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Abstract
Let X1, Xy,..., X, be a random sample from a population with probabil-
T
ity density function (p.d.f.) f(z), (z > 0), and let Yo =X Y% , where
i=1 %

X(n) = Inax X; . A necessary and sufficient condition based on the statistic
sisn

Y1) that an absolutely continuous (with respect to Lebesque measure) p.d.f.
f(z), = > 0, will be rectangular, is given.
Key Words: Characterization, uniform distribution, Mellin transform

1. Introduction

Stapleton (1963) gave a characterization of the uniform distribution on a compact
topological group. His results are as follows: Let X;, X3, ..., X, be n independent ran-
dom variables taking values in a compact, separable, connected commutative group
I" such that X; takes for no j all its values in a fixed coset of a proper compact sub-
group of I'. Let A = (a;;) be an n X n matrix of integers such that for each i at least
two a;;’s are different from zero and let det A = +1. Suppose that the distribution
of X;(i = 1,2,...,n) has an absolutely continuous component with respect to Haar
measure on ['. Let

Z=> ayX; (=1,2,...,n); (1.1)
j=1

if Z4,2,,..., 7, are independent then each X; 1s uniformly distributed in I". Con-
versely, if X, X,, ..., X,, are independent uniformly distributed random variables with
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values in a connected group I" and if (a;;) is a matrix of integers, then Z;, Z,, ..., Z, defined
by (1.1) are independently and uniformly distributed if, and only if, (a;;) is non-
singular.
In the present paper we consider the characterization problem based on the sta-
tistics
= X;
2 max(Xi, Xo, ..., Xn)

i=1

2. Main Result

Theorem 1. Let X be a positive random variable having a non-decreasing ab-
solutely continuous probability distribution function F. Then X has probability den-
sity function

— 1/0"1 0<x S a
f@) = { 0, otherwise (2.1)
if and only if
s X:‘, 2 n—1
= =1+ ) U 2.2
Yw ; max (X, Xo, ..., Xn) + g (2.2)

for some two consecutive values of n = m and m+1, where U; (i =1,2,...,n—1) are
independent and uniformly distributed over (0, 1] r.v.’s and m(> 1) is some integer.
In (2.1) a is an arbitrary positive number.

Proof. The necessity of condition (2.2) is trivially established by considering the
characteristic function of Y(;) (see Darling (1952)) given by

n—1
0o 1

Bo(t) = B (670) = ne® / 3 [ éef(af)da|  f(B)dB. (2.3)

0 0

Substituting for f(z) as given in (2.1) , we obtain

o, (t) = e (‘c’it = 1)n_l (2.4)

1t

it

n—1
But the characteristic function of 14 Z U; is e® (E ‘1) .

To prove the sufficiency we must prove that the integrofunctional equation

n—1

n [ [ﬁ‘ / e““"f(aﬁ)dal f(B)dB = ( ;1) - (2.5)
0 0
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has the unique solution (2.1) (except for the arbitrariness of the positive constant a)
for some two consecutive values of n = m and m + 1 and all real ¢.
Let us write the left hand side of (2.5) as a multiple integral

co 1 1
n{dﬁf(ﬁ)ﬁ"_] {dal---_{dan-leu(a‘+"'+a“_1)f(a1ﬁ)---f(ar.—lﬁ)

Considered as a Lebesque integral , the interchange of 3 and a—integrals is justified
since f(z) is a non-negative function for 0 < z < co. Hence we can write this integral
as

1 1 [o%}
n { day... { day_ et@rt-+an-1) { A6 £ (8)f (c1B)-..f (an-11). (2.6)

The right hand side of (2.5) is obviously equal to

1 1
/ day... ] doy,_qeitl@ttan-), (2.7)
0 0

Hence the functional equation (2.5) reduces to

1 1
] dal... f dan_leit(“’Jr"'Jr“““)G (O.’l, 0o, .usy (.Un..]_) = 0, (28)
0 0

where

G i O i) = / 466" £(8)f(c1B)...f (an_10) — % (2.9)

We may assume that G (o, @, ..., an—1) satisfies a Dirichlet condition (see Sneddon
(1951)) in each of the ¢—variables in the n — 1 dimensional box 0 < @; < 1 (i =
1,2,...,n — 1). Let us define a function H (a1, ay, ..., 0n—1) 0n —00 < ; < 00, (i =
1,2,...,n — 1) such that

0 i -0 <a; <0
H ((I],(Ig,...,an_l) = -G(a1,a2, ...,C\!ﬂ_l) 3 0< (8 K < 1, (?: = 1,2, L 1)
0 5 l<a; <00

(2.10)
Then H (a1, @y, ..., @p—1) certainly satisfies a Dirichlet condition in each a; on the
whole space. We then have an ’enlarged’ equation

o0 oo
fdal... f devy_e@rt-tan-D I (. ag, ..., 1) = 0 (2.11)
—oo )
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By the uniqueness theorem on Fourier transforms, the only solution of (2.11) is
the trivial solution

H (04,02, ...;04-1) =0for —c0o<a; <00, (i=1,2,..,n—1),
which implies
G (o,02,...,0m-1) =0for0< s <1, (1=1,2,...,n—1) (2.12)

almost everywhere.
Hence we are lead to the functional equation

7 _ 1
[ 4867 1(B)f(@1B)-f(en1f) = =, m=1m, m+1, (213)
0
where all ;s are arbitrary except for the restriction 0 < a; <1, (i =1,2,...,n—1).
In particular, if we set o3 = as = ... = ap—1 = 1, then we get
7 1
[ asemim(8) = = (214)
0

for n =m and m + 1.
Convergence of the integral in (2.14) requires that

Bf(B) = 0as 3 — 0" (2.15)

and

Bf(B) — 0 as B — oo. (2.16)

Expect for the exponent n in f*(3) in equation (2.14) we have a situation similar
to the Mellin transform and it is well-known that the inverse Mellin transform of 1/n
is (see Erdelyi (1954)) g(/3), given by

9(8) = { é . Eﬁfl (2.17)

In fact, this is also a solution of (2.14) as can be easily verified. A slight generalization
of (2.17) satisfying (2.15) and (2.16) is given by

1/a , 0<fB<a,

5a(5)={ 0 f>a (2.18)

This also satisfies equation (2.14).



A CHARACTERIZATION OF UNIFORM DISTRIBUTION

To prove the uniqueness. let us set

f(B) = 6a(B) + h(B) ,

where h(f3) is independent of a except for the constraint that h(5) + 6.(3) > 0. Since
F(oo) = [ f(B)dB =1, [ 6a(B)dB =1, we have
0 0

7dﬁh(ﬁ) =0. (2.19)
0
Also, from (2.15) it follows that
Bh(B) — 0as B — 07, (2.20)
Now
=3 (3o
Hence -

= g% (D [ ass=rs () 6)

0
n—1 i n T n—1¢n—k k -
= _+ [d% h™ () +Z( )/dﬁﬁ R (BYRE(B). (2.21)
im1 \k 0

A typical integral on the right in the third term is

[dﬁ[““é“" (BhB)  1<k<n—1

-~ [appri e (222

If one lets a approach zero from the right, then, in view of (2.20) this integral ap-
proaches the limit
a" 'h*(a)/(n — k)a" ! — 0. (2.23)
Since in (2.21) a(> 0) is arbitrary and h(/3) is independent
of a, (2.23) implies that

o0

/' dBa"=" R (B) = 0 (2.24)

0

for n =m and n = m + 1, where m (> 1) is some integer.
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Rewriting (2.24) for n = m and n = m + 1 we have

[ assm11m(8) =0, (2.25)
0
f dBA™ K™ (8) = 0. (2.26)
1]

Using the equations (2.25) and (2.26), one can write
[ asgm="nm(5) [(8) 1] = 0. (2:27)
0

If h(B) > 0, then from (2.25) and (2.26) it is obvious that h(3) = 0. Suppose h(3) <0
for some (3 and m is odd, then from (2.27) evidently Bh(8) > 1, i.e. h(f) > 4 which
is a contradiction (here § > 0) unless h(3) = 0. Suppose h(3) < 0 for some (§ and m
is even, then from (2.27) it is obvious that Sh(8) < 1, i.e. h(B) < 0. Since m is even
it follows from (2.25) that h(3) = 0. Thus

h(B) = 0 for all 3 in (0, 00). (2.25)

This proves that (2.18) is the unique solution of (2.14). It can be easily verified
that (2.18) is also a solution for the more general equation (2.13). But, e;’s are quite
arbitrary in the domain (0, 1] and the right hand side of (2.13) has no dependence on
the a’s. Hence (2.18) must also be the unique solution of (2.13).

A note for applications. Consider a technical system A consisting of n indepen-
dent components. Let X; (i = 1,2,...,n) be the survival time of the ith component.
Then X1y, X(2),---» X(n) are the successive failure times. Let Y] = X; — X4, Y, =
Xy — X1y, s Yo = Xn — X(1) and denote by Y{,Y3,...,¥;_; n — 1 variables among
Y1,Ys, ..., Y, which do not vanish. It is not difficult to prove that if Xi, Xs,..., Xy,
are exponentially distributed i.i.d. random variables with d.f. F'(z) = 1 —exp(—2Az),
z > 0,\ >0, then Y], Y5, ...,Y,_, also are i.i.d. random variables having the same
exponential distribution. Let N(t) be the number of failures at time ¢ and N(0) = 0.
One write N(t) = k iff X)) < t < Xg41)- It is clear that system A will stay at
state N(t) = 0 for a random time Yj =X(y) and after this time system will change
its state to N(t) = 1.-Staying in state N(t) = 1 for a random time Y{j, the system
will change its state to N(t) = 2 etc. Denoting by Y{" )Yy, ..., ¥’ 5 n — 2 variables
among Y] — Y{;y,Ys = Y{yy, ., Y1 — Y(3y which do not vanish we can conclude that
YY), ...,Y]" , are ii.d. with the same exponential distribution etc. It is not difficult
to observe that Theorem 1 can be rewritten as follows:
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Corollary. Let X; (i = 1,2,...,n) be i.i.d. nonnegative continuous random
variables with d.f. F(z). Let Y; (i = 1,2..,n) and Y7,Y;,.... Y, , are defined as
above. Then F(z) = 1 — exp(—Az), z > 0 for some A > 0 if and only if

n-1 n—1

for two consecutive values of n = m and m + 1, where m (> 1) is some integer and
Zi i =1,2,...,n—1 are i.i.d. random variables with d.f. F(z) = 1 — exp(—Az),
z>0,A>0.
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OZET

X1, Xa, ..., Xn bagimsiz ve ayni mutlak siirekli /' dagilimina sahip olan rasgele
degiskenler olmak iizere X,y = max XiveYqy =2 x_‘:'j olsun. F' in [0, 1] de diizgiin
t=n =1 e
dagilim fonksiyonu olmas: igin Y{j istatistigine dayali olarak gerek ve yeter kogul
verilmistir.
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Abstract

This paper extends the periodogram based unit root Lests to the seasonal
time series models. The problem of testing for a unit root in seasonal
time series is something like testing for multiple unit root. That is, in
seasonal time series models, there are repeated unit roots. It is found
that the asymptotic distribution of the normalized periodogram ordinate is
not affected by the seasonality factor and the same test statistic used for
autoregressive time series can be used to test for a unit root for seasonal
time series models

1. Introduction

The first priority in seasomal modeling is to specify correct differencing and
appropriate transformations. The potential behavior of autocorrelation functions
for seasonal models is not easy to characterize. The autocovariance function for
a seasonal process is quite complicated. To identify a seasonal model from the
sample autocorrelation function of the data, first we find d and D so as to make
the differenced observations X; = (1— B)%(1— B*)PY, = V¢V2Y stationary. Next
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we examine the sample autocorrelation and partial autocorrelation functions of
X; at lags which are multiples of s in order to identify the orders of the model.
If 5(.) is the autocorrelation function of X; then the orders p and g should be
chosen so that p(ks),k = 1,2,3,..., is compatible with the autocorrelation of an
ARM A(p, q) process. The orders p and g are then selected by attempting to
match p(1), 5(2), ..., f(s — 1) with the autocorrelation function of an ARM A(p, q)
process. Ultimately the AIC criterion and the goodness of fit test are used to
identify the best Seasonal Aotoregressive Integrated Moving Average (SARIMA)
model among competing alternatives. For autoregressive time series the partial
autocorrelation function cuts off after some lags and the autocorrelation function
decays exponentially but the rate of the decay is important. And for moving
average processes, the partial autocorrelation function decays and the autocorre-
lation function cuts off after some lags. However, for some time series models, the
autocorrelation function may be sinusoidal. Consider the model

Yo — = p(Ye-12 — 1) + €

where ¢; is a sequence of uncorrelated random variables with mean zero and con-
stant variance (white noise). This model is applied to monthly data and expresses
this December’s y, for example, as p plus a proportion of last December’s devi-
ation from p. If p = 100, p = 0.8, and last December’s y = 120, the model
forecasts this December’sy as 10040.8(20)=116. The forecast for next Decem-
ber’s y is 1004.64(20), and the forecast for k£ Decembers ahead is 100+-(0.8)(20).
The model responds to change in the series because it uses only the most recent
December to forecast the future. Suppose we allow p to be 1 in the AR seasonal
model. Then the model is nonstationary and reduces to y; = y;_12+€;. This model
uses last December’s y as the forecast for next December (and for any other future
December). The difference y; — ;12 is stationary (white noise). Trend and season-
ality are usually detected by inspecting the graph of the (possibly transformed)
series. However, they are also characterized by sample autocorrelation functions
which are slowly decaying and nearly periodic respectively. Periodograms are
usually used to detect periodic components in time series models. Periodograms
are also used to estimate the spectral density function.

In this paper we are interested in testing for a unit root in seasonal time series
models. Many testing methods have been proposed to test for a unit root in the
auto regressive time series models and in the seasonal time series models. The
problem arising in many time series applications is the question of whether a series
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should be differenced; this is related to asking if the time series has a unit root.
Let {X;:t=1,2,3,...} be a first order autoregressive process defined by

Xe=pXi1+e, Xo=0
where {e; : t = 1,2,3,...} is a sequence of independent and identically distrib-
uted random variables with E(e;) = 0, and Var(e)) = 0? < co. Let p, =
-1
(Z Xf_l) > X X1 be the least squares estimator of p based on the sample of
n observations {X;, Xs,..., X,}. The limit distribution of p, is different for the
cases: stationary, unstable and explosive. It is normal for the stationary case and

nonnormal for the two nonstationary cases. For instance, in the unstable case,
p =1, it is known that

1 /m ~1/2
Zn = = (Zthﬂl) (Pn — 1)
t=1

converges weakly to

B3 =

T %{W2(1) 1} ( Of W?(z)dt)

as n — oo, where {W(t)} is the standard Browian Motion on [0,1]. Dickey and
Fuller (1979) give a representation for the limiting distribution of n(p,—1). Tables
for the percentiles of the distribution can be found in Fuller (1976, pp. 371-3).
Dickey, Hasza and Fuller (1984) also give a testing procedure to test for a unit root
in seasonal time series. Note that the stationarity of autoregressive time series
depends on the roots of the characteristic equation and for seasonal time series,
if there is a unit root, then there are more than one unit root. For example,
consider the time series model y; = py;_s + €; the corresponding characteristic
equation is m? — p = 0, If p= 1 then m = %1 are both roots of the equation.
Akdi and Dickey (1998) use a periodogram ordinate to test for a unit root. They
derive the exact distribution of the normalized periodogram ordinate for the first
order auto regressive time series with a unit root. For the higher order time series,
they show that the limiting distribution of the normalized periodogram ordinate
remains unchanged. They also give the percentiles of the distribution under the
assumption p = 1. In this study, the periodogram based testing procedure has
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been extended to seasonal time series with a unit root time series models. It has
been shown that limiting distribution remains same for seasonal time series so
that same testing procedure developed for first order time series models can be
applied to seasonal time series models.

2. The Periodogram Ordinate

The periodogram ordinate is used in many statistical inference problems such
as estimating the spectral density function, testing for the presence of a sinusoid
with specified frequency, testing for the presence of a Non-Sinusoidal periodic
component with specified integer-valued period, and testing for hidden periodic-
ities of unspecified frequency. Spectral analysis for time series, in particular the
estimation of the spectral density function, depends heavily on the asymptotic dis-
tribution as n — oo of the periodogram ordinates of the series {X1, Xs,..., Xp}.
Here, our purpose is to use the periodogram ordinate to test for a unit root in
a seasonal time series based on the sample. For stationary time series, there is
a one-to-one relationship between the autocorrelation function of the time series
and the spectral density function by using the Fourier transformation. However,
when p = 1 there is no autocovariance function and hence the spectral density
function can not be defined as a Fourier transform of the autocovariance function.
But by using the distributional properties derived in this paper, one can define
the spectral density function at frequencies near zero.

Periodograms are often used for studying periodic behavior in data. They
decompose the variation in data into periodic components . Basic distributional
properties of the periodogram ordinates are assumed to be understood. Akdi
(1995) studies the distributional properties of the periodogram ordinates for au-
toregressive time series with a unit root. Akdi and Dickey (1998) give a testing
methodology to test for a unit root by using the periodogram ordinates. In this
study, a seasonal time series with a unit root satisfying

(Yrt- - P'») = p(}/f-—d - .u’) + ey, t= 132:3: w1 (1)

is considered with appropriate starting values and e, are assumed to be uncorre-
lated with mean 0 and variance 0. Note that the process is stationary if |p| < 1.
For such a time series, forecasts tend eventually to the sample mean, and standard
estimators of p and p converge to a normal distribution. If p = 1 in (1) and if
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Yo = p the forecasts are not mean reverting and the usual estimators of p are
nonnormal in the limit. Note that u drops out of (1) if p = 1. Consider the model
in (1) with p =1

Y=Y ate, t=1,2,3,...n

The periodogram ordinate of Y; is defined as

T
In(ws) = 5 (a2 +}) (2)
where a, and by are known as Fourier coefficients of the time series defined by
2N L :
a = — > (Y — p) cos(wgt), by = = > (Vi — p) sin(wyt) (3)
t=1 =1

If i1 is unknown, then p can be replaced with the sample mean. But when wy =
2rk/n, k = 1,2,3,...[n/2] then 3 cos(wit) = ¥ sin(wit) = 0; and hence the
=1 i=1

Fourier coefficients ax and b; have mean zero when Y; has a constant expected
value. Here, [n/2] denotes the largest integer less than n/2. The purpose is
to find the distribution of the periodogram ordinate defined in (2) and thus the
problem reduces to find the joint distribution of the Fourier coefficients a; and
by under the assumption p = 1. Note that the periodogram ordinate is a smooth
function of a sum of e;’s therefore, we can use our results as an approximation
as long as e; satisfies assumptions of Donsker’s theorem and n is large enough.
Therefore, we can assume that errors are independent and normally distributed
random variables with mean zero and variance o2.
Consider the time series

(l/t - ,U,) = p(y;_] - ,U,) + &, t= 1:2131 veny T

when |p| < 1 then the normalized periodogram ordinate is asymptotically distrib-
uted as chi-square with 2 degrees of freedom. That is,

Iﬂ(wk) '{)* 2 as — OC whnere w =
f(wk) X2; : n h f( k) (4)

and when p = 1, Akdi and Dickey (1998) show that the normalized periodogram
ordinate is distributed as mixture of chi-squares with one degree of freedom each.
That is, for the first order auto regressive time series

In(wy)
[ (wr)

0.2

1+ p? — 2p cos(wy)

o2

2(1 — 2cos(wy))

~Z? 4372, where f(wy) = (5)
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where (Z1,Z;) is a pair of independent standard normals and for a general
ARMA(p,q) processes

4m?k?
7;¢2I(wk)—rZ1+3Z2asn—>oo (6)

Notice that the low frequency periodogram ordinates are small for stationary

time series and large for nonstationary series (variance increases over time for
nonstationary case). A test statistic

— cos(wy))

= In(wn) (7)

On

7o) = 20

can be used to test the null hypothesis Hy : p = 1 against stationary alternatives
because the distribution of the test statistic is known under both null and alterna-
tive hypothesis. The critical values of the null distribution can be found in Akdi
and Dickey (1998). Our goal is to show that the same testing procedure can be
used to test for a unit root in the seasonal time series with a unit root.

3. Distribution of the Periodogram Ordinate for Seasonal Time
Series

Consider the time series given in (1) with p = 1. The Fourier coefficients
defined in (3) can be written as a sum of independent random variables.
ap = al,k - ag,k + ...+ ﬂ.d‘k ] and bk = bl,k - bg,k + ...+ bd,k (8)
here

aix = Zl’;dt_ﬂ_l cos(wi(dt —7 + 1)), b Zytdt-ﬂl sin(wg(dt — 7 + 1))

such that a;x,a;k, bi g, b;; and a;x,b;x are all independent for all 7 # j.
For simplicity let us take d = 2. Then Y; = Y;_5 + e; where ¢; is a sequence
of independent and identically distributed random variables with mean 0 and
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variance 0'2. Ya‘g = ei1+eztes+...+ €d(t—1) and sz,t =eg+es+eg+ ...+ €qt. In

general,
t—1

Yi: = Z €itdj = €; + €ita + €it2d + o F €itad(e-1)
=0
Notice that the random variables Y7, and Y5, are independent and thus the
Fourier coefficients related to Y;; and Y, are independent. The problem is to find
the distribution of the normalized periodogram ordinate which is defined in terms
of the Fourier coefficients a; and b;. Thus we need to find the joint distribution
of the Fourier coefficients. Notice that (ay,b;) = AX where

1. ..10
0. ..01 |y

1 010
A= 01 0 1
X =(€11,k, bl,k: ank, bz,k, es; Qg ks bd,k)'

In order to find the distribution of AX , it is enough to find the joint distribution
of (a;k,bix) and since they are normally distributed random variables, we only
need to calculate its mean vector and the variance-covariance matrix of AX.
Obviously, the mean vector is the zero vector. The variances can be calculated as

Var(a;x) = e % f: {min(dt —i+41,ds—1i+1)cos (gﬂkdt—:‘:ﬂ)

t=14s=1
. Cos (Qﬂ'k“;nﬂ—l)}

Tt T . . .
=4no? Y 3 {mm (da—a+11 ds—;—}l) 5l (2ﬂ_kdt~;+l)
t=1

s=1 L

cos (2mkdszitl) (17}

Note that for fixed k, this double sum can be approximated as a double integral
and after some calculations and using the trigonometric identities we get
a2
2m2k2d’

11
%Var(ai‘k) — 4o%d f / min(z,y) cos(2wkdz) cos(2mkdy)Ozdy =
00
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(Here, to avoid notational confusion d is used to indicate the differential).
When Var(b;x) and Cov(a;,b; ) are calculated similarly

11
1 9 : . P 30,2
;Va’r(bi,k) — 4o dofb/mm(:n, y) sin(27kdz) sin(27kdy)dxdy = 52k
and
] 11
—Cov(a, bix) — 402d//min(:z:, y) cos(2mkdz) sin(27kdy)0zdy = 0
" 00
Thus,

%[3::]31\’(0,1/1*) , 88 N — 00 where]/l*zml‘é g] (9)

But we want to find the distribution of (ax,by) = AX. First of all, the
asymptotic distribution of X/\/n is also normally distributed with mean 0 vector
and variance covariance matrix V; where V;=diag{V3}, Vi, ..., Vi}. Thus using
the fact that all the components of X are independent ( aix,a;x,bix,b;; and
a; x, b; x independent for all i # j ) we can calculate the variance-covariance matrix
of (ax,br). The asymptotic distribution of (ax,bx) = AX is normal with mean
vector 0 and variance covariance matrix V = AV; A’ . The resulting variance-
covariance matrix is invariant to the seasonality factor d and thus the asymptotic
distribution is also free from the seasonality factor d.

02

; 10

Hence,
Qg

|1 D
— = N(0,V), asn— o0
\/ﬁ[bk]

This implies that

1 1 a 1 D a?
Lo () = B2 0 a1 52), o
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For fixed k,
2(1 — cos(wy))

D)
Wi

—1,asn— 00
which implies that

2(1 — cos(wg))

2 In(wy) 2 224+ 322, asn = 0

Therefore we can use the same test statistic given in (7) to test for a unit root
in seasonal time series.

4. Example: Testing for Stationarity

In this section, we will try to test the null hypothesis Hg : p = 1 against
stationary alternatives in the model ¥y = pyt—a + €. Note that the value of the
periodogram ordinate at the low frequencies is large for time series with unit root
and small for stationary time series. And thus, the value of the test statistics is
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large for nonstationary time series and small for stationary time series. Therefore,
we reject the null hypothesis of unit root if T, (wy) is small. Even though, this
testing procedure is valid for any k, it is better to use small k’s; e.g. k = 1. The
tables for the critical values are available from Akdi and Dickey (1998).

For an illustration we generate 100 observations from a seasonal time series
with a unit root: y; = y;_4 + €; where e; is a sequence of independent normally
distributed random variables with mean 0 and variance 1. From identification
plots (the autocorrelations and partial autocorrelations), we see that the decay of
the autocorrelations are very slow and the seasonality factor seems to be 4. By
regressing y; on ¥,_4 we calculate an estimate of variance; o2 =1.0867 and using
SAS’s proc spectra, we calculate the first periodogram ordinate I,(w;) = 274.56
The value of the test statistic (7}, (w1) ) is 0.99711 According to the rule, we reject
the null hypothesis of unit root at a=0.05 if T,,(w;) < 0.178. And thus, we fail
to reject the null hypothesis at 5% level. Table 1 summarizes some other values
of the test statistics.

Same procedure is repeated for a stationary seasonal time series y; = 0.8y, +
e; where e; is a sequence of independent normally distributed random variables
with mean zero and variance 1. From identification plots (the autocorrelations
and partial autocorrelations), we see that the decay of the autocorrelations are
very fast and seasonality factor seems to be 4. The value of the first periodogram
ordinate is 1.60598 and the value of the test statistic is 0.005244 which is smaller
that the 5% critical value 0.178 so that we reject the null hypothesis of a unit
root.

Table 1. Values of the Test Statistics

] p=1 p=1 %5 Critical Value  p=0.8 p=0.8
k 1 4 1 4
Freq. 0.06283 0.25133 0.178 0.06283  0.25133
L.(w) 274.56 17.924 0.178 1.60598  2.47794
Tn(wy) 0.99711 1.03638 0.178 0.00524 0.1289
i Fail to Reject Hy Fail to Reject Hy Reject Hy Reject Hy

Some other critical values of the test statistics are summarized in Table 2
which can be used for calculation of the powers.
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Table 2. Percentiles of Z2 + 322 (Z; independent N(0,1) )

a 0.001 0.01 0.025 0.05 0.10 0.20 0.50 0.80 0.90 0.95 0.975 0.99
» 0035 .0348 .088 .178 .368 .79 2.54 6.32 9.48 12.85 16.37 21.17

Conclusion

In this study, the distribution of the periodogram ordinates of seasonal time
series with a unit root has been derived. Using the distributional properties of
the periodogram ordinate under the null and alternative hypothesis have been dis-
cussed and it is shown that the testing procedure given in Akdi and Dickey (1998)
can be applied to the seasonal time series with a unit root. For an illustration,
two data sets generated from a seasonal time series are discussed.
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OZET

Bu ¢alisma periodogram ile yapilan birim kok testlerini mevsimsel zaman ser-
ilerine genigletmektedir. Birim kokli mevsimsel zaman serilerinde birim kokler
tekrar etmektedir. Burada gosterilmistir ki, birim koklii AR se ‘ileri igin elde edilen
normallestirilmis periodogramlarin asimptotik dagihimlar: birim koklii mevsimsel
zaman serileri i¢in de aymdir.
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Abstract

This paper addresses the problems associated with proeess performance
measures, such as Cp, Cpk, when the frequency distribution of the variable
being evaluation is not Normal. These measures, also known as capability
indices, are commonly used in industry, yet they may not reflect the true process
performance if the process distribution is not Normal. Gunter (1), in his four-
part series articles, emphasized this point and other problems associated with
measures like Cpk. In this paper, we discuss various scenarios with respect
to process stability and frequency distribution, and provide an example using
non-Normal process curve.

1. Introduction

There are some processes for which the data is not expected to be Normally dis-
tributed, for example, plating, drilling, etc. operations. When this situation occurs,
some non-Normal frequency curve is used to fit the data. This activity is usually

undertaken for one of two reasons:
1. Making X control charts because of low rates of data accumulation or
2. Calculation of the process performance measures (Cp, Cpk, etc.)

The use of X charts should not be an issue since there are several charts which
allow the plotting of each data point that have much better average run lengths and
are not nearly as sensitive to non-Normality of the data. These charts include the
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Cumulative Sum (Cusum), the Exponentially Weighted Moving Average (EWMA)
and the Dynamic Histogram charts (see, for example, Montgomery (2), and Holmes
and Mergen (3) for these charts.)

This paper addresses non-Normality problems with respect to the second issue:
process performance measures. For definitions of these measures, please consult Git-
low, Oppenheim and Oppenheim (4), for example.

DISCUSSION

Capability vs. Performance:

Let’s concentrate on the performance measure, which deals with the width of a
process relative to the allowed (tolerance) width. This measure is defined as:

USL - LSL (1)
Process Width

where USL and LSL stand for the upper and lower specification limit, respectively.

The process width used in the equation above can be one of two possibilities:

1. The width of the process as it exists -the performance width - or

2. The width of the process as it could be if the process were in control - the
capability width.

The relative width measure is referred to as the Pp in the first case and the Cp
in the second case. Note that the term Cp is reserved for processes, which are in
control, i.e., statistical control (the process is said to be in statistical control when it
is influenced only by common causes of variation).

If the process is not in control, the capability width may be significantly smaller
in magnitude than the performance width. This causes differences, of course, in the
reported process performance measures.

Normal Process:

If the frequency curve is approximately Normal, the width is usually taken to be
43 standard deviations around the average. The performance standard deviation is
the one calculated for the entire data set without regard as to whether or not the
data gave evidence of lack of statistical control. The capability standard deviation, on
the other hand, is one, which is independent of chances in average values. It can be
obtained from control chart calculations such as R/d2 or 3/c4, where R and 3 are the
average of the subgroup ranges and the average of the subgroup standard deviation,
respectively. The values of d2 and ¢4 can be read from tables for control chart
constants for a given subgroup size. Another method for calculating the capability
standard deviation is the mean square successive difference (MSSD) (see Holmes and
Mergen (5) Hald(6), for example). Using MSSD, the capability standard deviation
would be estimated as follows:
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MSSD
OMSSD = 5 (2)
where "
1 = 9
MSSD = m ;(Xi+1 - Xi) (3)

and X; are the individual observations, n is the number of observations.
Roes, Does Schuring (7), gave the unbiased estimate of the standard deviation

using MSSD as
VIMSSD
=-z )
8n
which will converge rapidly to the expression given in equation (2) as n gets large.
Non-Normal and Stable (i.e., In-Control) Process:

If the process follow a non-Normal distribution, then the width of the curve is
determined by fitting a non-Normal curve to the data. Once the curve is fitted, the
width may be determined by calculating the values of the variable, which include
99.7% of the data. The minimum X is usually taken to be the one which has 0.15%
below it; the maximum X is taken to be the one which has 0.15% above it. The
process width is taken to be Xnax — Xuin-

Problem#1: The curve type used in fitting the data impacts on the estimate of
the process width.

The curve type selected is subjective and one can only reject unfit curves, not
guarantee the selection of the ”right” curve, so consistent results must be based on a
standardized curve fitting approach. We think to get a consensus on this matter will
be very difficult.

Problem#2: For every curve expect the Normal the average and standard de-
viation are not independent.

Thus striving for centering the process on nominal value will also change the width
of the process, which is used in the denominator of Cp and Cpk type measures. For
example, assume we have fitted Rayleigh distribution to a non-Normal process data
(see Appendix I for a description of the Rayleigh distribution). The process average
(X) and target (T') (i.e., nominal) are given as

X =5, and T = 10, respectively. From equation (4) and (8) in Appendix I, the
standard deviation can be estimated as

s = (1.1284)(0.4633)% (5)

As you see in the above equation, if the average is moved to be closer to the target,
the standard deviation will get larger and have a direct impact on the Cp. Thus
improving one quality index automatically worsens another.
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Non-Normal and Unstable (i.e., not In-Control) Process:

Fitting a curve to an unstable process is inherently dangerous. Should the issue
of stability (control) be ignored when fitting a non-Normal curve to the data, then
incorrect conclusions relative to the quality level may occur.. The example below
demonstrates this point in the context of the Rayleigh distribution.

Problem#3: If the process is not in control (i.e., not stable), then estimation of
curve parameters that depend on the average will not be reasonable since the average
does not reflect the changes in process.

In other words, using the average (X) to estimate the value for curve parameter
does not allow one to distinguish between the capability and the performance of the
process. However, there are ways to calculate the standard deviation that will enable
the distinction between capability and performance to be made. The standard devi-
ation estimated through MSSD provides a method to distinguish between capability
and performance (see, for example, Holmes and Mergen (5)).

EXAMPLE

Consider the histogram and the descriptive statistics summary obtained recently
from a process (see Figure 1 and Table 1) which is known to generate an approximate
Rayleigh distribution. The complete data set is listed in Appendix II

(Approximate location for Figure 1 and Table 1)

It is clear from the histogram that the data is not Normally distributed (a chi-
square test also rejected Normality). The specification limits for the variable in
question (i.e., quality characteristic) are:

USL = 5.00 Nominal = 3.00 LSL = 1.00

During the time period in which the data is collected, the regular standard de-
viation (og) is 1.102 and the mean square successive difference (MSSD) standard
deviation (opssp) is 0.595. The two variance are significantly different as per the Z
test described in Dixon and Massey (8). This means, in turn, that the process is not
in control. This is also evident from the X -bar chart shown in Figure 2 (for subgroup
size five).

(Approximate location for Figure 2)
Thus, in turn, there will be a significant difference between the Cp and the Pp
for this process. The process performance calculations based on process width esti-

mated with the Rayleigh distribution using the mean, the regular, and also the MSSD
standard deviations are shown in the table below (Table 2).
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(Approximate location for Table 2)

The Cp of 1.24 is an indication of what the process is capable of doing if it
were to be brought inte control, whereas the Pp (0.428 or 0.667 depending on which
estimate of ¢ is used) indicates how well the process is currently performing. The
difference between these estimates is significant and points out the potential problem
mentioned above in estimating performance measures from a curve fitted to data from
an unstable (i.e., not in control) process.

CONCLUSION

This paper demonstrates that the use of process performance indices for non-
Normal data is subject to many problems. Problem 1 is solvable by everyone agreeing
to a specific family of curves. Problem 2 cannot be resolved. Problem 3 calls for
careful analysis before fitting the curve. But, problem 2 indicates the only meaningful
result may be to give up Cp, Cpk, etc. and go back to the more universally accepted
percent defective or parts per million (ppm) plus a measure of how far the process
center is from the nominal.

KEY WORDS: Non-Normal process distribution, process performance mea-
sures.
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APPENDIX 1

Rayleigh Distribution:

The Rayleigh distribution is a special case of Weibull where the shape parameter,
B, is equal to 2 (Nelson (9)). The probability density function for the Rayleigh curve

1s:

@) = ()ae P’ (6)

The curve is usually fitted using the average of the data to find the value for ¢ (the
”scale” parameter) as shown below.

B(X) = ar(}) = )

where I represents gamma function and 7 = 3.141593.
Hence the value of the scale parameter is usually estimated using:
2T
= —=1.1284% 8

q \/?_T T ( )
This value for g is then used to determine the value of z which has 0.15% of the curve
below it (Xmia) and the value of z which has 0.15% of the data above it (Xay). The
values for X, .« and X,;, may be calculated as:

Tmax = ¢V —1n0.0015 = 2.54996¢ (9)
Zmin = V—1n0.9985 = 0.03874q (10)
The variance for the Raleigh distribution, on the other hand, is:
V(X) = £I0@) - ) (11)
and the standard deviation, s, would be
s = 0.4633¢ (12)

Hence the value of the scale parameter may also be obtained using:
q = 2.1584s (13)

Once expressed in this fashion, one can distinguish between the capability and perfor-
mance distribution using the appropriate standa;rd deviation mentioned above. The
capability estimate of s may be obtained using R/dy or MSSD as mentioned earlier.
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Mean = -3.298 Median = 2.880
Reg. std. dev. %) = 1.102 SE Mean = 0.078
Range = 4.790 # Observ = 200

Minimum = 2.010 Maximum = 6.800

Skewness = 0.952 Kurtosis = 2.8355
Cap. SD = 0.595 Cap. Ratio = 0.540

Mean Square Successive Difference (MSSD) Tests
Normal Z = 10.069 MSSD(SD) = 0.595
Table 1. Summary of descriptive statistics.
Std. Width Relative
Basis for q q Dev. Xmax Xmin (anx - Xmin] Width
' (Pp or Cp)

Performance B2, |EeEE 19486 0.144 9.342 0.428 (Pp)
(using mean) :

Performance 2.38 [ 1.102 |6.069 0.092 3977 0.667 (Pp)
(using regular std. dev.)

Capability 1.28 | 0.595 |3.264 0.049 3.215 1.244 (Cp)
(using MSSD std.dev.)

Table 2.
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Abstract

The general method for optimal control problem for the elliptic equation
with unknown border is proposed. This method allows to investigate a large
class of problems which are reduced to the finding of the optimal form.

Key Words: Optimal control, elliptic equation, quasidifferential, convex
function

1. Introduction

A large class of practical problems - especially problems of theory of elasticity,
hydrodynamics, geophysics, aerodynamics and statistical control applications - are
reduced to the finding of the optimal form.

In spite of actuality of these problems, their solution consists of some mathematical
difficulties. Therefore such problems are solved only in particular cases.

In present work, the general method is proposed, based on the definition of vari-
ation of domain and increment of the depending on the domain functional.

This method allows to investigate a large class of such problems and construct
effective algorithms for their numerical solution.

2. The main results

Let K be any subset of the class of convex bounded domains D from R"™ and
G € R", is such a bounded convex reserved set, that if D € K, then D € G. Let
S D= BD .

We consider the following problem:

I(D) = f F (z,u(z), u;(z)) dz — min, D € K, (1)
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m

Z (aiUz,)s; + a(z)u = f, z € D, (2)

i,j=1
. u(§) = g(£), £ € Sp. (3)
Here F, f, g, ai;, a are given functions, a:;(z) = az(z),4,j = 1,n, z € R" and
a;j(x) satisfies the condition of uniform ellipticity in the bounded domain G € R",
1.e.
n n
mle” <30 antids < mlel, 6 =22 &, (4)
ij=1 i=1
ft1, [2 > 0 are any constants.
Condition (4) holds for any & = (£1,&,...&) € R, 0 <z < a(z) < pu, s €G.
Let f, g, a and a;, i, j = 1,7 be elements of the space W3(G) and the set of
admissible domains K has the following form

K={DeK,Spe c?} (5)

Here K is some convex subset of My and it is a class of convex bounded sets D € R".
Under the conditions of settings on initial values for any D € K the solution of
problem (2), (3) exists and it is reched only from W3 (D).

Suppose, that F(z,u,z) is continuous differentiable and 4 F,(z,u,z) is contin-
uous in (G x R™ x R™ Additionally, suppose, that a;;(z), g(z) are continuous and
differentiable in G.

Let 1) = 1)(z) be a solution of the following problem

OF \  OF
ous, ), o’

We call this problem as adjoined problem of (1)-(3).
Let the left hand side of (6) belongs to W} (G). This is possible, for example, when
F' is linear with respect to ug or the solution of (2), (3) is more smooth. Then for
any D € K the solution of problem (6), (7) exists and is available only from WE(D).
Let M be a set of all convex bounded reserved sets from R". The operations of
addition and multiplication by the non-negative number are defined in M

A+B={c=a+b:a€ A be B},
M={da:a€ A}, 220
M is not linear space (the operation of subtraction is not defined in M). Let’s consider
the pairs (A, B), where A, B € M and define the following operations:
(A1, By) + (A3, B3) = (A1 + A, Bi + By),
MA,B) = (MA,AB), if A>0
NAB) = (MBI A, if A<0.

n

Z (a,-j(ill)d)ze)zi + a(w)w :Zj: (

n5=1

z € D, (6)

I
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Pairs (A, B) and (C, D) are equivalent if A+ D = B 4 C. The set of all such pairs

is a linear space. In this space we have a scalar product: Let
a= (A}, Ay) b= (B1,B;),A;, B, € M,i=1,2

then the scalar product is defined as

(a,5) = [ P(ae)de

Here P(z) = P (2) — Pay(2), (z) = Pp,(z) — Pay(a),
Pa,(z), Pp,(x), 1= 1,2 are support functions of the set A;, B; respectively and Sp is
a border of the unitt sphere B.

It may be shown that this definition satisfies all requirements of the scalar product.
We define this space by M Ly(B) or M Ly. If in the definition of scalar product we
take any D € M instead of B, then corresponding space is defined by M Ly(D).

Now we choose any class of sets from M with smooth borders.

For any A € M

Py(z) =max (l,:c)

Suppose, the maximum is attained when | = a(z) € A, z € B. It is known, that for
almost all x € B the class of sets is a(z) € A. By W, we define the class of sets
D € M, in which a = a(z) € W;(B).We take a = (A4;,4;),B = (B, By), A;, B; €
W,i=1,2.

The scalar product (a,b) in W x W is given by

(a,b) [ lAa z)Ab(z) + 8‘/'\:9“"5 ).GA(,;(‘”) dw

Here Aa(z) = as(z) — ai(x), Ab(z) = by(z) — by(z), a;i(z), bi(x) are defined by the
above given method for A;, B;, i = 1,2. This space with the given scalar product is
labeled by W L,. If in definition of scalar product we take D instead of B, then cor-
responding space will be denoted by W Ly(D). Note that in W Ly, the scalar product
may be given as

(a,b) = f Aa(z)Ab(z)dz.

Theorem 1. Let D* € K be a solution of problem (1)-(3). Then for any D € K
the following condition holds

n

[ P Eu©,20) - 32 (Fur (6 5°(0),w2(0)2,6) — 92, -

SD‘ ‘ :
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= 3 gV (©) (4,(8) — 0 O)IPo(E) - Po(n()dE 20 (8)

ig—1
Here v* = u*(z), 1,b"‘ 7*(z) is a solution of (2),(3) and (6),(7) when D = D*,

respectwely

Proof. It is evident, that if Sp € C?, then ([D],0) € W L,. Let us take arbitrary
D,D € K, which satisfies ||d||,,, < h, h >0 is small number,

= (01, [D]), D)= DU Sp, u=7(z, D), Au=a—u, D) =DND,

AD = ﬁ\D(h), Al Eﬁ\D, S(h) = SD(}.,), S = SD-
Let us write equation (2),(3) for the D € K :

i (aij(2)Tz,),,, + a(z)a = [, z € D, (9)
ij=1
a(§) = g(€), £ € Sp. (10)
Subtracting (2) from (9) we obtain
i (as(2) Aug,), +a(z)Au =0, z € D(h) (11)
3,7=1

For any 1™ = 4™ (x) € W}(D(h)), we obtain from (11)

TL

0 = [ Y, (ai;(2)Aug,),, + a(z)Au

D(n) L=

M dg = (12)

T

- _/ > (afj(I)lbéf))xj + a(z)yp™

D(n) LW~

aAu P
(h) - 7
+ [ SeM©de- [ du§) T de,
S(h) S(h)

Audr +

BAu

where Z ai;j(z)Aug, cos(n,z;), n ,is unit normal to S(h).

Calculate the 1ncrement of the functional (1)

Al = I(D) — /F' z,u(z), iy (x)) d'r:—-/}f(a: u(z), ug(z))de
- f [Pz, 5(z), @s(2)) — F(z,u(z), uq(x))] do+
(k)
+ j Pz, a(z), iy (z))dz — ] F(z,u(z), uz(z))
AD AD
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Substituting the right hand side of the relation (12) here (so the left hand side of
this relation is equal to zero) we obtain

d
Af = / [Fu(m,u,u,)—;d—mif’%i(m,u,u&,)-F
D(h) *
+ 3 (ai(@)e)s, + a(z)®] Audz+ (13)
ij—1
—i—Zf (z,u(z), uz(z))Au(z) d:l:—l—fF:r,u,ux)d:c—
"“1D(h) AD
OAu )
— 4 (h —— —— i
[ Flauu)de+ [ Stu®ae f Au==dé + of| Aul)

S(h) S(h)

Let 4 = (") (z) be a solution of the following problem

Y (@), + ap® = i E%Fu“ — Fy,xz € D(h) (14)
i,j=1 =10
™M (€) = 0,€ € S(h) (15)

We call this problem quasiadjoint problem of (1)-(3). Considering it in (13) we
obtain

where

h_/ﬁuu (@), 80(2))dz, I = —wau@uJ»M?

AD
3¢(h)
I; = ; ] T Fuz (z,u(z), uz(z)) Au(z)dx — _/ Au( 8N d€
=iD(n) 5(h)

We transfer each of I;,7 = 1,3 in the following way
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L= fF(;v,ﬁ(:c),ﬁz(m))d:cz fF(m,ﬂ(m),ﬁm(m))dx—

D(h)

= [ F(&,(6),8(&)) [Po(n(€)) — Popn(n(€))] dt +O(h) = (17)

S(h)

= f F(&,u(£),uz(£)) [Pb(n(g)) - PD(h}(n(f))] d€ + o(|| Aullwy peay) + o(h)

S(h)

Similarly
/ F(z,u(z), uy(z))dz = [ F(z,u(z), us(z))dz—
D(r)
~ [ Fle,u(@),wa(@))dz = — [ Flgu(), w(©) Po(n()-  (18)
D S(k)

Poy(n(€))] d& + o(h).

Adding (17) and (18) we obtain

L= [ FEu(©),u(0) [Pon(€) — Po(n(e)de+ (19)

S(h)
TO(|Au|lws pny) + O(R)

Now we transfer I

i:{di e, (T, u(2), Uz (z)) Au(z) )dz—

— Z /d (a,;,(x )Au(:r))d:r:—

SI=1D(n)

—z/d .

“=1p(n)

(n)
) ts(a) = (o) =) M)+
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8@1)"

+30 [ (P (u(e) - ()

= lD(h)

)Auw (z)dz.

Considering that 1™ = 1p(")(z) is a solution of problem (14) , (15), we obtain

; / Fo(z, u(z), ug () Au(z)dz+

D(h)

T (h)
+Z / s (2 u(2), u(2)) Za,_, 31,{)

=1 p(n)

VAU, (2)dx.

J'

We considered the boundary conditions (3) and (10). Then considering, that
u(€) = g(€),¢ € S(D), we have

f Z(F (&, u(§), uz(€)) Zau (;i%b_}

s(p) Li=1

X [z, (€) — 92:(§)] [Pp(n(€)) — Pp(n(§))] dé+
+o(h )+0(1|A””Wg(s(h))) (20)

Adding (19) and (20) to (16) we get

Al = / [F(E,u({),uz(ﬁ)) _‘i(Fu (& u(§), u2(8)) Zau } %

S(R)

X [tz (€) = 92:(€)] [Pp(n(€)) — Pp(n(E))] +
+o(h) + O(”Au”W.j (D(h))) +* O(“'ﬁf’“wg(p(h)])‘ (21)
If we show that r(h) = O(HAUHW;(DW)) + O(IlAirbl[W%(D(h))) = o(h) , then from

(21) we obtain the following for expressing the first variation

61D, D) = [ [F(s,u(a),uxm) £ (@5 (E)ey — P (6, u(6), 1s(6)) %

ij=1

X (U, (€) — 9x:(£)) [Pp(n(£)) — Pp(n(€))] d€. (22)
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Here considering that D* € K is a solution of problem (1)-(3) we obtain (8).
Therefore , in order to complete the proof it is sufficient to show that

1A% ey + Al @my < Lh (23)

where h > 0 is constant. At first, we estimate [|Aul[y(p(ny) - Considering boundary
conditions (3),(10) we have

) (&) —u(), if &eS,
Au(gn) = (En) — ulén) = { SO o i e

_{ S, :{ (us(€), € — &), if &€ 85,
u(é) —a(§) if €S (Gg(€),E— &) if &€ S.

Taking into account that d = ([D], [D]) € WLy, |dlly ., < ks llullwy sy < const, [allwys) <
conslt we obtain from the last expression

”Au”Lg{S(h)) < Ly-h,

where L, is any positive number. So Au = Au(z) satisfies condition (11) and we
have

n (h)

13:2]

i I p(n

F.()Au(z) + :Z: (F‘m= () Z ai;(z ) Auzi(x)} dz+

Tj

g

- (h)
=+ Z/ (Fu, (J(u(z) —g(= Z (a,J (z)(u(z) — q('g))a(;b )dm_

z 5 (h)
-2 _f ( e, (@) = g(=)) + lexz(aﬁ(m)(a(z)g(a:))"’?ij)dw.

It is supposed that 3)(z) = 0 outside of the ). Then we have

I = / [F ()Au+S (ﬁu, Za,;,(:r ) Aum,} dz+

D(h) i=1
n

-I-[ {ﬁ:u,( )(u(z) — g(x)) + Z ( uz, Za,_,(r)a ) (uz,(z) — gm(:z:))] dr+

i=1
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+

+! [Fu(.)(ﬁ(x) _ o(@)) + zj: (Fum () Ea‘_, uz () = ga, (:n))) dz

+o([v® - v,

Wy (D(h))

For simplicity we omitted here the arguments of /. Similar to the calculation of
I,, we obtain

e /[

S(h)

. [Pp(n(§)) — Pp(n(€))) d&+

n o
'U. +‘ U-:: a,— s ‘U-J.‘

+ [ [F()g +z(ru,( zau )gy,(g) [Po(n(€)) — Po(n(e))]dé+

S(h)

+O(h) + O(HAu“H’;(D(h)}) +o([| Ay ug(.o(h)))-
Where Ay = 9" (z) — y(z)

From these relations we can obtain that

Io= [ [Fu(6u(€), us()(u(E) — 9(6)) +

S(h)

+(z Fu,, (€, u( Z ai;(€ ’UJ: (&) — 9z:(8)) x

x [Pp(n(§)) — Pp(n(§))]d€ + o(h) + O(HAU’”LI ‘(D(h)]) O(HAwHWQ (D(h]))

1Al pnyy S L2 h s Ly > 0.
We can show similarly that
| /—\'d’“wgw{n)) < Lgh.
The proof is finished.

Lemma. Let Dy be any convex bounded domain and A (z) is continuous in D.
If the condition

[ 4©) 1Po () = Poo (n(€)))d 2 0

S,

holds for arbitrary D € M, then A(§) = 0in Sp,.
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Proof. Let’s take any H € M, D = Do+ H
Pip) (z) = Pipy () + P () -
Considering it in (21); we have
| A@© Pu(n(€)de 20 (24)
Spg

Dy is convex domain, and there exist such a domain D and a number ¢ > 0, that
Dy = D +¢H. Taking D = D in (21) and considering that Pp, (z) = P5(z) + ePy

we have
[ AQ Pa(m(©)de <o,

Spg

Considering (23), we obtain
/ A(€) Py (n(€))dE =0, VH € M.
Spg

It is known that every positive homogeneous continuous function h (z) may be pre-
sented in the following form [6]

() =Jim, [Py (@) = Pygo ()]

where H™ HS™ € Mo, n=1,2, ....
Then, for every positive homogeneous function h (z) it holds that

[ A@nE©de=o.
Where, from last equality, we have
A©) =o.

The lemma is proved.
From Theorem 1 and Lemma 1 we can state the following theorem.

Theorem 2. Let D* € K be a solution of problem (1)-(3) and K¢ = My, then it
is true that

FEu ()6 ©) + 3 as (O, (€) (62, (€) = 920 (6)) -

ij=1
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3 Fur (60 (0,12 () (15,0~ 00, (6) € € S (25)

Note 1. Let K be a class of two connected domains D € R", with Dy € R", where
D = Dy\Dy, Dy, D, € M.

Then, writing
/f(w)dac= ff(a:)d:n— /f(:z:)d:z:
D Dy Do

we similarly can prove the next condition

Z( DM [ ()6 (6)) M+ 3 ai (€42, €) (62, () — ga0 (©)) —

S.D“ 1,] =1

~ 3 P, (€0 (€)1 () (12, () — 02, (6)) X

=1

x [P5, (n(€)) = Pp, (n(€))] d€ = 0 (26)

In this case the conditions (24) and (25) will not change.

Similar to the conditional gradient method, we find the numerical solution of this
problem using the expression of the first variation.

Step 1. We take the initial domain D® € K and solving problem (2),(3) find
W =42(z).

Step 2. Knowing D© and u® = 4 (z), problem (6), (7) is solved and 9° = 9° (z)
is defined.

Step 3. Calculating

0 _ © (4
AP ©) = F ()= 3 o) () ~9:),.
we solve the problem
l(p)= [ 4 ()P (n(§)de — min
Sp(o)
This problem is solved on the set K. If for example K has the from of
Ko={D€e R",DyC D C D},

Iy (p) is minimized under the condition of

PDO(:E)gp(:I:)SPD; (ZE), z € R".

185



A. NIFTIEV AND Yu. GASIMOV

Step 4. Using the formula D = apP® (0), where 3P (0) is subdifferential -
of the function P© (z) at the point 0 € R" the auxiliary domain is defined. Next
domain is defined in the form of

DW= (1-a)D®+aD?, 0<a<l.

Here « is chosen by several methods [5]. This process is continued untill we reach
any exactness condition.
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OZET

Bir ¢ok pratik problemler, ozellikle esneklik, hidrodinamik, jeofizik ve istatistiksel
kontrol uygulamalar, aerodinamic teorilerinin problemleri optimal formlarn bulun-
mas: kosullarini ortaya cikartmaktadir. Bu problemlerin ¢ok giincel ve énemli ol-
masina ragmen coziimlerinde bir gok matematiksel zorluklar ortaya gikmaktadir. Bu
makalede elliptik denklem iceren optimal kontrol problemlerinin ¢oziimleri igin genel
bir yontem Onerilmektedir. Bu yontem yukarida adi gecen problemler genelinde bir
yaklagim ve onlarm goziimleri igin etkin sayisal algoritmalar kurmaya imkan vermek-
tedir.
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Abstract

In this study, the geometric representation of Balanced Prime-Power Lat-
tice Design is obtained by finite analytic projective geometry of Galois Field
GF(pn) of m-dimensions, which can be denoted by PG(m, pn) and finite Euclid-
ean Geometry. Definition of homogeneous replications is given by the proper-
ties of PG(m, pn). Furthermore, a geometric way of obtaining homogeneous
replications is also given.

Key Words: Prime-power Lattice design, finite analytic projective geom-

etry.

1. Introduction

In an experiment that includes a lot of varieties, placing these varieties into the blocks
is very difficult, sometimes it is impossible. The variance between the blocks is less than the
variance within the blocks in some placements. This is not the desired situation. In this case,
Lattice design looks like the factorial design where each variety is considered as a single
factor or a combination of factors. This experiment is called as Quasi Factorial Design,
Lattice Design or it can be called Prime-Power Lattice Design. This type of experiment is
used when obtaining the homogeneous data is difficult. These designs have been used first by
Yates in 1936.

The effects of some prime-power factors and the effects of interactions of these factors
are mixed with the effects of blocks in various repetitions. As a result, decreases are observed
in the variance within the blocks in comparison with the variance between the blocks and
effectiveness is obtained in the tests of non-mixed factors and interactions in comparison with
the randomized block design. ‘

The p" varieties and treatment combinations can be represented by an n-dimensional
Lattice, each side of which have p points where p is a prime number. We will place these p"
varieties into the blocks of size p in randomized order. Since p” denotes the power of a prime
number, the design which we are interested in is called Balanced Prime-Power Lattice
Design.

In this paper, number of blocks is denoted by b, number of treatments or treatment
combinations is denoted by 7, block size is denoted by &, number of replications of treatments
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or treatment combinations is denoted by r and the number of varieties is p”. Number of
replications of each pair of the treatments or treatment combinations is denoted by A. p is the
level of pseudo factors. So, in accordance with these notations the Balanced Prime-Power
Lattice Design has the following properties:

_r-1
M A= 1
(2) r=p+l
3) bk =rt

The cases where the number of varieties is a prime number or power of a prime
number have been given first in [2], [3] and [4] but the geometric interpretations have not
been given in these studies.

2. Geometric Meaning of Balanced Prime-Power Lattice Design

p" varieties has p"-1 degrees of freedom. To test any of the pseudo factors or pseudo
factor combinations, we have p groups each of that has p™’ varieties and p-I degrees of
freedom. p"-7 can be called total degrees of freedom and p-/ can be called degrees of freedom
of groups. We can form p"'+p™+ . +p+1 different treatment or treatment combination
groups, which are the number of blocks of Balanced Prime-Power Lattice Design and the
number of treatments or treatment combinations of Balanced Prime-Power Lattice Design, by
dividing the total degrees of freedom p"-/ by the degrees of freedom of groups p-1.

Furthermore, a one-by-one relationship can be formed between the Balanced Prime-
Power Lattice Design and the Galois Field GF(p"). Assume that the projective geometry
constructed on GF(p") is PG(m, p"). We assumed in this study that the varieties of the
Balanced Prime-Power Lattice Design are the points and the blocks of the Balanced Prime-
Power Lattice Design are the lines of PG(m, p").

If we delete any line of PG(m, p") with the points on it, we obtain finite Euclidean
Geometry EG(m, p") constructed on GF(p"). The idea of deleting a line can be considered as
grouping p” varieties according to treatments or treatment combinations which are the points
of the deleted line.

There are p+/ lines at each point of PG(m, p"). Because of the Lattice design, there
are also p+ 1 points on each line of PG(m, p"). After deleting a line, there are p points on each
line of EG(m, p”). Every point of the deleted line was a common point of p+ / different lines
of PG(m, p"). Remaining p’ lines of EG(m, p"), after deleting a line of PG(m, p"), are non-
crossing lines which constitute p+/ groups. These p+/ groups are called homogeneous
replications and these homogeneous replications allow us to compare all treatments or
treatment combinations. So, it is important. Let us explain these things said up to now with an
example.

Example:

For the purpose of illustration, designs for 27=3" varieties, where p=3 and n=3, will
be considered. There are p’+p+1=13 lines in PG(2, 3). Since the design is balanced there are
also p’+p+1=13 points.

In this Balanced Prime-Power Lattice Design the number of treatments is 7=3, number
of replications of treatments is r=4, block size is k=4, number of replications of each pair of
the treatments is A=/ and there are /3 blocks. These /3 lines and points as we wrote above
can be shown as in 7able-1 below:
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Table-1 Lines and Points of PG(2, 3)

AB*

Line Lines | A| B C| AC |[AC' | BC | BC']| ABC | ABC* | AB’C [AB™C* [ u | n
Number
1 [001] | X[ X X 7 | 27
2 [0,10] | X Xl 2% X 7 | 27
3 [0-11] | X X X X 11|23
4 [01,1] [ X X X X 12 | 22
5 [1,00] X ¥ % X 7 127
6 [1,0,-1] X % X X 10 [ 24
7 [1,0.1] X X X X 13 | 21
8 11.-1,0] X X X 10 | 24
9 [-1.1,1] X X X 11 [ 23
10 [1.-1,1] X | X X X 13 | 21
11 [1.1,0] ¥ X X 12 | 22
12 [1,1.-1] X X X X 1123
13 [1,1.1] X X o X 12 | 22

In this table, u is the total of the powers of letters in the related row and 4 is the

number computed by

“)

h=

k

136 —ru

The representation of Table-1 above is given by Figure-1 below:

The lines and points on that lines in PG(2, 3) are as follows:

AB2

Figure-1 Representation of Table-1 in PG(2, 3)

AB
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Table-2 Lines and Points in PG(2, 3)

LINES POINTS

[0,0,1] (1, 1,0) (1,0,0) (0,1,0) (1,-1,0)
10, 1, 0] (1,0, 1) (1,0,0) 0,0, 1) (1,0,-1)
[0,-1,1] (1, L1 0,1, 1) (1,0,0) -L L1
[0,1,1] (1,0,0) 0,-1, 1) (1,-1, 1) (1,1,-1)
[1,0,0] 0, 1,0) O, 1,1 0,0, 1) 0,-1, 1)
[1,0,-1] (1,0, 1) (151 (1,-1, 1) (0,1,0)
[1,0,1] (0,1, 0) (1,0,-1) -L L1 (1::1:=1)
[1.-1,0] (1,1, 1) (0,0.) (1;1,9) (1, 1,-1)
[-1, 1. 1] (1, 1,0 (1,0, 1) -LLD ©,-1,1)
i1, -1, 1] (1.1, 0) 0,1, 1) (1,0,-1) (1,-1, 1)
[1, 1, 0] (0,0.1) (1,-1, 1) (-1, 1, 1) (1,-1,0)
[1, 1,-1] 0, 1, 1) (1,0,-1) (1,-1,0) 1,5-1
[1,1,1] (1,11 (1,-1,0) (1,0,-1) 0,-1, 1)

Since the treatment combinations AB and AC are mixed, the combinations BC? and AB’C? are
also mixed. As a result, the 11" line of Table-1 that includes these 4 treatment combinations is
chosen as a mixed system and this 11" line is removed from PG(2, 3) because of mixing
combinations. So, we reach to £G(2, 3) from PG(2, 3). EG(2, 3) consists of p’+p=12 lines
and p’ =9 points because the mixed line with points is removed.

To obtain homogeneous replications, any point of 11" line will be deleted. For
example, we delete the point AB°C°~(1, -1, -1). So, 4 lines of PG(2, 3) (or 3 lines of EG(2, 3))
of Figure-1 which pass through AB’C?=(1, -1, -1) become the lines with no common points
(they become parallel lines in some sense). Since 11" line is removed, we have 3 lines in
EG(2, 3) which correspond to the group of Homogeneous Replications-1 as follows:

Table-3 Homogeneous Replication-1

Line Number Homogeneous Replication-1 Deleted Point
3 A, BC, ABC AB°C*
7 B, AC°, ABC” AB’C*
10 C. AB’, AB°C AB’C’

We can constitute 4 other homogeneous replications by deleting the points 4B, AC,
BC? of the mixed line as follows:

Table-4 Homogeneous Replication-2

Line Number Homogeneous Replication-2 Deleted Point
1 A, B, AB’ AB
8 C, ABC, ABC” AB
9 AC?, BC, AB’C AB

Table-5 Homogeneous Replication-3

Line Number Homogeneous Replication-3 Deleted Point
2 A, C, AC” AC
6 B, ABC, AB’C AC
12 AB?, BC, ABC” AC
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Table-6 Homogeneous Replication-4

Line Number Homogeneous Replication-4 Deleted Point
4 A, ABC®, AB’C BC*
5 B, C,BC BC*
13 AB®, AC?, ABC BC*

A representation of homogeneous replications in £G(2, 3) is given below:

AB
e ! b 7 e Homogeneous Replication-1
i i N | m—— Homogeneous Replication-2
i i \\ mimmmm - Homogeneous Replication-3
l’
S T —— lABC2 Be2 . ==~ Homogeneous Replication-4
' | ABCog.— —':"‘";".‘:_—' " \\'.
H | M s S Y
i N B e 1
|J W : ¥ \'\ : 2. i ll
| __‘-"‘:_‘ BC1 g 1 ABC . AB<C \,_‘l
Wy G e S
\ SRR P s SN !
! T NI B A
i i a2 i 1 b : - 1
' B Fa | LR 1 i =3 i }-‘
: fr‘ | S : e f," ]
X\ i/ L — ;" SR ®ic Y
\\.1L g !ir & k= . 1 /
AN : & \"'\-._ >4
*’ """""""""" _.;
AB2 B

Figure-2 Representation of Four Homogeneous Replications in EG(2, 3)

Let us consider the first mixed system or mixed line of Table-1. This line includes the
treatments or treatment combinations A=(1, 0, 0), B=(0, 1, 0), AB=(1, 1, 0) and AB’=(1, 2, 0)
or AB’=(1, -1, 0). The line including the 4 points above can be shown as [0, 0, 1] according to
the rule that points being on a line. 13 lines and 13 points make a PG(2, 3).

Dual of above PG(2, 3) is another PG(2, 3) where the points of first PG(2, 3) are the
lines of second PG(2, 3) and the lines of first PG(2, 3) are the points of second PG(2, 3). Dual
of points (1, 0, 0), (0, 1, 0), (1, 1, 0) and (1, -1, 0) is the line /0, 0, 1] and the dual of the line
[0, 1, 1] is the point C=(0, 0, 1) which is the common (intersection) point of the 4 points
(1,0,0),(0, 1, 0), (1, 1, 0) and (1, -1, 0) which are the 4 lines /1, 0, 0/, [0, 1, 0], [1, 1, 0] and
[1,-1,0].

First line /1, 0, 0] includes 4 points that are B=(0, 1, 0), C=(0, 0, 1), BC=(0, 1, 1) and
BC?*=(0, 1, -1).

Second line /0, 1, 0] includes 4 points that are A=(1, 0, 0), C=(0, 0, 1), AC=(1, 0, 1)
and AC?=(1, 0, -1).
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Third line [/, 1, 0] includes 4 points that are C=(0, 0, 1), AB°=(1, -1, 0),
AB’C=(1, -1, 1) and AB’C*=(1, -1, -1).

Fourth line /I, -1, 0] includes 4 points which are C=(0, 0, 1), AB=(1, 1, 0),
ABC=(1, 1, 1) and ABC*=(1, 1, -1).

So, the set of points on line /0, 0, /] is the dual of pencil of lines through a point
(0, 0, 1). As a result, the above 4 lines makes a homogeneous replication if we drop point

C=(0, 0, 1) from each line. Homogeneous replications allow us to test treatments or treatment
combinations easily.

Similarly, we can obtain p+ /=4 homogeneous replications for each mixed line. Since
we have 13 mixed lines, we have 13 homogeneous replication groups each having 4
homogeneous replications.

Geometrically, the 3 lines of each homogeneous replication are independent
(non-crossing). As a result, levels of remaining 9 treatments (points) or treatment
combinations can be compared which implies that the remaining treatments or treatment
combinations can be tested easily.
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OZET

Bu ¢aligmada, Balanced Prime Power Lattice Dizayn’ larin geometrik yapilar1 sonlu
cisim GF(p") iizerine kuiulan m-boyutlu projektif geometri PG(m, p") ve Oklit geometri
GF(m, p")’ den faydalamlarak verildi. Homojen replikasyonlarin tammi PG(m, p”)’ nin
ozellikleri kullamlarak verildi. Ayrica, homojen replikasyonlar: elde etmenin geometrik bir
yolu da gosterildi.
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1 Abstract

In this paper a novel approach to adaptive Kalman filtering is presented. The filter
utilizes a forgetting factor, which tries to adjust the state error covariance according to the
changed target dynamics. The filter aims to utilize the available data in order to provide
a better covarage throughout the whole target motion. The performance of the algorithm
is compared with that of an interacting multiple model (/M M) algorithm and also with
that of a standard Kalm?.n filter. The proposed filter does not rely on a priori knowledge
about the target motion and it produces better estimates than the IM M algorithm during

manoeuvring periods.

2 Introduction

The performance of a tracking algorithm is mainly governed by the performance of the

state estimator used. The Kalman filter is the traditional and the most widely used state

*The author is currently with the Institut d’Autamatique of Swiss Federal Technical Institute in

Lausanne, Switzerland
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estimator in target tracking applications. The filter is the general solution to the recursive
linear minimum mean square estimation problem. It will minimize the mean square error
between the estimates and the actual target dvnamics as long as the target dynamics are

accurately modelled.

The process of state estimation in the Kalman filter comprises two parallel cycles, namely,
i) estimation of the state and ) estimation of the state covariance, Fig 1. The final
estimation of the state is found from the predicted state, innovation and Kalman gain.
The Kalman gain is the ratio’ of the state covariance to the innovation covariance and
can be considered as a correction factor on the final estimate. From a frequency domain
viewpoint the magnitude of the Kalman gain determines the bandwidth and response
speed of the filter. A small gain value produces a substantial noise reduction when the
target is not manoeuvring and a large gain value gives a fast response to changes in
the target's dynamics, providing the filter with a larger bandwidth to cover manoeuvres.
Basically, it can be said that the performance of the Kalman filter is determined by the
size of the Kalman gain. While the Kalman gain plays an important role in estimating the
target’s state, it is independent of the measurements taken. As can be seen from Fig 1 the
right hand side frame is not affected by the observations, in fact, given the process and
measurement noise covariances as a function of time, the Kalman gain can be computed

off line.

During the recursive estimation of the state, the Kalman gain reaches a steady-state
value determined by the pre-selected and assumed constant process and measurement
noise covariances, @ and R respectively. The use of constant values of the covariances
imposes a major restriction on the filter’s performance, because if the pre-selected process
noise covariance level is not appropriate the correction, by the Kalman gain, on the state
prediction will not be suitable and large estimation errors will develop. An intiutive
solution to this problem is to adaptively adjust the process noise covariance and thus the
Kalman gain, according to changing target dynamics. The simplest method to achieve
this is to establish a maneuver detection scheme then modify the process noise covariance
following the maneuver detection [1]. The main disadvantage of this approach is the time

delay in maneuver detection and changing of the filter. In [2] an adaptive Kalman filtering
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Figure 1: State Estimation Process in the Kalman Filter

technique was suggested where the process noise variance was estimated by means of
the difference beiween the expected prediction error variance and the measurement noise
variance. In [3] a new adaptive Kalman filter was suggested for tracking turn manoeuvres
where the process noise covariance was associated with the turn rate through an empirical
turn rate-process noise covariance curve. Alternatively, multiple model algorithms can
be used, to provide good coverage with several levels of process noise covariance. The
IMM algorithm is considered as one of the most efficient multiple model algorithms.The
algorithm, which was introduced in [4], is derived from the multiple model approach,
but unlike the multiple model structure, it keeps the number of hypotheses fixed, which
reduces the computational burden. The algorithm employs a fixed number of models that
interact through state mixing to track a maneuvering target. Every filter employed in
the algorithm corresponds to a possible target motion to cover the actual modes of the
target. The probability of each model being true is found by using a likelihood function

for the model and switching between the models is governed by a transition probability
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matrix. The state estimates from the subfilters are then mixed, by means of weighting
coefficients, in order to get the combined state estimate. However, utilizing more models
means increased computational burden and complexity and even a large number of models
does not guarantee a better coverage. Although several adaptive methods [5], [6] have been
suggested to limit the number of models used, a more complex structure and larger number

of calculations result.

In this paper a novel method is presented to adjust the gain level of a second order
Kalman filter for tracking manoeuvring targets. The method introduces a forgetting factor
which represents the current magnitude of process noise covariance, in other words target
unpredictability, at time n and is estimated from the available data. The aim of the
proposed method is to take observations into account in the right hand frame of Fig 1, so
that the Kalman gain level is adaptively adjusted in accordance with the changing target

dinamics.
3 Fading Kalman Filter

Let us consider the following state-space model

Trpr = Fki‘k ‘f'Gk“'k (1)

Il

Ui Hyxy + vy (2)

where ;. is the n x 1 state vector, y; is the 7 x 1 observation vector, wy is the p x 1 state
noise, v is the r x 1 observation noise at time k. Fj is the known n X n state transition
matrix, G is the known n x p disturbance matrix and Hy, is the n X 7 measurement matrix.
Note that wy and v denote sequences of independent random vectors with zero means
and covariance matrices Qy and Ry respectively. The initial state 2o is a random variable

with zero mean and covariance matrix Py independent of wy and v.

Then the standard Kalman filter recursions are given as (7]

Eppae = Pl (3)

Pk-i-lik = Fk-PJ\FE‘ o GLQ.’:GI (4)
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the time update and

T = Tp-1 + Kizn (5)
% = Y — Hki‘k;k—l (6)
Ko = Bupealll HiPiatl b Ry (7)
P. = (I — KyHi)Pyjg-y (8)

the measurement update equations where K is the Kalman gain matrix and z. is the
residual vector. If the filter is constructed on the basis of an erroneous model, the error
covariance matrix will become either too small, which will result in a small Kalman gain
and subsequent observations will have a little effect on the estimate, or it will become too
large and the filter will rely on the observations only. In [8] a new method was initiated to
limit the memory of the Kalman filter by using exponential fading of past data through
the use of a forgetting factor A\;. The equations describing the fading Kalman filter are
identical to those of the standard Kalman filter except for the forgetting factor inserted

into the covariance equation which is given as
P = Mt EkPoFY + GLrQieGY (9)

with Ay > 1. The performance of the exponetial fading Kalman filter fully depends on the
selection of the forgetting factor. Therefore, the key problem is generating the optimal

forgetting factor A;. The optimal way of calculating the forgetting factor Ay was given in

|9] and [10].

3.1 The Proposed Algorithm

Recursive least squares method has been used by many researchers to derive the Kalman
filter. Let Zx_; be a priori estimate of zj_, at time k — 1 with covariance P._,. Then the
time update equations are given as Eqs 3 and 4. Therefore ., is a priori estimate of
xy with covariance Py_;. Suppose we consider measurements y; at time k and the prior

information Zx_, described above, then

Eg-1 = g+ e (10)

vk = Hizp+ 1y (11)
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where e denote sequences of independent random vectors with zero mean and covariance
matrix Pyjx—;. One way of combining the information in Eqs 10 and 11 is to minimize the

following cost function
Je = (2 — Bapo1) T Py (@6 — Erpee1) + (v — Heze) TRy (ux — Hia) (12)

The latter problem can be solved by differentiating this function and setting the derivative
to zero and solve the resulting equations [11]. Another approach is to reduce the problem to
the Gauss-Markov-Aitken theorem by expresing Eqs 10 and 11 as a single matrix equation

[12]. This procedure results in

Yk H, Vi
X — T+ (13)
Ehpr-1 I e
Then applying the Gauss-Markov-Aitken theorem to the combined system, Eq 13, the best

linear unbiased estimator . of xy is
@ = PoHRR; 'ye + PkP;;"r\l._liiMk—l (14)
and the corresponding covariance P is given by
P'=Pgl., + HL R Hy (15)
The matrix incersion lemma (7] is applied to Eq 15 in order to obtain the standard Kalman
filter from Eq 14. This leads to the measurement update equations. From Eq 12 the prior
expected value of Jj is
E[Ji] = trace(Inxn) + trace(lyx;) =n + 71 (16)

In other words, if the Eq 16 holds, then the Kalman gain is optimal. If the filter is
constructed on the basis of erroneous model estimate may diverge. Lets denote the actual
value of J;. as J, which should be computed by setting zx = @y after the estimation process
has been completed at each scan. If Ji is not close to n + r then the elements of Py_y
and Iy must be multiplied by a scaling factor given as A} = Ji/(n +r) which adjusts the
value of J. to n + r. Note that this procedure also requires for P to be multiplied by the

same scaling factor. Then the resulting error cavariance is given by
* *

If Jo < E[Ji], then the filter is optimal (or capable) otherwise it may diverge. Also note

that for Aj = 1 the fading Kalnan filter becomes the standard Kalman filter.
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Figure 2: Simulated target trajectories

4 Simulation Results

The simulated target motion was generated in two dimensions (i.e. x-y plane) with a
sampling interval of 1.0 second. Measurements were assumed known at the origin of the
cartesian coordinates for the x-y positions of the target with a Gaussian measurement
error standard deviation of 50 m used for both axes. Four target scenarios were chosen to
perform a constant velocity motion with circular turns with initial velocities of 100 m/s
in both axes, as depicted in Fig 2. The motion of each of the four targets is the same for
the first 60 seconds and starts with 25 seconds of straight line motion, and then proceeds
for a further 20 seconds turning with a 1.7 km. radius (3.37 deg/s turning rate) and there
1s another straight line path for 15 seconds. After that the targets exhibit a second turn,
lasting 25 seconds with four different turning rates, where the turn rates are 3.58 deg/s
for the first target, 4.09 deg/s for the second target, 4.77 deg/s for the third target and
5.73 deg/s for the fourth, they all conclude with 15 seconds of straight line motion.

The performance of the new filter is compared to those of an ITMM algorithm and a
second order Kalman filter utilizing fixed process noise modelling, which corresponds to

A(k) =1 for all k in Eq 9. Two different assumptions were made for designing the IM M
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algorithm and the second order Kalman filter. The first assumption, denoted ‘0’, was that
there was no prior information about the individual target motions and predetermined
process noise covariance values were employed in the filters. The second assumption was
that the largest turn rate that the target of interest would perform was known. Hence, a
different set of process noise covariance levels was used for each target scenario, in both
the IM M algorithm and the second order Kalman filter. The process noise covariance

values employed in the IM M algorithm and the Kalman filter are given in Table 1.

Tracking | Targetl | Target2 | Targetd | Targetd
Algorithm | Process Noise Covariance x10 ((m/s?)?)
Ad. Kalm. Fixed (with adaptively varying A)

filter
IMM-0 1,7.5,15 |1 1,7.5,15 | 1,7.5,15 | 1,7.5,15
IMM-1 1,6,12 1,8.16 | 1,10,20 1,12,24

Kalman-0 15 15 15 15

Kalman-1 12 16 20 24

Table 1: Process Noise Values employed in the filters

Three models were employed in the INM-0 algorithm. The first model utilised a small
process noise covariance value, namely 10 (m/s?)?, to model the straight line motion of
the target. The second and the third models employed relatively larger process noise
covariances to match the target motion during various manoeuvres. In the Kalman-
0 algorithin a moderate level of process noise covariance was selected in order to both
match the target motion during manoeuvres and provide moderate noise supression during
nonmanoeuvring periods. For the second assumption, specific process noise covariance
levels were chosen and utilized in both the IMM-1 and the Kalman-1 algorithms so that
the filter kept on average the estimation errors slightly smaller than the measurements
during the largest turn. Each of the five algorithms given in Table 1 was tested on

the simulated scenarios. Performance of the algorithms was examined in terms of the

normalized position error (NPE), which is the ratio of the root mean square of position
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Figure 3: The NPEs of the IMM-0 algorithm for the scenarios

error to the root mean square of measurement error and given by

\/ SN [t (k)& (k) + (' (K) =9 (K))?)
N

N.P.E.(k) =

(18)

\/ YN 1@ (k) 25 (k)2 + (' (k) -2 (K)2)
N

where zi(k), y'(k) and (k), §*(k) stand for the true and estimated positions of the target
at the ‘n’th scan in the ‘i’th simulation run respectively. z;(k) and z; (k) are the measured
x and y positions of the target and N is the total number of Monte Carlo runs. Figs
3 and 4 show the NPEs of the IMM-0 and Kalman-0 algorithms respectively for the
scenarios where the predetermined process noise covariances were used in the filters for
all the targets. During the second turn a clear performance degradation was observed for
both the IMM-0 and Kalman-0 algorithms as the turning rate got larger. This is mainly
because the steady state Kalman gain level yielded by the predetermined fixed process
noise covariances employed in the filters was not high enough to cover the acceleration
changes caused by larger turns. A higher Kalman gain level was needed to cover the
larger turn manoeuvre, but since the process noise covariances were kept the same for all
of the four targets, where the turn rate got larger, the steady state Kalman gain level

remained the same. This is the major difficulty in manoeuvring target tracking with
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Figure 4: The NPEs of the Kalman-0 algorithm for the scenarios

fixed parameter modelling techni jues. As soon as the target has initiated and sustained
an unexpected manoeuvre, i.e., not covered by the predetermined modelling parameters.

existing target models are no longer able to give good estimations.

But, as assumed in the second part of the experiments, if ‘a priori” knowledge about
the target motion is available, which is almost impossible in real life applications, an
appropriate process noise covariance can be chosen to vield a better steady state Kalinan
gain. As can be seen from Fig 5 since the process noise covariance was chosen large enough
to cover the biggest turn rate in each scenario, the IMM-1 algorithm kept its performance
level almost t.he’ same for the different scenarios. On the other hand, a performance
deterioration was observed during straight line motion and smaller turn periods due to the
higher Kalman gain. The Kalman-1 algorithm also produced a very similar performance

to the IMM-1 algorithm.

The adaptive Kalman filter, on the other hand, adaptively adjusted its Kalman gain
level accordin : to the changing target dynamics resulting in almost the same level of

performance for different levels of turn rate. Fig 6 clearly shows that the position error for
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Figure 5: The NPEs of the IMM-1 algorithin for the scenarios

the adaptive filter remains almost the same whilst tracking larger turn rate manoeuvres.

This was achieved by the use of the forgetting factor.

The fading Kalmai filter has also been tested on another trajectory where the target
exhibited a motion other than coordinated turns. In the scenario the target undergoes
acceleration changes in both the @ and y directions whilst going on a straight line path.
The acceleration change is depicted in Fig 7. The performance of the fading Kalman filter
is also shown in Fig 8. The filter, as expected, detects the acce! rtion change during both
manoeuvring periods and adjusts its error covariance level to cover the changes without

relving on a prioro knwoledge of the target motions.

5 Conclusions

A novel adaptive (- Iman filter has been presented. The Kalman gain level of the filter is
adaptively adjusted at each time scan through the use of a scale factor which is calculated

based on the available information. The scale factor level increases during manoeuvring
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Figure 6: The N PEs of the fading Kalman filter for the scenarios
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Figure 7: The acceleration change in the second scenario
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Figure 8: The performance of the fading Kalman filter on scenario 2

filter if some knowledge of the manoeuvre is assumed.
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C)zet

Bu makalede yent bir adaptif Kalman fltreleme teknigi sunulmugtur.  Sunulan filtre

degigen hedef dinamiklerine gére durum hata kovaryansim ayarlayan bir unutma faktorii

Killamaktadr. Ayrica filtre, eide bulunan bilgiyi kullanarak tum hedef hareketi suresince

daha iyi bir takip saglamayi amaciamaktadir.
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