Z Ei, (7)

=[z1t]+1

where (t) ( )
L, if Xa(t) > o(t

&= &(t) = { 0, if X;(t) <6(t)

and X;(t) is the process generated by i-th ancestor, we have

lim In ESYE20789 = lim ([z5t] — [2:t]) R(6(2), t)(s — 1)-
Thus again due to the limit theorem for critical processes we obtain (6) from the last
relation.

It follows from (6) and (7) that

~ 2z — Ty
lim E l:H Sy(muf) —y(@i- ]|t}] = exp {Z (.'13, 23: 1)6_26’(&2(35 _ 1)} .

12
s 1. =1 o

Since the last limit is the generating function of (y(z;) — y(zi-1),i = 1,...,7), we
conclude that joint distributions of increments of y(z,t) tend to ones of y(z). According
to Corollary 1 to Theorem 5 in Billingsley (1968) (see Billingsley (1968), p. 31) from
convergence of increments we obtain that

(y(mlv t)v naty y(mﬁ t)) - (y(ﬂh), Eis 7y($f‘))=

as [ — oo in distribution for any » > 1 and 6 € [0, 00).

Thus theorem is proved for 6 € [0, o).

The proof for @ = oo follows from the fact that in this case the limit on the right
side of (5) is zero.

Proof of Theorem 2. It follows from (2) and definition of the process th(:r:) that

idnR(0(t),t)

Eei;\w:t(l) (2) —exp{—
a(t)

} (1-(1-s)R(6(2),1))",

where n = [ta(t)z], s = e VY, If we use the following Taylor expansions

In(l—z) = —z4+0(?, z—0 (8)
2
e = 1+z’a——%—+o(a2)? a — 00, (9)
we obtain
2

In Ee™We @) = _[1a(t)a]

2a(t) R(Q(t), t) - O(tR(G(t),t)),

Taking into account relation (4) we conclude that

lim EeW: @ = exp —ﬁe_%‘f"2
t—oo 0'2 ¥
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which is the characteristic function (Fourier transform) of the one dimensional distri-
bution of the Brownian motion W) (z).

Let 0 = 29 < 21 < +++ < z, < 00. To prove convergence of finite dimensional
distributions we first show that the distribution of

(Wt(l)(:rj) . Wt(l)(-'ﬂj—l)a =l - ,1.)

as t — oo converges to the distribution of (WM (z;) — WW(z;_y), j=1,...,7).
Again using (2), definition of W) (z) and Taylor expansions (8), (9) we obtain that

TE%lOEexp{ Z)\ [V“) W()(.I:J 1)}}

:exp{ o Z)\z e iy } (10)

for any r > 1, where \; € R, j=1,...,r. Since the last limit is the Fourier transform
of the distribution of (W"(z;) — WM (z;_1),5 =1,...,7) we conclude from here that
the joint distribution of increments of the process H/,_m(a:) converges as t — oo to the
joint distribution of Brownian motion’s increments.

Hence due to the mentioned above Corollary 1 in Billingsley (1968, p. 31) the finite
dimensional distributions of I’Vf”(x) converges as t — 00 to ones of the Brownian
motion W()(z) with zero shift and with diffusion parameter 20! exp{—20/0?}. The
theorem is proved for 8 € [0, c0). The proof for § = oo follows from the same arguments,
if we take into account that in this case the limit on the right side of (1) is 1. Theorem
2 is proved.

3. Supercritical processes

Now we consider the case of supercritical processes. It is known (Athreya, Ney
(1972)) that if A > 1, EX(1)In X(1) < oo, then X (¢)A~! converges with probability
one to a random variable W and the Laplace transform () of W satisfies the following

equation
p(A) =f (sa (%)) :

It is also known that the distribution function 7(z) of W is absolute continuous for
z > 0 and has an atom of the mass ¢ at = 0. Here ¢ is the extinction probability.
We assume that there exists

tlirélot?(t)A_l =0 € [0, 0] (11)

and -
Y kPiInk < oo. (12)

k=2

and consider “discrete time” process S(n,t),n =0,1,... for t € INy. Note that here n
is the time parameter.
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Theorem 3. If A > 1 and conditions (11) and (12) are satisfied, then S(n,t) 2
£(n), n € Ny ast — oo, where {(n) is a stochastic process with independent and
binomially distributed increments such that

P {£(ni) — €(nic1) =k} = ( " _kni_l ) [1 — m(8)]* w(g)™—s1*

for any 0 < ni_y < n; < 00, n; € Ny, forf € [0,00) and il is a zero process for
g =25.

Example 1. Let the offspring distribution be the positive geometric distribution, i.e.
P. =a(l —a)* 'k > 1and P, = 0. In this case the offspring generating function
has the form f(s) = as(1—Bs)™,B=1—-aand A = a1 and the equation for the

Laplace transform is:
” ( 5) __ap(N)
a)  1-Pp(A)

Now it is not difficult to check that the Laplace transform ¢(A) = a(c+ )™ satisfies
the above equation. Hence the limit distribution 7(z) is exponential with the density
function ae~** and Theorem 3 gives the following result.

Corollary. If conditions of Theorem 3 are satified and the offspring distribution is the
positive geometric of the parameter 0o < « < 1, then for 6 € [0, 00) the limit process
£(n) in Theorem 3 is binomial such that

P{&(ni) — &(ni1) = k} = ( = _kn*—l )e—aﬁk [1 B e_aa]"i—ﬂiq—k.

Proof of Theorem 3. Let ng,n4,...,n, be such number that 0 =ng <n; <+ <
n, < 0o and n; € Ny, 0 < i < r. First we prove that for 1 <:<r

lim BSSw=8(ni-1) — (7(9)S; + w(0))" ™, (13)

t—oo

where 7 (#) = 1 — m(0). It follows from representation (7) that
ES{rf=50t — (R(0(2),8)S: + 1 = R(O(2), 1)) ™" (14)
Now we consider the estimate

|P{X(t) < 0(t)} — m(0)] < sup |[P{X(1)A™" < 2} —7(2)| + m(0()A~*) — =(0)]. (15)

First term on the right side of (15) tends to zero as ¢t — oo due to the limit theorem
for supercritical processes. It follows from condition (11) and continuity of 7(z) that
the limit of the second term is also zero. Thus

R(0(t),t) — 1 —m(0), (16)

as t — o0o. From relations (14) and (16) we obtain (13).
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Using independence of increments of S(n,t) from relation (13) we have

t—o0

r T

lim E []‘[ §5Wat)=Stn-10 | — TT {#(0)S: + m(6) ™™,
i=1 =1

which proves the theorem for § € [0,00). In the case f = oo the limit on the right

side of (13) equals 1 and the ”limit process” £(n) equals zero for all n. The theorem is

proved.

Theorem 3 shows that stochastic process S(n,t) for fixed n € INg can be approx-
imated as ¢ — oo by a binomial process. Now we consider the case when n — oo
together with ¢. Let a(t) be a positive function such that a(t) — oo as t — co. We
consider the following stochastic process

() - Sle®.0) - [a0)sROE), 0

Val®)
where z € [0, c0).
Theorem 4. If A > 1 and conditions (11) and (12) are salisfied, then th(x) 2
W®(z) as t — oo, where W (z) is the Brownian motion with zero shift and with
diffusion parameter w(0)(1 — w(0)) for 6 € [0,00) and it is a zero process for 6 = oco.
Example 2. If, as in Example 1,the offspring distribution is the positive geometric of
the parameter 0 < a < 1, then it is not difficult to see that the Brownian motion in
Theorem 4 has the diffusion parameter e=%? (1 — e=2?).
Proof. First we prove the convergence of the one dimensional distribution. Let

AW, (z) N [ag):m}
A(N) = Ee"t ¥ B(A) =exp{ — var €; ¢,
( () 2a(t) 2 j

where ¢; = g;(t),j = 1,2,... are the same as in the representation (7). Note that it
follows from the definition of Wt(z)(:c) and (7) that

[a(t)z]
A()\) == H EeiA(Ej—R(t))va(t), (17)
=1

where R(t) = R(0(t),t).
Using inequality |[[a; — [16;| < D_la; — b, laj] <1, |bj] < 1, and taking into

j j i
account the fact that E(g; — R(t)) = 0 for j = 1,2,..., we have the following estimate

|A(A) = B(A)| < Th + T, (18)
where with a;(t) = A\? var (g;)/2a(t)
[a(t)=]
T, = Y | RONe@ _q % R\ ol
j=1 a(t

la(t)=]
T, = Y E |1 — e u® _ aj(t)| g
=1
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Using the inequality
L1

& 1 —dat—|< ~|of?
i L

we obtain that

1 < 08l - ROP.

Here it is easy to see that E|e; — R(t)|* < 2. Thus we have 77 — 0 as t — oo.

Taking into account that var €; = var €1, = 1,... is bounded and using the Taylor
expansion e % = 1 — z + o(z),z — 0, we obtain

Ty = [a(t)x]lea (t) + o(en(t)) — ca ()] = o(1), t — oo

,From these estimates and from (18) we conclude that functions A(A) and B(\) have
the same limit as ¢ — co. On the other hand, since var £; = R(0(t),t)(1 — R(0(),1)),
the function B(\) tends as ¢t — oo to

exp { = gon(0)a - (o)},

which is the Fourier transform of the one dimensional distribution of the Brownian
motion W& (z).
Let 0 =29 <x1 < +++ < T < 00,7 > 1. It is not difficult to see that, if we repeat

5 & g i 0 (2, . ()¢
the above arguments, we obtain that the characteristic function Fe(We™ (@:)=W"(2-1))

tends as t — oo to \2
exp { =7(0)(1 = x0) 5 (a3~ 510 |

forany j=1,2,...,7 and 0 € [0,00). Therefore the limit of the characteristic function

k
Eexp {? E )\;; [Wa(g)(xj) == Wt(:a}(.’ﬂj_l]} 3
j=1
as { — o0 equals to
| X
exp ¢ —m(0)(1 — () Z?(J‘?j —Zp ).

=1

Since the last limit is the Fourier transform of the joint distribution of increments of
the Brownian motion W (z), we obtain convergence of finite dimensional distributions
from the mentioned above (see proof of Theorem 1) Corollary 1 Billingsley (1968).
Theorem 4 is proved.
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4. Subcritical processes

Let now A < 1, i.e., the initial process is subcritical. In this case we use the
following limit theorem for subcritical processes (Sevastyanov (1971), p. 29). If A < 1,

there exist
tll.rga P{X(t) =3

X@®)>0 =P j21, (19)
and the generating function F*(s) of P;, j > 1 satisfies the equation
1— F*(s)) = A(1 — F*(s)). (20)

It is also known that, if A < 1, then Q(t) = R(0,t) - 0ast — oo. If A <1 and
in addition £X(1)In X(1) < oo, then we have the following asymptotics for Q(t) (see
Sevastyonov (1971), p. 56)

Q) ~ KA,0 < K = [[ B(P{X(m) =0}) < oo, (21)

where B(s) = (1 — f(s))/(A(1 — s)).

Let y(z,t) = S([zA™],1).
Theorem 5. If A < 1 and (12) is satisfied, then y(z,t) = y(z) as t — oo, where
y(z) is the Poisson process with Ey(z) = Kz P} for 0(t) = 6 € Ny and it is a zero

>0

process if B(t) — oc. '
Proof. We use again (2) with n = [zA™"]. In this case it follows from the above
mentioned limit theorem for subecritical processes that under the condition (12)

R(6(t),t) ~ KA'Y Pr, t— o0, (22)

i>0
for 6 € INg. Since

lim In ESY®Y) = (s — 1) lim [z4~R(8(), 1)

t—oo

we obtain that the limit of ESY=Y a5t — oo is exp K:BE Pi(s—1) ;.
i>0
To prove convergence of finite dimensional distribution it is sufficient to show that

lim BSVenOve1) = exp {Km —w) ¥ Fyls— 1)} : (23)
i>e

for any 0 < z; < 2z, < 0o and 0 < s < 1. It follows from representation (7) and (2)
that in this case ’

Jim In BSVE=9=n0 = lim n()R(6(2),t)(s — 1),
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where n(t) = [29 A~ — [#;A7"]. We obtain (23) from here taking into account relation
(22). Thus due to (23)

lim B[] SV —¥@i-1t) = exp {K(s =1y Py [ = :z;j_l)} 5
=1

t—o0 r :
>0 J=1

ie., (y(z;,t) —y(x;_1,t), 7=1,2,...7) converges in distribution to (y(z;) — y(z;_1),
j=1,2,...r

We obtain convergence of finite dimensional distributions from convergence of in-
crements by the Corollary 1 in Billingsley (1968) (see Billingsley (1969, p. 31) as in
the proof of previous theorems. Theorem 5 is proved.

Now we consider the case nA® — oo. Let, as before, a(t) be a positive valued
function such that a(t) — oo as t — co. We define process Wt(a)(a:) by the relation

W(z) = #(t) [S(A™a(®)),1) - [eA'a(®IRO(), 1)},

where z € [0, 00).

Theorem 6. If A < 1 and (12) is satisfied, then W™ (z) I we (z) ast — oo, where

W®)(z) is the Brownian motion with zero shift and with diffusion parameter Ky P}
i>6

for 0(t) = 0 € INg and it is a zero process if 0(t) — oo.

Proof. Let 0 < 2y < z; < o0. It follows from definition of W(z) and representation

(7) that

A(N) = Eei«\(Wfa)(m)—Wfa’(wn)) = exp {_M (1 — (1 — S)R(G(t),t))", (24)
)

where n = [z;47%a(t)] - [roA~"a(t)] and S = e/ V). If we use Taylor expansions (8)

an (9), we have

2

In A(X) = %)

nR(0,t) + o(AT'R(0,t)), t— oo.

Taking into account relation (22) we obtain from here that

A(N) = exp {u%—(mi - mg)KZP;'} +0o(1), t— oo. (25)

j>0

letnow 0=z <21 < -+ <2 <00, 7 >1. Since lives of different individuals
are independent, the increments Wt{a) (xj)"_Wt{'s) (zj-1), j3=1,...,r, are independent.
Therefore it follows from (25) that the joint distribution of these increments tends as
t — oo to the joint distribution of increments W®(z;) - W®(z;_;), j=1,...,r.
To obtain from here convergence of finite dimensional distributions we again appeal to
the mentioned above Corollary 1 from Billingsley (1968). Theorem 6 is proved.
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OZET

n bireyden alinan bir kitlede bireylerin kesikli zamanlh dallanma siiregleri yarattig
disiiniilmiig, atalar ve gcocuklarin ¢ zamam bakimindan sayilan ele alinmgtir. Atalarin
say1st olan S(n,t)’nin, ¢ sonsuza giderken artimlan bagimsiz olan bir siirece yakinsadig
ispatlanmstir.
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Abstract

We consider the bivariate FGM distributions with uniform marginals. The
distribution of the concomitant of the r th order statistic of one of the compo-
nent is obtained. Recurrence relations between moments of concomitants are

given.

Key Words: Farlie-Gumbel-Morgenstern distributions, order statistics,

norm, concomitants, recurrence relations, product moments.

1. Introduction

The class of bivariate distributions originally proposed by Morgenstern (1956)

having a natural form

Fxy (z,y) = Fx (z) Fy (y) {1 + e[l — Fx (2)] [1 — Fy ()]}

is a flexible family useful in" applications provided the correlation between the variables
is not too large. It can be utilized for arbitrary continuous marginals. This structure

was studied by Farlie (1960) in the form (FGM) of

Fxy (2,y) = Fx (2) Iy (y) {1 + oA (Fx (z)) B (Fy (y))}

where A(z) and B (y) satisfy certain regularity conditions ensuring that (1.2) is a
distribution function with absolutely continuous marginals Fy (z) and Fy (y).
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Further generalizations of (1.1) to distributions with more than two variables and
a stronger correlation structure can be found in Johnson and Kotz (1975, 1977), Kotz
and Johnson (1977) and Huang and Kotz (1984). Recent results dealing with this
family of distributions are due to Huang and Kotz (1998) who introduce an additional
parameter to increase the dependence between the underlying variables. Bairamov
and Kotz (1999) present several theorems characterizing symmetry and dependence
properties of FGM and Huang-Kotz FCGM distributions and provide a modification
of Huang-Kotz FGM distributions with large correlation between the components.

Let (X;,Y:) ,i=1,2,..,n be a random sample from an absolutely continuous
bivariate population (X,Y) with distribution function (d.f.) Fxy (z,y). Let Xy
denote the r th order statistics of the X sample values. Denote by Y|..n the Y values
associated with X,.n. We call Y. the concomitant of the r th order statistic. Con-
comitants are used. for example, in selection procedures. Recently Balasubramanian
and Beg (1998) have studied concomitants in Gumbel’s bivariate exponential distri-
bution. For more details we refer to the review articles of Bhattacharya (1984) and
David (1993). Denote probability density function (p.d.f.) of Yirm) by gprm (y). It is
known that

oo
girm) (¥) = f f (| z) frn(x)dz (1.3)

where f (y | ) is the condition density function of Y, given X and fr.n (2) is the p.d.f.
of X,.n (see David (1981), p.110.).

In this paper we shall consider the classical Morgenstern distribution (1.1) with
uniform marginals and investigate the distributional and moment properties of con-
comitants of order statistics.

9. Concomitants in Morgenstern type bivariate distributions

Consider (1.1) for Fx (z) =z, Fy (y) =9;0<2Z,¥ < 1.
Fz,y)=zy{l+a(l—2)1-y)}, —1sa=sl (2.1)

and
fxy)=1+a(l-22)(1-2y) ,0<z,y< 1 (2:2)

The d.f. of Y;.n) is given by

+oo
Crm @) = [ Fy|2) fra (@) do, (23)
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where F'(y | z) is a conditional d.f. of Y given X, and

n!

fon®) = =y @ - F @ £ @)

is the p.d.f. of 7 th order statistic. Since the marginals of (2.1) are Uniform [0,1] we
arrive at

Fly|z)=y{l+a(l—22)(1—y)} and f(y|z)=1+a(l—22)(1-2) (24)
Using (2.3) and (2.4) we derive the d.f. of Y. :

Gremy 8) = [y {1+ (1~ 20) (1= )} gy (1 =) da =

r
= 1 1—-2——| (1— 2.5
y{ +a[ n+1]( y)} (2.5)
and the corresponding p.d.f. is
#
; = 1—-2——|(1—2 2
grm () =1+ [1 ) 1] (1—2y) (2.6)

Consider the moments of Yjy.n). From (2.6), the k th moment of Y., is given by

1
; - T
&) = E{Yl?:nl} ~ f@f’" {1 +a [1 = 2n—+1] 3= 2y)}dy =
0

1 T k
- — — — =il 1.2 ... 2.
Consequently the expected value and the variance of Yj,.,j can be obtained from
(2.7) as follows:
. 1 le T
El3Yyrmt==31——=11-2 2.7
{[']} 2{ 3[ n+1]} (3:78)
and )
1 o T r
Yt =—<{1——|[1—4 1-—- . 2%
VGT{ [‘n]} 12{ 3 [ n+1( n-l-l)]} \27R)
The moment generating function (m.g.f.) of Y},.nj is given by
1
Mig (2) = B {eem} = [ e {1 ta [1 - 2—’"—] (1- Zy)} di
' J n+1

“ett_l{1+a[1—2n—%] l1+2(%-e:’i1)]} (2.8)
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3. Recurrence relation between moments of concomitants

From (2.6) one observes g1y (y) =1+ [1 — 21] (1 —2y) and

n

ﬂﬂm(y)—-gwm—u(y)==agjgﬁiij(l-29} (3.1)
Also _
gr—1m () =1+ [1 - 25%] (1-2y)
and
Girin) (U) = Gr—1imy (¥) = ——5 (1= 2). (3.2)

Relation (3.1) and (3.2) can be extended:

2ri
_ s Y =5 <i<n—r 3.
Gprn) (Y) = Gpren—iy () a(-n.+ i+ 1) (1-2y) ,1<i<n—7 (3.3)

and 95
J > ; :
Girn) (¥) — Gpr—jim (¥) = —am (1-2y) ,1<5<r—-1 (3.4)

Moreover the following equalities are valid

r—j
rejim—i =1 1 =i
g£ J: I(y) +a[ 'nj_'l—‘_l

](1—23;) 1<i<n—-r;1<j<r—-1
and

2[ri—j(n+1)]
n+1)(n—1+1)

(1-2y) ,1<ifn—r;1<j<r-1
(3.5)

9ir:n] () — Gir—jin—i) (y) = a(

Letl£i1<i2§n—7‘and1§j1<j2£r—1. Then

T—jg B ‘i"—ji
n—ig+1 n—1i+1

i) @) — G—sun-i2 () = 20| la-20 @8

Using (3.6) one obtains the following general recurrence relation between the mo-
ments of concomitants: -

() _ _ r—§y "~ ] k g
p’[r—jl:n-il] #If‘—jg:ﬂ—-—ig] o [ﬂ. - 7:1 o 1 . ,’:2 FE 1 (k £ 1) (k + 2) ( : )
In particular the following relations are valid

(k) (k) B 2re —k (38)

gy ~ Pirn—i = 0 ) (n—i + 1) (b + 1) (k + 2)
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® _® 2 k
Hiem) = Pir=im) = 00 Ty (4 1) (k1 2) (3.9)
® . K _ 2[ri —j(n+1)] —k

From (2.8) clearly follows the following recurrence relation for m.g.f. of concomi-
tants:

T — jg r—= j]
Mis—jym—in) (8) = Mip—jpen—s () = 20¢ ] X

n—ig+1 n—ii+1

et —1
X

et —1

In particular, one can obtain the following relations between m.g.f. Yjun and

1 i
[H2(E = )],1§il<iggn—r;1§jl<jggr—~l. (3.11)

Yir—jim—i:

2ri et —1 1 et
M — Miypp—i) = - 1+2|--— 3.12
tren] fran—4 a(n-l—l)(n—z—l—l) t l * (t ef—l)} (312)
2 et—1 1 et _
PSS SOt RR)

2(ri—j(n+1)] e —1 1 et
rm) Mr‘—":n—i = - 1 5= = :
Miren tr-gn—= a(n+1)(n_z+1) t 2 t et—1 18

4. Joint distribution of concomitants

Let Yiryin) 5 Yiram)s -+ Yjrxin) b€ the concomitants of Xyiin » Xrginy -ory Xryms T€SPEC-
tively, where 1 < 7y < rg < ... < 1y < n. The joint probability density function of
(Yh*: nls Yrain]s - Yim:ﬂ]) s

(yh Yz, ":yk) =

[l"l ,1"‘-2, ...,l"k:ﬂ]

= ] / / Fyn | 21) f (e | @2)ef (Wi | Z6) S,y pom (B0, T2y -y TR) ATy odtye (41)

where f, . (z1,Z2,..,Tx) is the joint o B A T b, S GR—— )

The joint p.d.f. of two concomitants (Y[,.m!,Y[m}) (1 <r < s<n)for (2.1) can
be calculated by using (4.1) as follows

B 5
GY o Yiem) Y1, Y2) = 1+ @ (1 - 2—*) (I-2y)+a (1 = 2m) (1—2y,)

r
n+1
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n+1 +4(n+1)(n+2

o? (1—2”3 s Lo ))(1—2y1)(1—2y2) (4.2)

For k = 3, the joint p.d.f. of ( [,.1,,|,Y[,.9n],}/’|r3n|) (1<ri<ry<rz3<n)is

Gir1jrayrs) (Y1, Y2, 43) = 1+a(1 -2n+1) (1—2y)+

N R IS S
. (1_21':?:?1‘2 (nrj_liz(izg))(l 2y1) (L — 2y,) +
+a2(1_21;;j—_?1'3 (nri;3+i)2))(1 2y1) (1 — 2y3) +

ro+r3 ro(rs + 1)
+all1-2 +4 , 1—2y) (1 —2y3)+
(12220 ) (o o (- o)

n+1 (n+1)(n+2)

P (g + 1) (rs + 2) :
—8 (n_+ 1) (n + 2) (n i 3)) (l - 2y1) (1 - 292) (1 - 2?}3) 5 (43)

5. Concomitant of the norm-ordered statistics

Bairamov and Gebizlioglu (1998) introduced norm-ordered statistics for multivari-
ate data. Let R™ m > 1, be the real Euclidean space. Suppose X, X,, .., . X, € R™
are independent identically distributed (i.i.d.) random variables (m > 1 random vec-
tors) (r.v.’s) with distribution function (d.f.) F. Denote by ||.| the norm defined in
R™. It is clear that | Xy, || X2, ..., | Xn| are iid. r.v. with d.f. P{|X;|| <z} =
F*(z), z € R. If F is assumed to be continuous, the probability of any two or more
of these r.v. assuming equal magnitudes is zero. Therefore, there exists a unique
ordered arrangement within the r.v. | X;||, 2 = 1,2, ...,n. We say that X; precedes
X, (or that X; is less than X5 in a norm sense) if ||Xi|| < || X3|| and denote X; <
X,. Suppose X denotes the smallest of the set X, X, ..,.Xn; X® denotes the
second smallest, etc. ; and X denotes the largest in a norm sense. The distribution
of norm-ordered statistics is expressed in terms of the so called structural function
h(z,y) = P{|Xa|| < ||Z||}, where Z = (21,2, ..., Z;z) € R™ which can be estimated
empirically. Specifically the p.d.f. of r th norm-ordered statistic X is

ff‘(xlpmfz; o x.’c) =
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n—1 B -
”(T B 1) (21, B9, oy )] (L= Rl(@1, 0, @)™ (1, T2, 00 2k)
if 12 < 1zl < - < |12l
and
fr(zy, 22, ..., xx) = 0, otherwise

The joint p.d.f. of (XM, X®, ey XM s

f],?,...,ﬂ(:‘cla Y1, T2, Y2, ey Ty yﬂ) =

_ { nlf (1, 91)f (22,90). - (@ vn) 5 i ]| < Bl <o < |2

0 , otherwise

Here we define concomitants for norm-ordered statistics as follows.

Let (X,Y, Z) be the absolutely continuous r.v. with the d.f. F(z,v,z) and p.d.f.
f(z,y,2). Let (X;,Y:,%:),4=1,2,...,n be the independent copies of (X,Y, Z). Sup-
pose that the first two coordinates of (X,Y) are ordered in a norm sense, ie., let
XM < X® < ... < X®™ be the norm-ordered statistics of (X;,Y:) 1 = 1,2,...,n.
Denote by Zj.., the Z values associated with X (). We call Zjr:m) the concomitant of
r th norm-ordered statistics X (.

The d.f. of Zj.n) can be found as follows:

n
=1

By using total probability formula for continuous random variables
+oo
P(A) = f P(A| X = z)dFx (z)
—00

one can write

400 400

P{Zym<sh= [ [FGElom)fm(@y) 9=Crml) G

—00 — 00

and
+o0 +too

girn (2) = f f f(z| z,y) frn (z,y) dzdy,

—00 —00

where
n!

Jrn (,9) =D (=) [h(a, )] ' L = h(z,y)]"™" [ (z,9) dzdy , (5.2)
h(z,y) = P{ICY) < (zy)l}
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Now consider the following three-variate FGM distributions with unit exponential
marginals:

F(z,y,2) = (1 - e—“‘) (1 - e_”) (1 - e_") {1 + ae_”_y'z}, ryz>0;-l<a<l
(5-3)
This is a trivariate extension of Gumbel’s bivariate exponential distribution.
The p.d.f. is

fmy2)=e*"*{l+a [267 — 1] 267 - 1] |27 - 1)} . z,9,2>0  (54)

Evidently

flmy) = {t+afte -1 [ -] e -]}, 09,2205 (59)
f*(;[x,-y)sz(zlw,y)d~
0
= (1 - e‘z) {1 + ae™* [Qe'm - 1] [26_” = 1}} (5.6)

By using (5.1) we can obtain the d.f. of norm-ordered concomitants for the distrib-
ution of the form (5.3). For example, consider the distribution function of Zj1.,). Let

I(z,¥)|| = |z| + |y|. Then
h(z,y) = P{X|+|Y|< ||+ |y} = P{X +Y Sz +y} =G (z+Yy).

Hence
h(z,y)=1-(14+z+y)e ¥ and (5.7)
1—h(z,y)=(1+z+y)e 7. (5.8)
Using (5.2)-(5.8) in (5.1) one can write

+00 +00

P{Zym<z}= [ [Flzy)nl—h@y)]" f (5 dedy
+o0 +oo
= 0] D/ .(1 — e'z) {1 + ae™* [253‘m - 1] [2c‘” — 1]}

|
n [(1 +z+y) e"x_y]n e " Vdzdy

4

00 +00

/ {1 + ae”? ‘ 7 — 1] [28_3" - 1}} (1+z+y)" ' e ™ "dzdy
0

= 1—8

c\

=N (1 —e? ) {Io + ae_z [4171 - 2I2 - 213 + Li]} 3
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where
+o0o oo

o 1
L=1= f f 1+z+y)" e "Wipdy = —,
n

0 0

8

8 C\%

] n—l‘ a=1 n+1

(1 +24+ y)ﬂ-—l e—(n+1)z—(n+l)ydxd,g =

P~
Il
8 o

oo -1 n—1 ]
= n—1 _—(nt+l)z—n ﬂ—]‘|n n n'_l)! (n+1)
12—/f(l+x+y) g~ yd:cdy— EZ__ n+1)ﬂz T
0 0 1=0 =0
+o00 400
A o n—l‘"‘_lnI n—1) %! (n4+1)
o= / /(1+$+y)n Lgna—t Dy — Eng__ (n+1))"§( - )’
0 0 =

Iy = I.
We thus have

P{Zym < 2} = (1-¢7) {1 + e [4n ( 1 (-1 =t 1)‘) -

ntl (+1)" g 0

(n— 1)1 = nt (n—l'"“1 n+1
o (L2 o S D) ).

=0

Denote

7 =1 l—-n—1 l-n—1

Then one has
i 2 {le:n] < z} = (1 - e‘"‘) {1 +ae*h (n)} (5.9)
and p.d.f. of Zjjn

gn) (2) = (1 — ah (n) 6_’“') +2ah(n)e™* ,z>0. (5.10)
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OZET

Marjinalleri [0,1] arahginda diizgiin dagihm fonksiyonu olan iki degiskenli FGM
dagilimlar incelenmistir. Ik bilesenin 7-inci sira istatistiginin esinin dagihm elde
edilmigtir. Eglerin momentleri arasindaki indirgeme bagintilar verilmistir.
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