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Abstract

Suppose that X7,... , X, are independent and identically distributed observable
random variables with a chi-distribution xx(f) with k degrees of freedom and a
scale parameter v/8. Let Y be the unobserved random variable, with the same
distribution xx(@), which is independent of the observable random vector X :=
(X1,... ,Xp). From the non-Bayesian and Bayesian points of view we construct a
prediction interval of Y based on X. The coverage probabilities of the prediction
intervals are numerically compared.

Key Words: Prediction interval, chi-distribution, non-Bayesian approach,
Bayesian approach. '

1. Introduction

In the theory of statistical prediction, various predictive procedures for unobserved
random variable based on the observed data are considered (see, e.g. Guttman (1970),
Takeuchi (1975), Akahira (1990), Geisser (1993), Takada (1996)). Recently Howlader and
Hossain (1998) discussed the Bayesian prediction interval for the Maxwell distribution,
that is, the chi-distribution with 3 degrees of freedom and a scale parameter, which was
known as the distribution of the speed of a gas molecule. Suppose that X := (X3,...,X,)
is an observable random vector, Y is a random variable to be observed in future, and the
joint distribution of (X,Y) depends on an unknown parameter # in €2, where () is a
parameter space. Let ) be a space representing the possible outcomes of Y. If for any
o (0 < a < 1) there exists a subset Sx ( of J) based on X such that _

P{YeSx}2>21-a, for all 6 € (2,

* then Sx is called a prediction region of Y at confidence coefficient 1 — . If Y is a subset
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of R! and Sx is an interval [a(X), b(X)], then Sx is called a prediction interval of ¥ at
confidence coefficient 1 — . '

Let Xj,..., X, be observable random variables with the chi-distribution xx(f) with
k degrees of freedom and an unknown scale parameter v/f. Let Y be the unobserved
random variable, with the same distribution xx(6), which is independent of the random
vector X = (X3,... ,X,). We construct a prediction interval of ¥ based on the complete
sufficient statistic from the non-Bayesian and Bayesian points of view. We also compare
the coverage probabilities of the prediction intervals numerically. It is noted that the
Bayesian prediction interval obtained by Howlader and Hossain (1998) for the Maxwell
distribution, i.e. the chi-distribution x3(6), is a special case of our results.

2. Non-Bayesian approach

First, the probability density function (or p.d.f. for short) of the chi-distribution xx(6)
of X; is given by

f(z;0) = —2--—9 fe ¥ for 0<z <00, (2.1)

r'(3)

where k(> 2) is a known positive number and 6 is an unknown positive number (see, e.g.
Johnson, Kotz and Balakrishnan (1994), (1995)). Then we construct a prediction interval
of X,+1 based on X at confidence coefficient 1 — . Since the joint p.d.f. of X is given by

the statistic S := 3, X? is complete and sufficient for . Then S is distributed accordmg
to the chi-square dJstnbutlon xnk(e) whose p.d.f. is given by

fs(s; 0 ~1 for 0< s < oo.
559 =

Let Y := X,;1. Since S and X,,;, are independent, the joint p.d.f. of (S,Y) is given by

s (s,:0) = AR Lt

Hence the statistic T := S + Y2 is complete and sufficient for 8, and T is distributed
according to the chi-square distribution x7,,,(0) with (n + 1)k degrees of freedom and
a scale parameter 8. Then the conditional p.d.f. of Y given T =t is
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frir(ylt) = —“‘"%’)_6) s (2.2)

k—1)/2 (nk/2)-1
k nk t
2’ )

fort > 0 and y > 0, which is independent of . This means that the prediction interval of Y’ '
based on the sufficient statistic T can be constructed independently of 6. Let Z :=Y?/T.
Then it is shown from (2.2) that the conditional distribution of Z given T' = { is the beta
distribution Be(k/2,nk/2) with the p.d.f.

gzir(2lt) = A1 — Z)R/D-1 for 0<2<1, (2.3)

B(%, "2")
which is independent of t, where B(-, -) is the beta function. So, we simply denote gz r(z|t)

by gz(z). Hence any a (0 < a < 1), there exist 2; and 2; such that
Pn<Z<zm}=1-a

Then we can obtain a prediction interval of Y at confidence coefficient 1 — a as follows.
For k > 2, the conditional p.d.f. gz(z) is unimodal, we also take (2, 23) such that

[ gz(z)dz=1—-« - (24)
and

9z(z1) = gz(za) (2.5)

simultaneously. From (2.4) we have

k nk k nk

Izn (5: ?) - Iﬂ (51 7) =1-a, (2'6)

where the incomplete beta function ratio

1 g b-1

_ _ 2.7
Ip(a,b) Blab) -/; 22711 -2)""dz (2.7

for a > 0 and b > 0. From (2.5) we have

(k/2)-1 _ (nk/2)-1
-2
Zy 1- 2 ;

Letting (21,29) be the simultaneous solution of (2.6) and (2.8). Since Z = Y?/T and
T = §4Y?, it follows that '

P,{M 27 <Y <4 %25 }=1_—a
1—2 1—2
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for all 8. Hence

[VaS[T=2), VaS/( ) (29)

is a prediction interval of Y based on the complete sufficient statistic S through the beta
distribution (2.3) at confidence coefficient 1 — a.

3. Bayesian approach

For the Maxwell distribution, i.e., the chi-distribution x3(#) with 3 degrees of freedom,
Howlader and Hossain (1998) obtained the Bayesian prediction interval. In this section, in
a similar way to Howlader and Hossain (1998), we construct the highest posterior density
(HPD) prediction interval for the chi-distribution xx(0) with k degrees of freedom. From
(2.1) it follows that, given X = =, the likelihood function is

L(x;0) = Hf(a:e;ﬁ')

o g—ﬂk{'Ze—SfG

where S := 3.7, z2. Then we consider an asymptotically locally invariant prior, pg(6)
proposed by Hartigan (1964), which can be derived from distributions satisfying

(d/d8) log pr(8) = —E[l11)/ E|ly] where [; := (d'/d6")log f(z;0), (i = 1,2), and if Efl;] =
0, E[1?] + E[l5] = 0. In this case, the Hartigan prior can be shown to be py(f) « 672
Combining the likelihood function and the prior, the posterior p.d.f. of 6 is

hox(0)z) = K™ e=5/f  for 6> 0,

where the normalizing constant K = S™/T'(m) with m := (nk + 2)/2. Then the condi-

tional joint p.d.f. of an unobservable random variable Y = X,, and 0, given X = =z,
is

frex(,0|z) = friex{wlf, x)heix (flx)
= frie(y|0)heix (0|x),
since Y is independent of X. Thus, the predictive p.d.f. of Y is

Frxlylz) = fo " frox(y,0lz)d8 (3.1)

_ 29m ,yk-l
~ Blk/2,m) (4 + Sy~
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for y > 0, which is independent of . Since the predictive p.d.f. of Y is unimodal, the

HPD prediction interval (hy,hs) of Y at confidence coefficient 1 — o follows from the
simultaneous solutions of the equations

P{l <Y <h}=1-aq, (3.2)
frix(hilz) = frix(he|z). (3.3)

Lei:ting v :=y? in (3.1), the equation (3.2) can be written as
o0 S'—m

—(m+(k/2))
k-1 (1, Y
w Bk/2,m)" ( i )

= dv (3.4)

I R S V- S W CRNIA e e P
a B(k/z,m)v (1 + S) dv = a.
Letting 1/w := 1+ (v/S) in (3.4), we have
I, (m,k/2) — I,(m,k/2) =1 -« (3.5)

where p; = S/(h? + S) and I, (k, 1), as defined in (2.7), i = 1,2. Also from (3.3), we have

(E ) k=1 _ (hf s S) m+(k/2) -
ha hi+S '

Thus the HPD prediction interval

[h1, ha] (3.7)

of Y at confidence coefficient 1 — o follows from the simultaneous solutions h, and hy of
(3.5) and (3.6). And especially, if k = 3, then we obtain a prediction interval of Howlader
and Hossain (1998).

Next, if we use a Jeffreys’ prior py(6) o 8~ which is proportional to the square root
of Fisher’s information and an improper uniform prior py(0) = ¢ (0 < ¢ < o0), then we
obtain the HPD prediction intervals, where m = nk/2 and m = (nk — 2)/2, respectively.
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4. Numerical evaluation

In this section we consider the following prediction intervals of Y based on the complete

sufficient statistic S:

(N) The non-Bayesian prediction interval (2.9) through the beta distribution (2.3).
(By) The Bayesian prediction interval (3.7) through px(6).

(B;) The Bayesian prediction interval (3.7) through p;(6).
'(By) The Bayesian prediction interval (3.7) through py(6).

For k = 3; n = 10(5)30, 50, 100; & = 0.05; § = 2, we obtain the prediction intervals (see
the Table 1). As is seen in the Table 1, the Bayesian prediction intervals (By) and (By),
(By) are shorter than the non-Bayesian prediction intervals (V). A similar tendency to

Table 1 is also seen for other values of k and 8.

n S (Nb) (Bw) (Bs) (Bv)

10 | 30.1453 | [0.0722, 2.9690] | [0.3261, 2.9641] | [0.3350, 3.0717] | [0.34486, 3.1918]
15 | 40.1561 | [0.0627, 2.7442] | [0.3185, 2.7780] | [0.3248, 2.8433] | [0.3314, 2.9135
20 | 60.9504 | [0.0642, 2.8998] | [0.3462, 2.9554] | [0.3515, 3.0069] | [0.3569, 3.0611
25 | 72.7962 | |0.0612, 2.8182] | [0.3423, 2.8838] | [0.3465, 2.9236] | [0.3509, 2.9651
30 | 97.7338 | [0.0637, 2.9696] | [0.3648, 3.0467) | [0.3686, 3.0815] | [0.3725, 3.1176)
50 | 148.216 | [0.0588, 2.8111] | [0.3533, 2.8992] | [0.3556, 2.9189 0.3579, 2.9389]
100 | 291.932 | [0.0569, 2.7738] | [0.3547, 2.8718] | [0.3559, 2.8814] | [0.3571, 2.8912

k=3

n S (Vo) (Br) (BJ) (By)

10 | 45.8272 | [0.5526, 3.3452] | [0.7513, 3.3895] | [0.7649, 3.4617| | [0.7792, 3.5387
15 | 72.6349 | [0.5573, 3.3887| | [0.7879, 3.4656| | [0.7977, 3.5138] | [0.8079, 3.5641
20 | 99.3981 | [0.5591, 3.4081] | [0.8064, 3.5013] | [0.8141, 3.5374] | [0.8220, 3.5747]
25 | 127.039 | [0.5621, 3.4313] | [0.8205, 3.5345| | [0.8268, 3.5635] | [0.8333, 3.5932
30 | 152.599 | [0.5601, 3.4231] | [0.8243, 3.5322] | [0.8296, 3.5563] | [0.8351, 3.5808]
50 | 251.593 | [0.5527, 3.3850] | [0.8268, 3.5051] | [0.8300, 3.5193] | [0.8333, 3.5337]
100 | 490.771 | [0.5425, 3.3286] | [0.8217, 3.4555] | [0.8233, 3.4625] | [0.8249, 3.4695

k=5

Table 1: The non-Bayesian prediction interval (N;), and the Bayesian prediction intervals
(Br), (By) and (By).

Next, for £ = 3,4,...,10 ; n = 10(5)30, 50,100 ; a = 0.05, 0.10 ; 6 = 2,0.5,1,3,
we obtain the coverage probabilities for the prediction intervals (see the Table 2). As is
seen in the Table 2, the non-Bayesian prediction intervals (N,) seem to be comparatively
better than the Bayesian prediction interval (Bg), (B;), (By) especially for k = 3,6, 9.
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3

4 | 5

6

7

9

10

0.9505

0.9511

0.9484

0.9512

0.9502

0.9493

0.9497

10 | (By)

0.9408

0.9454

0.9508

0.9464

0.9476

0.9598

0.9536

0.9502

0.9518

0.9544

0.9456

0.9510

0.9603

0.9544

0.9530

0.9583

0.9578

0.9432

0.9535

0.9599

0.9564

0.9498

0.9503

0.9502

0.9496

0.9497

0.9518

0.9502

15 [(By)

0.9431

0.9456

0.9481

0.9467

0.9489

0.9554

0.9510

(Bs)

0.9497

0.9501

0.9501

0.9486

0.9512

0.9559

0.9504

(Bv)

0.9555

0.9535

0.9527

0.9481

0.9515

0.9564

0.9518

(Nb)

0.9498

0.9498

0.9500

0.9496

0.9488

0.9497

0.9485

20 [(Br)

0.9441

0.9472

0.9486

0.9449

0.9479

0.9515

0.9486

(By)

0.9489

0.9502

0.9501

0.9457

0.9492

0.9521

0.9497

(Bv)

0.9531

0.9538

0.9524

0.9469

0.9494

0.9531

0.9508

(Ns)

0.9504

0.9513

0.9477

0.9490

0.9487

0.9496

0.9495

25 | (Bn)

0.9470

0.9471

0.9457

0.9472

0.9436

0.9498

0.9484

(Bys)

0.9504

0.9501

0.9467

0.9485

0.9492

0.9507

0.9492

(Bu)

0.9530

0.9528

0.9485

0.9489

0.9499

0.9514

0.9501

(Ns)

0.9505

0.9495

0.9506

0.9500

0.9507

0.9508

0.9501 |

30 | (Bm)

0.9489

0.9474

0.9492

0.9498

0.9494

0.9517

0.9491

(Bs)

0.9517

0.9497

0.9518

0.9513

0.9510

0.9524

0.9498

(Bv)

0.9542

0.9519

0.9537

0.9521

0.9515

0.9526

0.9505

(Nb)

0.9507

0.9495

0.9498

0.9496

0.9497

0.9498

0.9510

50 | (Bn)

0.9484

0.9472

0.9478

0.9485

0.9482

0.9476

0.9511

(By)

0.9503

0.9487

0.9488

0.9492

0.9491

0.9485

0.9512

(Bv)

0.9524

0.9496,

0.9500

0.9498

0.9495

0.9491

0.9512

(Ns)

0.9503

0.9506

0.9499

0.9505

0.9490

0.9499

0.9496

100 [ (Bx)

0.9481

0.9502

0.9511

0.9495

0.9499

0.9497

0.9506

(By)

0.9489

0.9511

0.9515

0.9498

0.9503

0.9500

0.9511

(Bv)

0.9495

0.9515

0.9520

0.9502

0.9506

0.9502

0.9511

Table 2: Values of the coverage probabilities of the
(2.9), i.e. (Np), and the Bayesian prediction intervals (3.7), i.e. (Bx), (Bs) and (By) by
simulation with 10000 iterations which are given in the box for each k and each n from
the above to the bottom, where a = 0.05 and 6 = 2.

non-Bayesian prediction

interval
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| n\k | 3 4 | 5 6 7 9 10 |
(Ny) | 0.8984 | 0.9008 [ 0.8996 [ 0.8986 | 0.8999 | 0.9005 | 0.8995
10 | (Bgy) | 0.8828 | 0.8966 | 0.9018 | 0.8975 | 0.9012 | 0.8920 | 0.9055
(Bs) | 0.8976 | 0.9044 | 0.9072 | 0.9020 | 0.9017 | 0.8968 | 0.9064
(By) | 0.9108 [ 0.9122 | 0.9118 | 0.9063 | 0.9030 | 0.9009 | 0.9082

(Ns) | 0.8989 | 0.9007 | 0.9026 | 0.9008 | 0.8977 [ 0.9009 | 0.9006
15 | (Bg) | 0.8904 | 0.8955 | 0.8978 | 0.8984 | 0.8983 | 0.8988 | 0.9032
(Bs) 0.8997 | 0.9017 | 0.9019 | 0.9016 | 0.8989 | 0.9009 | 0.9045 |
(Bv) | 0.9086 | 0.9064 | 0.9062 | 0.9055 | 0.9006 | 0.9037 | 0.9062

(V) | 0.9009 | 0.9001 | 0.9001 | 0.8997 [ 0.9013 | 0.9006 [ 0.9016
20 | (Bg) | 0.8933 | 0.8957 | 0.8963 | 0.8948 | 0.9005 | 0.8935 | 0.9020
(By) | 0.8997 | 0.8998 | 0.8996 | 0.8984 | 0.9013 | 0.8961 | 0.0038
(By) | 0.9058 | 0.9043 | 0.9035 | 0.9013 | 0.9027 | 0.8979 | 0.9062

(M) [ 0.9016 | 0.9009 | 0.9005 | 0.8997 | 0.9000 | 0.8999 | 0.9006
25 | (Bx) | 0.8973 | 0.8970 | 0.8975 | 0.8972 | 0.8977 | 0.8948 | 0.8980
(By) [0.9022 [0.9010 | 0.9013 | 0.9000 | 0.8991 | 0.8955 | 0.8994
(By) | 0.9073 | 0.9050 | 0.9042 | 0.9025 | 0.8920 | 0.8981 | 0.8999

(Ns) |0.9047 | 0.8993 | 0.8987 [ 0.8989 | 0.8999 | 0.9012 [ 0.8999
30 | (By) | 0.8999 | 0.8970 | 0.8979 | 0.8989 | 0.8980 | 0.8935 | 0.9005
(By) | 0.9044 | 0.8997 | 0.9010 | 0.9011 | 0.8990 | 0.8948 | 0.9014
(Bv) | 0.9082 ] 0.9029 | 0.9031 | 0.9032 | 0.9005 | 0.8946 | 0.9021
(Ns) | 0.9019 | 0.9012 | 0.9008 | 0.8975 | 0.8983 | 0.8998 | 0.8995
50 | (Bg) | 0.8982 | 0.8979 | 0.8981 | 0.8975 | 0.8969 | 0.8899 | 0.8998
(Bs) {0.9008 | 0.8996 | 0.8997 | 0.8984 | 0.8952 | 0.8892 | 0.9000
(Bv) | 0.9032 | 0.9013 | 0.9015 | 0.8993 | 0.8993 | 0.8886 | 0.9011
(Ns) | 0.8992 | 0.9009 | 0.8997 | 0.8998 [ 0.9000 [ 0.8999 [ 0.9005
100 | (By) | 0.8976 | 0.8999 | 0.8960 | 0.8993 | 0.9006 | 0.8882 | 0.8995
(Bs) [0.8994 | 0.9009 | 0.8968 | 0.8998 | 0.9013 | 0.8875 | 0.8999
(By) | 0.9000 | 0.9014 | 0.8979 | 0.9001 | 0.9014 | 0.8852 | 0.9006

Table 2 (continued): Values of the coverage probabilities of the non-Bayesian prediction
interval (2.9), i.e. (INy), and the Bayesian prediction intervals (3.7), i.e. (By), (B;) and
(Bv) by simulation with 10000 iterations which are given in the box for each k and each
n from the above to the bottom, where @ = 0.10 and 8 = 2.
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[ n\k | 3 | 4 | 5 [ 6 | 71 9 [ 10
(Ny) | 0.9505 | 0.9506 | 0.9483 | 0.9492 | 0.9509 | 0.9492 | 0.9500
10 [(Bg) | 0.9453 [ 0.9432 | 0.9532 | 0.9529 [ 0.9487 | 0.9491 | 0.9525
(B;) | 0.9519 | 0.9502 | 0.9548 | 0.9538 | 0.9520 | 0.9506 | 0.9534
(By) | 0.9589 | 0.9555 | 0.9588 | 0.9542 [ 0.9548 | 0.9523 | 0.9551
(Ny) [ 0.9501 | 0.9501 | 0.9487 | 0.9506 | 0.9498 | 0.9496 | 0.9499
15 [ (Bg) | 0.9429 [ 0.9438 | 0.9496 | 0.9518 | 0.9481 | 0.9466 | 0.9499
(B,) | 0.9480 | 0.9498 | 0.9524 | 0.9530 | 0.9508 | 0.9485 | 0.9505
(By) | 0.9539 | 0.9535 | 0.9550 | 0.9541 [ 0.9523 | 0.9495 | 0.9516

: (Ny) | 0.9496 | 0.9491 | 0.9500 | 0.9497 | 0.9500 } 0.9511 | 0.9510
20 | (By) | 0.9435 | 0.9448 | 0.9484 | 0.9485 | 0.9465 | 0.9469 | 0.9497

Bj) | 0.9491 | 0.9477 | 0.9511 | 0.9492 | 0.9476 | 0.9480 | 0.9500
(By) | 0.9533 | 0.9508 | 0.9525 | 0.9512 | 0.9498 | 0.9488 | 0.9511

(N) [0.9504 | 0.9492 | 0.9498 | 0.9492 | 0.9495 | 0.9495 | 0.9503
25 [ (By) | 0.9449 | 0.9463 | 0.9488 | 0.9484 | 0.9466 | 0.9463 | 0.9502
(B,) 10.9490 | 0.9493 | 0.9498 | 0.9501 | 0.9475 { 0.9467 | 0.9505
(By) 10.9532| 0.9516 | 0.9519 | 0.9514 | 0.9496 | 0.9474 | 0.9512

() | 0.9497 [ 0.9495 | 0.9500 | 0.9497 | 0.9490 | 0.9495 [ 0.9515
30 [(By) [0.9452 | 0.0451 | 0.9486 | 0.9489 | 0.9480 | 0.9463 | 0.9503
(B,) | 0.0489 [ 0.9472 | 0.9504 | 0.9499 | 0.9487 | 0.9477 | 0.9518
(By) | 0.9518 | 0.9494 | 0.9523 | 0.9517 | 0.9506 | 0.9478 | 0.9523
(Ny) ] 0.0512 | 0.9495 | 0.9501 | 0.9495 | 0.9494 | 0.9487 | 0.9487
50 [(By) | 0.9488 | 0.9472 | 0.9503 | 0.9491 | 0.9496 | 0.0463 | 0.9478
(B,) | 0.9502 | 0.0488 | 0.9510 | 0.9503 | 0.9502 | 0.9468 | 0.9485
(By) | 0.9520 | 0.9507 | 0.9523 | 0.9511 | 0.9505 | 0.9469 | 0.9490
(Ns) | 0.9502 | 0.9508 | 0.9507 | 0.9502 | 0.9497 [ 0.9502 [ 0.9492
100 [(By) | 0.9467 | 0.0512 | 0.9485 | 0.9504 | 0.9495 | 0.9484 | 0.9487
(B,) [ 0.0476 | 0.9518 | 0.9488 | 0.9509 | 0.9499 | 0.9484 | 0.9490
(By) | 0.0489 [0.9523 | 0.9494 | 0.9513 | 0.9504 | 0.9485 | 0.9491

Table 2 (continued): Values of the coverage probabilities of the non-Bayesian prediction
interval (2.9), i.e. (N;), and the Bayesian prediction intervals (3.7), i.e. (Bx), (Bs) and
(By) by simulation with 10000 iterations which are given in the box for each k and each
.n from the above to the bottom, where a = 0.05 and 6 = 0.5.
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& 1 3 | 4 [ 5 [ 6 ] 7 ] 9 ] 0]
(V) | 0.9505 | 0.9509 | 0.9496 | 0.9501 | 0.9506 | 0.9493 | 0.9487
10 (BH) 0.9398 | 0.9443 | 0.9450 | 0.9414 | 0.9494 | 0.9497 | 0.9504
(B_,r) 0.9504 | 0.9511 | 0.9505 | 0.9470 | 0.9473 | 0.9513 | 0.9522
(By) | 0.9583 | 0.9564 | 0.9552 [ 0.9511 | 0.9508 | 0.9531 | 0.9535

(N,) | 0.9498 | 0.9500 | 0.9512 | 0.9499 | 0.9501 | 0.9505 | 0.9499
15 | (Bg) | 0.9427 | 0.0439 | 0.0458 | 0.9424 | 0.9479 | 0.9489 | 0.9476

(B;) | 0.9497 [ 0.9497 | 0.0499 | 0.9462 | 0.9467 | 0.9504 | 0.0483
(By) | 0.9557 | 0.9543 | 0.9512 | 0.9499 | 0.9487 | 0.9517 | 0.9496
(N,) ]0.9501 | 0.9505 | 0.9494 | 0.9498 | 0.9502 | 0.9474 | 0.9483
20 [(Bg) | 0.9449 | 0.9469 | 0.9471 | 0.9443 | 0.9484 | 0.9458 | 0.9482
(B,) | 0.9498 | 0.9499 | 0.0501 | 0.9465 | 0.9473 | 0.9474 | 0.9493
(By) | 0.9536 | 0.9528 | 0.9528 | 0.9478 | 0.9470 | 0.0478 | 0.9485

(N;) ]0.9500 | 0.9510 | 0.9487 [ 0.9497 | 0.9514 | 0.9502 | 0.9487
25 | (By) | 0.9455 | 0.9477 | 0.9470 | 0.9436 | 0.9513 | 0.9477 | 0.9470
(B;) | 0.9493 | 0.9503 | 0.9492 | 0.9466 | 0.9476 | 0.9434 | 0.9481
(By) | 0.9527 | 0.9528 | 0.9516 | 0.0487 | 0.9482 | 0.9496 | 0.9488
(N,) | 0.9506 | 0.9496 | 0.9501 | 0.9512 | 0.9504 | 0.9480 | 0.9513
30 [(Bx) | 0.9450 | 0.9473 | 0.9488 | 0.9469 | 0.9489 | 0.9457 | 0.9487
(B;) | 0.9478 | 0.9495 | 0.9503 | 0.9488 | 0.9466 | 0.9465 | 0.9508
(By) | 0.9504 | 0.9519 | 0.9517 | 0.9505 | 0.9475 | 0.9468 | 0.9491
(Ny) [ 0.9489 [ 0.9499 | 0.9505 | 0.9494 | 0.9502 | 0.9500 | 0.9501
50 [ (By) | 0.9473 [ 0.9501 | 0.9483 | 0.9487 | 0.9493 | 0.9481 | 0.9492
(B;) | 0.9491 | 0.9512 | 0.9492 | 0.9496 | 0.9462 | 0.9488 | 0.9501
(By) | 0.9510 | 0.9526 | 0.9503 | 0.9507 | 0.9461 | 0.9494 | 0.9506
(N,) [0.9496 [ 0.9508 | 0.9504 | 0.9514 | 0.9496 | 0.9508 | 0.9503
100 [ (By) | 0.9494 | 0.9491 | 0.9489 | 0.9515 | 0.9492 | 0.9500 | 0.9508
(B;) | 0.9503 | 0.9499 | 0.9493 | 0.9520 | 0.9487 | 0.9504 | 0.9511
(By) | 0.9508 [ 0.9505 | 0.9499 | 0.9525 | 0.9484 | 0.9505 | 0.9512

Table 2 (continued): Values of the coverage probabilities of the non-Bayesian prediction
interval (2.9), i.e. (N;), and the Bayesian prediction intervals (3.7), i.e. (Bg), (B;) and
(By) by simulation with 10000 iterations which are given in the box for each k and each
n from the above to the bottom, where a = 0.05 and 6 = 1.
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@& [ 3 [ 2 [ 5 [ 6 7 [ 9 10
(Np) | 0.9518 | 0.9500 | 0.9505 | 0.9502 | 0.9495 | 0.9494 | 0.9494
10 | (By) | 0.9433 | 0.9439 | 0.9522 | 0.9417 | 0.9501 | 0.9450 | 0.920
(By) | 0.9525 | 0.9518 | 0.9547 | 0.9418 | 0.9541 | 0.9474 | 0.9453
(BU) 0.9608 | 0.9581 | 0.9585 | 0.9429 | 0.9555 | 0.9501 | 0.9483

(Ny) | 0.9508 | 0.9488 | 0.9492 | 0.9498 | 0.9507 | 0.9492 | 0.9506
15 | (Bg) | 0.9444 | 0.9436 | 0.9483 | 0.9429 | 0.9489 | 0.9472 | 0.9440
(By) | 0.9503 | 0.9479 | 0.9505 | 0.9433 | 0.9519 | 0.9485 | 0.9457
(By) | 0.9557 | 0.9516 | 0.9542 | 0.9422 | 0.9529 | 0.9496 | 0.9479
(Np) | 0.9513 | 0.9493 | 0.9484 | 0.9503 | 0.9487 | 0.9500 | 0.9490
20 | (By) | 0.9463 | 0.9471 | 0.9468 | 0.9440 | 0.9479 | 0.9429 | 0.9432
(By) [ 0.9512 | 0.9505 | 0.9485 | 0.9447 | 0.9496 | 0.9444 | 0.9441
(By) | 0.9559 | 0.9537 | 0.9510 | 0.9448 | 0.9512 | 0.9467 | 0.9469
(N;) | 0.9504 | 0.9485 | 0.9509 | 0.9499 | 0.9491 | 0.9507 | 0.9505
25 | (By) | 0.9476 | 0.9464 | 0.9477 | 0.9462 | 0.9470 | 0.9424 | 0.9453
(By) | 0.9514 | 0.9491 | 0.9499 | 0.9469 | 0.9515 | 0.9442 | 0.9472
(By) | 0.9542 | 0.9512 | 0.9514 | 0.9484 | 0.9532 | 0.9459 | 0.9479
(N3) | 0.9500 | 0.9502 | 0.9496 | 0.9505 | 0.9505 | 0.9493 | 0.9494
30 | (By) | 0.9472 [ 0.9471 | 0.9482 | 0.9485 | 0.9494 | 0.9405 | 0.9451
(By) | 0.9501 | 0.9494 | 0.9501 | 0.9492 | 0.9507 | 0.9420 | 0.9470
(By) | 0.9534 | 0.9515 | 0.9514 | 0.9496 | 0.9514 | 0.9437 | 0.9487
(Np) | 0.9503 | 0.9509 | 0.9515 | 0.9501 | 0.9501 | 0.9508 | 0.9497
50 | (Bgy) | 0.9476 | 0.9497 | 0.9515 | 0.9502 | 0.9489 | 0.9445 | 0.9485
(By) |0.9493 | 0.9507 | 0.9530 | 0.9508 | 0.9497 | 0.9430 | 0.9486
(By) | 0.9510 | 0.9521 | 0.9536 | 0.9515 | 0.9501 | 0.9459 | 0.9493
(Np) | 0.9504 | 0.9504 | 0.9498 | 0.9485 | 0.9496 | 0.9499 | 0.9501
100 | (By) | 0.9493 | 0.9488 | 0.9478 | 0.9493 | 0.9492 | 0.9442 | 0.9504
(By) | 0.9499 | 0.9495 | 0.9484 | 0.9499 | 0.9496 | 0.9447 | 0.9505
(By) | 0.9509 | 0.9503 | 0.9488 | 0.9502 | 0.9505 | 0.9450 | 0.9509

Table 2 (continued): Values of the coverage probabilities of the non-Bayesian prediction
interval (2.9), i.e. (IV}), and the Bayesian prediction intervals (3.7), i.e. (By), (Bs) and
(By) by simulation with 10000 iterations which are given in the box for each k and each
n from the above to the bottom, where oo = 0.05 and 6 = 3.
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OZET

X, X2,..., X, bagims1z ve ayni k serbestlik derecesine ve /0 karma parametresine
sahip olan x;(f) dagihmindan elde edilmig bir 6rneklem olsun. Varsayahm ki, Y ayni
xx(0) dagghmmdan olan ve X = (X1, X3, ..., Xn) Ornekleminden bagimsiz olan bir
rasgele degiskendir. Bayes ve Bayes ohnayan bakig acilaninden Y igin X ’e dayah
dngoril giiven arahkrali kuruluyor.
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A NOTE ON THE PROBABILITY
BOUND FOR m-DEPENDENT
RANDOM VARIABLES

Thsan Karabulut
Department of Statistics, Ankara University, Ankara

Abstract

An upper bound for probabilities of sum of non-identical and m-dependent

random variables is proposed. A theorem and application extensions are pro-
vided.

Key Words:Truncation, large deviation probabilities, convexity.
1. Introduction

Bounds on the large deviation probabilities for the sum of random variables (r.v.’s)
~are important tools for both practical and theoretical purposes.- The important
bounds are the well-known kornerstones of Tchebychef and Markov bounds. Ben-
net(1962) and Hoeffding(1963) and the some references therein give good account on
the development of the subject. Also, Petrov(1995) devotes a short chapter on the
probability inequalities for sums of independent r.v.’s. Nagaev(1965) obtains a large
deviation inequality for the sum of independent and identically distributed r.v.’s un-
der the existence of moments of order larger than two. Kurtz(1972) gives a number
of inequalities with. the bounds constructed by means of some specified functions.
He obtained bounds for weigthed sum of independent but not necessarily identical
random variables. Fuk and Nagaev(1971) proposed probability inequalities for sums
of non-identically distributed independent rv.’s. Probability inequalities for depen-
dent random variables do not have long history as much as for the independent r.v.’s.
Partly because the Tchebychef or Markov inequalities can be used in case of sum
of dependent r.v.’s via using the some order of expectations. For example, Shi and
Shao(1988) used Marcinkiewitz’s result to each component after decomposing sum
of m-dependent and identically distributed random variables. Tikhomirow(1980),
uses one of his results on the central limit theorem of weakly dependent stationary
sequence of r.v.’s including m-dependent r.v.’s.
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A number of probability bounds for sums of bounded and dependent r.v.’s are
given by Hoeffding(1963) with their uses in applications. Recently, Matula(1997) have
obtained probability and moment bounds for negatively associated random variables.
In this paper, a result by Hoeffding(1963) for large deviation probability of on sums

“of bounded and m-dependent r.v.’s(see, subsection 5.5.d. of ) is extended to the
m-dependent r.v.’s by combining another result by Fuk and Nagaev(1971) .

2. Preparation

In this section some notation will be fixed and explained the method for obtaining
the probability bound on sums of m-dependent r.v.’s given in the next section. The
" notation will be kept the same as those of Fuk and Nagaev(1971) and Hoeffding(1963).
Let X;, X>, ..., Xn be any sequence of m-dependent r.v.’s that is any two vectors
of the form (Xa—p, Xo—pt1,...,Xo-1,Xa) and (Xp, Xpi1,- - -  Xorg-1, Xotq) are inde-
pendent for b —a > m. Throughout the paper prescibed real numbers , 3, Y2, .. . , Yn
will be all positive. Truncation will play an important role in the development of the
probability bounds for the sums of m-dependent r.v.’s. Here, the truncation behaves
as a trade-off tool between having all order of the moments greater than 2 with-
out any pain and slow decreasing large deviation probabilities namely the summands
in the first term of the right hand side of (2.1) below. A truncation of the r.v.’s
X1, Xa, - .., X, is defined as

X L Xify
KF{O v Xi > Ui

Define § = 3", X; and ST = 3% | V;. It is known that for any sequence of r.v.’s
and a positive constant z

{(X1,X2,...X“) :S 2 :c}

I

{STZ-’B;XiSUi;’i= 1,2,...,1’1}
U {$>2z,X;>y atleast onei=1,2,...,n}.

Therefore, we have

P(§22) <Y P 29)+P(ST22). (@1

The exponential bounds for the large deviation probabilities are preferred in ap-
plications mainly due to their easy manipulations for obtaining tight bounds. In
summary, for constant k> 0, z € R and Ee™ < oo we can write that

P(S >z) < e ™EeMS. (2.2)

14
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In case of independence of r.v.’s in S , the expectatation on the right hand side
of (2.2) can be written as the product of Ee*:. The problem arises when the inde-
pendence assumption is violated.

A remedy for the arisen problem is to decompose the sum of any m-dependent
" r.v.’s into partial sums S; of independent r.v.’s which are not necessarily indepen-
dent(see 5.5.d. of Hoeffding(1963)). These sums are written as follows:

Sj = X + Xjrme1) + Xiratmin) + - - - + X imaa)ins—1)-

where, n; is the integer value defined as n; = [“—‘iﬂ——l] The summands above are
' mdependent because of the m-dependence of the r.v.’s. Therefore, we write

S=814+5+...+Sn+-

Hereafter, the r.v. X;, its truncation Y; and the preassigned truncation constant
y; will be denoted as X;;, Vi; and y;; respectively if X; belongs to the sum S;.

As a provision for the next steps choose positive constants p; = n;/n which
satisfies 724" p; = 1, then X = S/n can be written as

Pubyifigy JBottg . (2.3)
™ L] N1

Before stating the main result of this manuscript some more notation will be intro-
duced : Let, F}; denote the distribution function of the r.v. X, which is the summand
in the partial sum S;. The truncated moments and their sums are

p:—z [ dFy(e), B =3 [ arya)

=1

au=3 [\ lalari(a)

Also, define y; = max(¥15, Y25, Ysj, - - - » Unys) for each j=1,2,...,m+1
Though, the results are stated with the moments truncated at the y;;’s, they are

valid for full moments without truncation as much as their existence are not under
question.

3. A Crude Bound for the Sums of Random Variables

The Tchebychef or Markov inequalities can be used safely for the sums of any
type of dependent r.v.’s as it is noted in the introduction at the expense of assuming
the existence of all degree of moments and product moments as much as they are
needed. That limits the utilization of these inequalities. In the following, a probability
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bound for the sums of m-dependent random variables will be given in which the order
limitations of the existence of moments partly removed at the expense of its crudeness.

Although being a crude bound it may be helpful in some instances especially
where it is not known much about the existence of any order expectations greater
than two and more product moments. The result that we present can be extended
to other cases considered by Fuk and Nagaev(1971).

Remark. With some effort it seems to be possible to obtain a more refined expo- .
nential probability bound for m-dependent r.v.’s possibly by adding the stationarity
-assumption on the sequence of r.v.’s using the method provided by Tikhomirov(1980).
In this case one should work with moment generating functions of truncated r.v.’s
instead of using characteristic functions.

Theorem. Let, X3, X, ..., X, be a sequence of m-dependent random variables,
fort > 2 and constants 0 < a <1, 3=1—a. Foreach j=1,2,...,m+1if

tn; n; Y Bz azn?
max (—J -2 ln(—-J——-A + 1)) = Bg
Y5 Yi it k]

P(X 22} < BrhT P(-Xu > Yi5)

3—1

+ TR pep (U - (1- 9% - 2 WL 1)} @)

P(sz) S g=1 E:_l (1_:_.?,1:_1)

gyt~ 1z
+ TR pen {(5- 9% - (9% - 2 W(ELE + 1)} (59
otherwise
m+l 75
PX2z)< 321 ap Xij 2 vi5) + le,exp{~am2( 2__7 B )} (3.3)
= j’_

The inequalities above may be found more meaningful in some cases if arithmetic
mean X is replaced by S. In this case z will be replaced by n.z in the terms in second
sum the each inequalities.

The following corollary is a natural extension of the theorem as for Corollary 4.
of Fuk and Nagaev(1971). It simplifies the use of the theorem.
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Corollary. If EX; =0 and E|X;|! <o fori=1,2,...,n,t>2, B=1t/(t +2) and
Yi =Yij =... =Y, = fan; forj = 1,2,...,m+1. then from the last two inequalities

= Ajzer cpz?n?
P(X2z) < Z}'fll s T Ps(m)wfp {—‘ﬁg‘*}
Aje z2n3
3—11 (nja:?* + j=1 pJe‘xp {_HRBj

~ where ¢; = 7% and ¢; = 2(t + 2) %"

The proof follows the following route:

The second term in the right hand side of (2.1) will be obtained for X in the first
‘step. Then, the first term is obtained in any plausable way; especially, this term can
- be obtained by the use of Markov inequality for each r.v. X; under the existence of
specified order of moments as it is done in the proof of the Corollary.

Note that right hand side of (2.2) is bounded for the arithmetic mean of the
truncated r.v.’s. Hence, for A > 0, and any real number = > 0, we can use Hoeffd-

ing(1963)’s argument on decomposing X, namely (2.3). Because of the convexity of
the exponential function, it is obtained that

- +1
P(XT>z) < e Een Lim B

m+1

ST

< e™ Y p;Ee™™
=1

2P

Each expectation in the sum S] now can be written for each j as

4.gT Ly
Ee™™? =14, Ee™ "

In the lines of Fuk and Nagaev(1971), using the upper bounds hy; <t and hy; > -
separately, where ¢ > 2, then combining these in (2.2) we get

h
Eexp {;SjT - ha:}
¢

.!Lw
h en —1— L
< exp lBth(—)z —ahz | + yJ Aj’t ﬁh&' -+ hﬁj
2 n; v

To minimize the right hand side of the inequality with respect to h, each part
in parentheses of the exponent is considered separately, regarding the hy; < ¢ and
hy; >t cases. As a result, the minimizing h values are found as

aomj

A= etB?
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Yi Yi Ajs

. If h < hy then using the same arguments for (32) and (33) of Fuk and Na-
gaev(1971) it is obtained that

hg Vi (ﬂjt ﬂ:r. ln(njyj 1ﬁ$ n 1))

B S <nyp” — (1~ 5o~ pi)ha (34)
2

n,m

s(x%—‘“) % — (B0~ s | (3.5)

. _
By replacing hy = %ln('mf:__—’fz— + 1) for each j in (3.4) we obtain the second term
in the right hand side of the inequality (3.1). Similarly (3.2) is obtained if hy = %
is replaced. Otherwise, pluging in h; for each j in (3.5) we end up with the second
term on the right hand side of the inequality (3.3). Then the proof is completed.

It is also possible to obtain bilateral versions of the given inequalities above by
noting that

P(|X]| > z)=P(X >z) + P(-X > 2).
Hence, after replacing z, Yi» B_? and M by —=z, —Y5

B} me:cdﬂjrc) p,——ZF:ndF,,
i=1

respectively and defining

B =Y [ Fy(a), Auy= [ loldFiu(e)
i=1
in the proof above the inequality given in corollary can be written as
_ m+l 15 m+l 52:,;2,1?
P(IXIZI)SEZPUXMZ%)'*‘?ZPJ“P{“ }

2
7=1 i=1 j=1 B ;i

where ¢ is defined as previously.

4. Application

Hoeﬁthng(lQBS) s idea of ﬁndmg probability bounds for bounded and m-de- pen-
dent 1.v.’s has been used together with that of Fuk and Nagaev(1971) to obtain the
results presented in the previous section. The same method applies to the Theorem 4.
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of Fuk and Nagaev 1971) or Lemma 2.3 of Petrov(1995). So, we obtain the following
bilateral inequality for sum of m-dependent r.v.’s:

RIS 20) < 5 3 P(Xel 2 ) +23 prese { £~ Z il +1)} (4.1)

This inequality allows us to obtain a bound for E|S|* under the existence of k
th moment of the each r.v. which are m-dependent. and non-identical. To reach this
end, we will use two facts. Those are:

B = [ P(Y| 2 )ky*dy

under the existence of kth moment of the any r.v. and for k > 2,

k/2

& 2 R k
=1 =1

Multiplying the both side of the inequality (4.1) by kz*~? then integrating with
respect to x after choosing appropriate positive constants ry; that are ry; > k/2 and
y;; = Z/r;; and determining r; = min{y;; : i = 1,2,...,n;}, = 1,2,...,m+ 1. we
get

m4l 1 Cml L \K/2or5 TS

BISF <SS EX, 4 S RO T S gy x Beta(k/2,r; — /2).

=1

F=1 i=1 =1

Here, Beta(k/2,r; — k/2) denotes the beta function fi z3~1(1 — )"~ % 'dz.
Further simplifications can be made in the last inequality.
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OZET

m- bagimh olup aym dagihmh olmayan rasgele degigkenlerin toplamlan igin bir
olasilik iist smir verilmigtir.
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Abstract

The purpose of this paper is to present a method which will enable the manager to
make comparisons of the quality performance of a set of product lines so that the
management’s attention is concentrated where it is most needed. The comparison is
usually difficult because the different lines may produce different parts with different
properties or with the same properties but different specifications. The method proposed
in this paper uses three Z values, which are described below (For other management
tools, see, for example, Holmes (1986), and Holmes and Mergen (1989). An example of
the use of the proposed measures is also discussed.

1. Introduction

Suppose a plant has two product lines; say product A and product B. Assume that
three quality characteristics for product A and two for product B are being checked. SPC
(Statistical Process Control) personnel may have separate charts to monitor each
characteristic of each product line. Management, however, needs to know how the plant
is doing overall, The charts used by the SPC people at the operational level are too
detailed for management and comparisons of different characteristics and/or the product

21



DONALDS S. HOLMES AND A. ERHAN MERGEN

lines, which have different units of measures, are difficult. This paper presents three
measures, which will allow management to evaluate quality performance in three areas:
1. Conformance to Nominal (process target value)

2. Conformance to tolerance (process width)

& Ability to maintain statistical control (process stability).

By using the three values proposed in this paper, management could answer such

- questions as: "Is the process centered on nominal with respect to quality characteristics
1, 2, and 3?", "Is the process capable of satisfying the specification limits set for the
characteristics 1, 2, and 3?", "Is the process in statistical control with respect to
characteristics 1, 2, and 37"

2. Proposed model

The three Z values proposed in this paper provide the following information
about:

L How close the average is to the nominal of the specifications, Z-Nominal (Zy)

2. How the width of the process compares with the desired width, Z-Sigma (Zs) —
where actual width is defined as six standard deviations and desired width is
defined as upper specification limit (USL) minus lower specification limit
(LSL).

3. The state of statistical control (i.e., stability) of the process, Z-Control (Zc).

1. Z_Nominal (Zy):
Zy is used to show the condition of the process center relative to the process
nominal, Zy is defined as follows:

Z,= (Average ; Nominal ) (1)

¥

where average is the process average MagiWnthncpmb¢ s is the process standard
deviation in a given time period, and n is the number of observations in a given time
period.
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This measure is similar to the T-rate system developed and used by the Bell
Laboratories (see Hodley (1981)). Note that we ate using Z rather than t since we assume
that n will be 30 or more for summary data. The values for average, s, and n can be
obtained from descriptive statistics output for a product line for each time period. If the
absolute value of Z for a product line for a certain characteristic is greater than 3, then
this indicates that the process for that product line for the characteristic is not centered on.
" nominal during that time period. ‘

2 Z-Sigma (Zg):

Zs is used to show condition of the actual process width of a product line relative
to the desired width (ie., tolerance (T), which is upper specification limit minus lower

specification limit).

s-g'
% 2
where s is the process standard deviation in a given time period, s’ is the desired standard
deviation, and s(s) is the standard deviation of s values. If we take sample size of n and if
T/8 is the desired standard deviation then Zs becomes as defined in equation (3)

=@ 3
(5)

| ¥2n

Zg

If Zs is between V3, there is no statistical evidence that the specifications are not
being met to a satisfactory level. If the Zs value for a product line for a certain
characteristic is less than —3 then the data indicates that the process is capable of
satisfying the relevant specification limits during that time period. If Zs is greater than
+3, it means the process in question is too wide to meet the specification limits.

3. Z-Control (Zg):
Zc is used to show the condition of the process relative to statistical control. One

approach to this issue involves Mean Square Successive Difference (MSSD), which is
defined as follows:
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n-1 2
MSSD=;}—I— $ X -X)) @)
=i =1

where X;’s are the individual observations and n is the number of observations in a given
time period.
MSSD

Dividing the MSSD by 2, , provides an estimate for potemtiai variance if the

‘process is in control. A comparison of " to the variance calculated the usual way

may be used to test for randomness (see Dixon and Massey (1969) and Holmes and
Mergen (1995)). Ifn is greater than 20 and the population is normal then

z, =[]_MSS:D]/ (n-2) ®)
2s J(n-l)(n+l)

is approximately normally distributed with a mean value of zero and a standard deviation
of one. If Z¢ is greater than +3, it indicates lack of control due to trends; if Z¢ is less than
-3, it indicates lack of control due to cycles. Zc values inside V3 reflect “random”
variation, i.e., no evidence that process is not in control. :
Again by comparing Zc values for different product lines, one can quickly check which
product lines are in control (i.e., stable).

3. Example

Suppose the plant that we mentioned in the introduction has two product lines:
produict A and B. The nominal values and the specification limits for each of the
different quality characteristics of these two product lines are given in Table 1 below.

PRODUCT A PRODUCT B
Chr.1 - Chr2 Chr.3 Chr.1 Chr.2
NOM 50.00 3.00 17.50 30.00 5.00
USL 52.00 5.00 18.50 35.00 7.00
LSL 48.00 1.00 16.50 25.00 3.00
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Table 1. Nominal values and specifications for product A and B.

Four monthly averages, standard deviations, and the three Z values for each

product line for each characteristic are given in Table 2.

25

'MONTH

1 2 3 4
PRODUCT A
Chr.1
AVE. 50.50 49.60 49.96 49.97
STD.DEV. 0.50 0.48 0.27 0.25
Zn 7.07 -5.89 -1,05 -0.85
Zs 0.00 -0.40 -4.60 -5.80
Zc 1.75 0.10 225 -1.53
Chr.2
AVE. 3.98 3.50 3.99 4.00
STD.DEV. 0.71 045 0.49 0.79
Zn 9.76 7.85 14.28 8.95
Zs 420 -1.00 -0.20 5.80
Zc -0.63 0.30 -0.47 1.01
Chr.3
AVE, 17.81 17.60 17.64 18.00
STD.DEV. 0.60 0.62 0.59 0.80
Zn 3.65 1.14 1.68 4,42
Zs 14.00 14.80 13.60 22.00



DONALDS S. HOLMES AND A. ERHAN MERGEN

Zc 0.49 -0.65 -0.40 3.43
PRODUCT B

Chr.1

AVE. 32.00 31.84 29.99 30.00
STD.DEV. 1.60 1.70 1.45 131
Zia 8.84 3.49 -0.05 0.00
Zs 2.80 3.60 1.60 0.48
Zc 027 -2.54 1.64 0.99
Chr.2

AVE. 5.95 457 4.97 5.00
STD.DEV. 0.98 0.99 0.69 0.61
Zn 6.85 -3.07 -0.30 0.00
Zs 9.60 9.80 3.80 2.20
Zc -0.28 -0.24 1.53 -1.59

n = 50 for each month.,
Table 2. Averages, Std. dev.’s and 3 Z values for product A and B.

Several different analyses can be done with the Z values given in Table 2. Zn
values in the Table for all three characteristics of product A and two characteristics of
product B over the four-month period show how the different characteristics of product A
and B are doing with respect to their nominal values. As can be seen from Table 2 above,
during the first month characteristics of product A and B all have large positive Zx
values. That means, in both product lines process averages of different characteristics are
all very much above their nominal. In the second month, the process average for
characteristic 3 of product A is closer to its nominal, but still not centered on the nominal
(the average is 1.14 standard deviations of the averages above the nominal). As far as
product B is concerned, we see some improvement in bringing the averages for
characteristics 1 and 2 closer to their nominal.
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Similar analysis could be made for the Zs and Z¢ values of products A and B. For
example, Zs values for characteristic 1 of product A are less than —3 during month three
and four, indicating that the process is capable of satisfying the relevant specification
limits during this time period. However, Zs values for characteristic 3 of product A are
all greater than +3, implying that the process for this characteristic is not capable of
meeting the required specifications.

Zc values, on the other hand, for characteristics 1 and 2 of product A and
characteristics 1 and 2 of product B are all within V3, indicating that those processes
were in control during this four month period. Characteristic 3 of pmduc:t A, however,
has a Z¢ value of 3.43 in the fourth month, which implies that the process for that
characteristic is out-of-control in that month.

Another application of these Z values would be charting them over time, like a
trend chart, to see the patterns in the process management results.

4. Conclusion

The three Z values presented in this paper are simple tools for management to
make quality comparisons of different product lines, characteristics, etc. Some of the
advantages, among many, of these Z values can be listed as:

e Uniform scale so different characteristics can be compared easily (weight, length,
diameter, temperature, etc.)

e Ease of interpretation of the Z values

e Ability of comparison of the Z values even without charting them

e Ease of making them a part of any SPC system.
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OZET
"Bi gahsmada idareciye idarenin kalite konusunda ihtiyag duydugn noktalarda degisik
-iiretim bantlarindaki kalite performanslarini yapmak igin bir metod sunulmugtur. Farkh
bantlar, farkls iiriinler veya farkli 6zellikte ayni tiriinler iiretilebileceyinden {iriinlerde
kalite karsilagtirmalan genel olarak zordur. Bu makalede Gnerilen metod makalede
tammlandig: gekilde ti¢ Z degerini kullanmustir (diger yontemler igin 6rnegin Holmes
(1986) ve Holmes ve Mergen (1988)' e bakiniz). Ayrica bir orpek iizerinde Snerilen
~metod tartigilmugtr.
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Abstract

In this study, multivariate kernel density estimation has been investigated.
Also, the applicability of mutivariate kernel density function, estimation of two
variable probability density function whose geometric presentation is possible
has been shown by using the earthquake data in Marmara region.

Key words: Multivariate density estimation, bandwidth choice, cross-validation,
biased validation, bootstrap.

1. Introduction

A nonparametric modelling process in multivariate case is more complicated than
one in univariate case, in order to determine the structure in data sets studies related
to nonparametric probability density estimation are less. Therefore, in recent years
it has needed that this issue has been taken account more frequently, in this study
kernel density estimation method, which was first studied by Rosenblatt (1956) and
Parzen (1962), which has extensive application field in univariate case and whose
matematical properties can be investigated very well is studied.

The univariate kernel density estimation has one bandwidth parameter. The
specification of more bandwidth parameters than one is required for multivariate
density estimation. Also, it has been faced with difficulties in geometric presentation
in multivariate case. The multivariate density estimation is the genéralization of
univariate case.

The kernel estimation at a given point in one variable case defined as an weighted
mean which is calculated by overlapping the mean point of the kernel function with
the given point taking account the other observations with weights obtained according

to the kernel function and the bandwidth is extended to multivariate case (Toktamis,
1995).
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2. Multivariate kernel density estimation

Let X4, Xa, ..., X,, denote a d-variate random sample having density f , the com-
ponent of be and the component of X; vector be X;— (X;;, Xiz.. Xis)' and the compo-
_ nent of x vector be x = (z1, Zs, ...,mﬂ)'and x € R4. Also, [ notation is shortland for
[« [pe, dx is shortland for dz1,dzs, ..., dzg and the d % d identity matrix is denoted

by I. Under these notations, the d dimensional kernel density estimator is given as -
follows: '

Fosm) = o 3K () @)

Where H is a symetric positive definite d X d matrix called the bandwidth matrix
and K is a d-variate kernel functions satisfying [ Kj(x)dx = 1. Kj is usually cho-

sen to be a d-variate probability density function. Nevertheless, in order to conctruct
a multivariate kernel function from a multivariate kernel function, two common tech-
niques have been followed. One of them is to use (2.2) called product kernel function
as a kernel function and the other one is to use (2.3) called spherical kernel function
as a kernel function. These equations are given as follows:

Kai(x)= HK (=) (2.2)
{97}

alXx)= 2.3

Ka(x) _fK{(xx)lﬁ}dx (2.3)

Ancther choice which is widely used is to use symmetric unimodal probability
density function. The most widely used function for this purpose is standard d-
variable normal density function which is given as follows:

Ks (%) = (2n) V2 exp (—%x'x) (2.4)

The kernel estimator which is given by (2.1) requires specification of the band-
width matrix H, which has %% distinct entries. As dimension increases it is get-
ting more difficult to control calculations in which H matrix is used. In order to
simplify H matrix some restrictions are proposed. Therefore, three situation are con-
sidered. The simplest situation corresponds to the restriction H €S which means
that H =h?I (h > 0) . This restriction, which is to use one constant h bandwidth,
means that the amount of smoothing in each direction is the same. This is suitable
if the seales of all variables are roughly the same. So this selection can be done only
if each variable is standardized to be on a common scale (Simonoff, 1996). Another
restriction is to take H €D, H =diag (h?, h2, ..., h3) . This restriction allows different

30



ESTIMATION. OF DENSITY FUNCTIONS

amounts of smoothing in each coordinate direction. This approach is the practical
version of restriction H €S. Let F' denote the class of symmetric, positive definite
d X d matrices, D is the subclass of diagonal positive definite d X d matrices, D C F.
When the smoothing in different directions from the direction of coordinates are re-
_ quired, the full bandwidth matrix, H €F, would be appropriate. In this case as the
number of different elements of H matrix increases that is the number of parameters
to be estimated increases. This means that in case of H €F kernel density estimation
becomes more complicated. Jones and Wand has been done a detailed study related
to the three different choices given above, of bandwidth matrix H which will be used
to estimate the bivariate density function (Wand and Jones, 1993).

; Under H €D , H =diag (h?, h2, ..., h2), multivariate kernel density estimation can
be written as follows (Wand and Jones, 1995):

-1
- 1 d 2 Il—Xﬂ xg—Xig .’Bd'"X,'d
hy==(T[n] 3
FEh) =g (jdh’) ile‘( hi ' ke 7 ha ) (25)

In 1996, the equation given above (2.5) was simplyfied by Cacoullos under H €5
, S={h?l : (h > 0)} . This simplyfied form is defined in (2.6):

Fah = > K (" ;X*) (26)

This selection of bandwidth means that the amount of smoothing is the same in

every direction. By using product kernel function as kernel function Kj, (2.6) can be
rewritten as (Sain et al., 1994):

f (z;h) = ;lﬁi}{;l;[lxd (”5 _hx)} @27)

The use of only one bandwidth parameter h in (2.6) shows that scalling the ker-
nel function which is placed at each observation is the same in different coordinate
directions. If spread of the data points on one coordinate axis is wider than the other
one, then it is necessary to use a different bandwidth for every variable. But, in
this situation, it is very difficult to obtain optimal bandwidth from mean integrated
squared error, MISE, related to kernel estimation. Because, to make MISE minimum
for every h requires very complicated calculations. In the majority of multivariate
statistical processes, the data need to be standardized in order to make disapear the
difference among the ranges of variables (Wand and Jones, 1993). If the standardiza-
tion on the variables of multivariate kernel density estimation is carried out, then the
equation (2.6) which includes one smoothing parameter is used (Silverman, 1986).
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3. Asymptotic MISE approximations

In the majority of studies related to the density estimation, the comment about
estimation performance is made by measuring the closeness of the estimator to its tar-
~ get value. Rosenblatt stated that the use of MISE which is widely used for the kernel

density estimation and easily followed criteria is preferred due to its matematically
simpler (Rosenblatt, 1956).
An asymptotic approach for MISE of multivariate kernel density estimation can
be obtained in a similar manner to the univariate kernel density estimation. While
this approach is obtained, some assumptions as to density function f, kernel function
‘K4 and bandwidth matrix H are given as follows:
i) Each entry of Hf(.) is piecewise continuous and square integrable;
ii ) H=H, , is a sequence of bandwidth matrices such that n~* [H|™/? and all
entries of H approach zero as n — 00 ;
iii ) K is a bounded, compactly supported d-variate kernel satisfying

[ Ka@as=1, [sKi@da=0 ve [ #eka ey ds = (KT (31)

where, i, (Ka) = }o 22K 4(z) dz is independent of i.
—oo

Under the above assumptions, the asymptotic mean integrated square error of a
multivariate kernel density estimator, AMISE, can be obtained as follows:

AMISE {f (6 )} = 2B [ Ko@) dot g (K? [ or° {ELH, ()} dx

(32)
(Wand and Jones, 1995). Generally, an explicit expression for the AMISE optimal
bandwidth matrix of the multivariate kernel density estimator is not available and
the numerical value for this quantity can only be obtained by simulation. The most
important problem in (3.2), is how the multivariate integrals in (3.2) are evaluated.
Nevertheless, it can be obtained for AMISE simpler formulaunder He D and HE S
. For example, in the case where H = h?I, AMISE of the multivariate kernel density
estimator can be obtained as follows (Wand and Jones, 1995):

AMISE{f (1)} = — [ Ka@dat3hm (Ko [ {PF ) ax (39

where V2 (x) = é (g?) f(x).
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When a specific error criteria, for example AMISE, is fixed at a predetermined
value, the required sample size increases rapidly with the number of dimension. The
study which is related to this issue was carried out by Scott and Wand (Scott and
Wand, 1991). For example, when density function f and kernel function K are taken
~ normally distributed with mean zero and variance I , the sample sizes necessary to

achieve the given AMISE=0.393 have been obtained and it has been given in Table
1 (Simonoff, 1996).

Dimension | Required Saxmple Size, 1
1 1

5 480

T 5382

10 299149

Table 1. Sample size required for each dimension to achieve the given AMISE=0.393
4. Bandwidth selection

Kernel density estimators are affected from the bandwidth h very much. When the
bandwidth h is chosen very small, the variance of estimator increases while the bias
of estimator decreases. When bandwidth h is chosen very big, bias increases while
variance decreases. Therefore, we have to choose such a bandwidth that the optimal
bandwidth is obtained. Some error criteria are used to obtained optimal bandwidth

h. The optimal bandwidth which makes AMISE minimum for multivariate kernel
density estimation given in (3.3) is:

oo 1/(d+4)
d [ K4(z)’dz

ny (Ka)? T {V2f ()} ax

As seen from (4.1) The optimal bandwidth which makes AMISE minimum de-
pends on second derivatives of an unknown density f. As this (4.1) involves an
unknown ﬁmction, the optimal bandwidth can not be obtained by aising this equa-
tion. That’s why other methods a few of which are mentioned below are suggested.
Some of these methods are given as folows.

hAMISE = (4-1)

4.1. Choice of bandwidth for a standard distribution

The aim of this method is to find an expression instead of j? {V“!f (x)}zdx in

(4.1). For this purpose the density function which is known is taken and the optimal
bandwidth A is obtained. For example if standard d-variate normal density function

is used instead of unknown density function f, then the integral which was taken
place in (4.1) becomes:
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_Z (Vi @) dx=(2vr)™" (-;—d-}- id’)

(Silverman, 1986). By substituting | {V*f (x)} dx into (4.1) the optimal band-
width is obtained. >

4.2. Data-driven methods for bandwidth selections

The least squared cross-validation method, LSCV, for the choice of bandwidth
. ‘matrix H is exactly a data driven method. Rudemo and Bowman both separately
from each other suggested this method for the choice of bandwidth of kernel estimator
in a univariate density function (Rudemo, 1982; Bowman, 1984). This method is
generalized to obtain the bandwidth matrix H in multivariate case. As a result of
generalization, least squared cross-validation function (LSCV(H)) is found as follows:

LSCV(H) = [ f s BY dx— 207 Y s (K H) (42)

i=1

where f_; (X;; H) is the kernel estimator based on the sample with X; deleted. Here,
the main purpose is to obtain the optimal bandwidth matrix H which minimizes the
expression given by (4.2) and to use this in the multivariate kernel density estimation.
Under the restriction H € D if the standard normal density function is used instead
of kernel function Ky, then (4.2) becomes:

1
"~ (2ym)’nhiha.. ha 4
1

v by g g;“’ {_41_1 fg (%)2} -
-(xe) e {35 (=252) ]

k=1

LSCV (hy, ha, ..., ha) (4.3)

As seen from (4.3) the function LSCV(hy, ks, ..., ha) is a data driven one. The
optimal bandwidth which makes (4.3) minimum are obtained and used in kernel
density estimation. The least square cross-validation function can have more than
one minimum. The studies have shown that the use of the bandwidth which has the
largest local minimum is appropriate.

For multivariate case, Sain and his colleques generalized biased cross-validation
method, BCV, which is developed by Scott ve Terrell (1987) to obtained the band-
width h in a univariate kernel density estimation. Sain and his colleagues used
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the estimation® 3% f% (z;) which has smaller bias instead of [ f” (z)”dz (Sain et
=1

al., 1994). Theyi_used standard normal density function instead of kernel function
K, under the restriction H € D and they found biased cross-validation function,
(BCV(hy, hay ..., ha)), for multivariate product kernel estimation as follows :

1
. +
(2/7)° nhyhg..ha
2
1

+an(n — )bz, ha iz[{i (%ﬁ)z} -

i=14%i (k=1

—(2d+4) {Zdj (w"—f;m—’—’f)z} + (& +2d) ] x

=1
" ﬁ o (ﬂ?ik— -’Bjk)
k=1 by

where ® is standard normal density function. To obtain the optimal bandwidth, they
found the bandwidth which minimizes (4.4) (Sain et al., 1994).
They also developed bootstrap method which is used by Taylor (1989) to find

the bandwidth hin a univariate case for multivariate density estimation. MISE for
multivariate case is:

BCV(hy,hgy...;ha) =

(4.4)

MISE(h) = f B {f* (x) - f )} dx
R

where f (x)is the multivariate kernel estimator, f* (x)is a multivariate kernel esti-
mator calculated with data sample from f (x), and the expectation, E¥, is taken with
respect to the density f (x). Under restriction H € D by using the standard normal

kernel function for K4, bootstrap function, (B(ky, k2, .-, ha)), for multivariate product
kernel estimation as follows :

1
B(hy hg, . hs) = i 45
(s, ha, s ha) (2/7) by ha.. b (45)
1 L n—1 1.8 (za —Tik\?
) o ()
N R e WP s
1$ f‘s‘k"mjk)z} 8y owa { Y (ﬂ?ik—Ijk)z}
+ - it —— e e i i ————
“’“’{ iU h P\ 55\

(Sain et al., 1994). The bandwidths which minimize this function are taken and
these values are used to obtain multivariate kernel density estimation.
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5. Application

In this study firstly the computer programs have been written to obtain the val-
ues of kernel estimates of multivariate density function since no standard computer
programs available. Secondly some computer programs have been written for some
- methods (LSCV, BCV, B) which have developed in order to obtain the bandwidths.
The programs have been coded by Delphi 3 for methods (Cula, 1998).

In this application, the data are consist of 255 earthquakes with magnitude at
least 4 on Richter scale occurring between 1900-1999 years in Marmara region. This
data was used to obtain kernel estimation of bivariate probability density function.
Here, bivariate standard normal density function is used as a kernel function. As
‘two variables were measured by using the same scale, the raw data were used without
making any standardisation. In this simulation firstly, the bandwidth h was increased
by 0.01 between 0 and 2 and then the values of the functions BCV (A, k2, ..., ha),
LSCV(hy, ke, ..., ha) and B(hy, ha, ..., hg) were found and their distribution was ob-
tained.

The bandwidth h which makes the function BCV(h;, k2, ..., hq) minimum was ob-
tained as 1.36 and the value of the function BCV(hy, hs, ..., hg) which corresponds
to this value was obtained as 0.02234. The graph of the function BCV(h;, h, ..., ha)
which corresponds to the bandwidths were given in Figure 1.

The bandwidth k which makes the function BCV(hy, ha, ..., he) minimum is sub-
stituted into the bivariate kernel density estimator, obtaining the value of estimation.

Figure 2 gives surface plot and contour plot of the kernel estimate for the earthquake
data. -

002238
- 002237 4
g DD2238 -
002235 4
B
h

Figure 1: The graph of the function BCV(hy, ko, ..., hg) for the bandwidth’s value
between 1.30-1.42 for the earthquake data set

Optimal bandwidth A value couldn’t be obtained from cross-validation and boot-
strap methods. The graph related to this is given in Figure 3.

As seen from Figure 3, as h increases the value of the function LSCV(hy, ko, ..., hig)
also increases and ash increases the value of the function B(hy, g, ..., hg) decreases.

However, minimum value couldn’t be obtained for both of the functions, in other
words optimal bandwidth couldn’t be found.
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Figure 2: The graphs of the bivariate kernel density estimation values related to the
earthquake data for the Marmara region when h=1,36 a)Surface Plot b)Contour Plot
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Figure 3: The graph of a) the function LSCV(hy,hs,...,hq), b) the function
B(hi, ha, ..., hg) for the bandwidth’s value between 0.1-1.4 for the earthquake data
set :
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6. Conclusion

In the application of earthquake data the bandwidth value which was obtained
by using the method BCV has been found as 1.36. It couldn’t be obtained the
_ bandwidth value for both of the methods LSCV and B. By putting the bandwidth

which is obtained from method LSCV into the bivariate kernel density function, the
estimation values have been calculated and the graphs related to these values have
been drawn (Figure 2). According to the data of 255 earthquakes with magnitude at
least 4 on the Richter scale occurring between 1900-1999 years in Marmara region, the
density related to the observation between longitude 40.30-41.20 and between latitude
21.75-30.40 is found the highest. It can be said that Istanbul, Izmit, Yalova cities
_which fall into these coordinates have higher probability of occurring earthquake with
magnitute at least 4 on the Richter scale in Marmara region than the other places in
Marmara region.
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OZET

Bu ¢ahgmada, ¢ok degiskenli olasihk yogunluk fonksiyonunun gekirdek kestirim
yontemi incelenmigtir. Ayrica ok degigkenli olasiik yogunluk fonksiyonunun uygu-
lanabilirligi, geometrik gsterimlere olanak saglayan iki degigkenli olasihk yogunluk
fonksiyonunun kestirimi Marmara Bolgesi i¢in elde edilen deprem verileri kullamlarak
yapilan uygulama ile gosterilmigtir.
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Abstract

Let Xj, ..., Xp be (p > 1) independent random variables, where each X; has
a distribution belonging to one parameter truncated power series distribution.

The problem is to estimate simultaneously the unknown parameters under the
weighted error loss function.

Key words: Power series, truncated Poisson distribution.
1. Introduction

Recently, there has been considerable interest in simultaneous estimation of para-~
meters from several independent distributions other than Gaussian. Since celebrated
work of James and Stein (1961), numerous results have been obtained for the simul-
taneous estimation problems under several plausible loss. Hwang (1982) obtained
improved estimators in discrete exponential families, Tsui (1986) showed robustsness
of Clevenson-Zidek (1975) type estimators when the underlying distributions belong
to much larger class of distributions. Recently, Dey, Ghosh and Srinivasan (1987)
considered the loss developed by Stein for simultaneous estimation of p independent
gamma scale parameters and their reciprocals.

This paper is devoted to simultaneous estimation of parameters of a truncated
distribution under a squared error loss function given as

(6 2
105,60 =3 (6— —1) . (L1)

Let X = (X3, ..., X,) where X}, ..., X, are p independent random variables, each
X; having probability function.

Bo(z:) = g:(0:)ti(2:)07 =z =ay, a3+ 1, ... (1.2)
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where q; is a nonzero positive integer and g;(f;) is a normalizing constant, given as

g O:) =Y ti(=)o 6:>0,i=12,..,p. (13)

Ti=ay

Such a distribution will be refered to as a power series distribution truncated at
left. Special cases include the truncated Poisson and the truncated negative binomial
distributions. The problem is to similtaneously estimation of § = (6, ...,6,) under
the loss (1.1). For the loss (1.1), the best multiple estimator of § (which is also the
best unbiased estimator) is given by 6 (X) = (67 (X)), ..., 63 (X)) where

E-!:,_l!

5y z;=a;+1,0;+2,..

(1.4)
0 otherwise.

For proving the unbiasedness of §; (X) note that

E(8(X))=E (%)

= i Mﬁii (3:,-)

Ti=a; ti(w;)
R Tt PN 1 e
z;z=t:1§ ti(il?i) f‘( ) E’: t.-(a:,-)(ﬂi)matl( ;) i

Ti=ai

S tilw: — 1)(8:)"
_ @i=a

2 @) ()=

ti(a = 1)(0)% +6 §+1 ta(ze — 1)(8:)

- =a;

3 (i) (0=

and t;(a; — 1) is defined as zero then E(67(X)) = 6;. It follows from Brown and
Hwang (1982) and Ghosh and Yang (1988) that 67 is admissible for p = 1. Thus
for p > 2, we propose the rival estimator of 0 as §(X) = 8°(X) + ¢(X) where
¢(z) = ($1(2), ..., 9,(2)). Also, assume that ¢;(z) =0if z; <a;+1,1= 1,..,p.

In section 2 a difference inequality involving the risk differences of imoroved esti-
mators from the unbiased estimator is obtained and solved. In section 3 we obtain
two classes of dominating estimators.
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2. Obtaining the difference inequality

Let z = (zy,...,Zp) be a vector of observations of the random vector X =
(X1, ..., Xp), where the X;’s, = 1, ..., p are mutually independent random variabies
~ with probability function Pp,(z;) as given in (1.2). Then for any real-valued function
¢:(z) where E|¢,(X)| is finite, and ¢;(z) = 0 if z; < a; + 1 the following identity
(Hwang 1982) holds

E(8;¢:(X)) = E($(X + €))/83(X + &) (2.1)

. Theorem 2.1. Let ¢; and ¢; be defined previously then we have the following
equality

2 o 5
E@ () = T2 1), 22
Proof.
E@RX) = 3 07262 (x) | @0
Zi=a; z'gai ti(ms)!?;"
-5 2(z oﬁi(mi)ei"_2
z‘;a,- :‘Z::ai ti(x:)(0:)
i B2y + 2¢:) t(ys + 2,0
vi=g;—2 4 m_§_2 ti(y: + 2) (9‘.)9.-+2
- i st (y + 2ei)ti (y.- + 26;) I t; (y'.) (ED
et t(v:) § ti(yi + 2)(6,-)»1—1-2

l:q'a‘ (X:+ 26,)ti(x — 23{)]
t(X:)
We know t(a; — 2) = t(a; — 1) = 0 and ¢(z;) = 0 when z; < a; + 1 and we are done.
Theorem 2.2. Let ¢; and £; and 6 be as defined previously then we have the
following equality

B8 (0R(X) =E(¢*‘X‘+§j‘3£‘)(x‘+e‘)) 23
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Proof.
E(07203(X)8(X)) = ¥ 672¢,(x)8° _iim);“__
(6:7¢(X)87(X)) = Z 84(z)83 (<) S
oo Ti—2
= 3 pula)i(a)

A T

= Y hly+2e)R(y -+ 2)—g T 2OM

m=zcu: -2 ¥ i “=§_2 ti(ys + 2)(0;)w+?
- i iy + 2e:)ti(ys + 2€:) 67 (y + 2) & (y:)0:™
w2 () “2_2 ti(ys + 2)(8:) %2

(X 4 2e:)8( X+ e5)

which completes the proof. Now suppose that 6(z) = 8°(z) + ¢(z) is an estimator

- of 0, where ¢(z) = (¢,(2), ..., $,(z)) and ¢;s satisfy (2.1), (2.2), (2.3). The following
theorem gives an unbiased estimator of risk difference of §(z) and 6°(x).

Theorem 2.3. If A(f) = R(6*,6) — R(6°8) = E;A(X) is the risk difference, then
the unbiased estimator of the risk difference is given as

A@) =3 {¢?<z+zei)%{§% + 20 e+ 20) D gy o+ )

so that 9;(z) = yi=1,..,p.

Proof.
A(f) = BpA(X)
= R(6*,8) — R(&%,6)
= E(L(6*,0) — L(5°,9))
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E[z(a (X)+¢(X) 1y — (6“(}{) 1y

= Z[E(sb?(x )6:%) — 2E(¢(X)8;™) + 2E(8(X):(X)0 7))

=1

& X+ 2e)6(Xi+2) pi(X+e) | (X +2e)ti(X+ 1)

B ZE [ t:(X:) X e 2 tH(X;) |

— P (X + 2¢)) $:i(X + 2e:) _ $:i(X +ei)
EI;&?(X+2) RX D I RXTD) oK)

— E[Z[Cf’i (X + 2e;)0:(X +2) zqﬁ,-(X +.2e;)§?(X +2) gb 2(X + &)
ST X +2)0(X+1) X +2)5(X+1) 2P (X +1)

1l
So

Ale) = ¥z + 26 - 2E+2)

8z +1)
which completes the proof.

8(z +2)
60( +1)

+24;(z + 26;) -

— 29,(x + 2¢;)

3. Classes of improved estimators

In this section we will obtain two classes of dominating estimators. The following
theorem gives a class of shirinkage estimators when the dimension is more than 3.

Theorem 3.1: Consider the rival estimator §(z) = 6°(z)(1+(z)) where ¥(z) =
(Tpl( ) Pa(), - ’%bp(w)) with

c(z)z: . _
=1, (31)

Yi(z) =
and S; = 35, z2. Suppose further the following conditions hold:
i) C(z) is nondecreasing in each coordinate
ii) 0 < C(z) < min(p —3,2)
i) b>dp,
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Then for p > 4, §(2) will dominate 5°(z) in terms of risk given 1);(z) }_(9/32).%”(%1

Proof. Assign to the Dey and Chung (1991) we know |9;(z)| < %%% < (1/4) then

NG *Z Y2z + 2 g%‘” - 3 + 20,z + 26:) ;g - 3 ~ 2z + ;)]
So if A; = 33,&(:1—3% then

Alz) sg ((1/16)4; +2(1/4)A; — 2z + €))

Ale) < 3(9/16) 4~ 260z + )

For A(z) < 0 it is necessary that (9/16)A; — 2¢;(z +e;) <0

8z +2)
iz + &) > (9/32)A; = (9/32) Bt D)
then 0z +1)
Pi(x) = (9/32)A; = (9/ 32)T
and
_ o)z Kz +1)
wlm) =4 g > O/
and
() > (9/32)=~ (‘;’{,‘(*z;) (b +81)
So 9¥;(z) < 1/4 then @
e(z)z;
b1 5, <1/4
(9/32)%@ +8)<C ¢ 4‘: L

Example 3.1. Let X;’s be independently distributed with probability function

—6 ga:;
Pg(fﬂ,) - 1 g(ai)
R }
=e . 00 _—f. 4T mi=al-+1]ai+2!"‘
2:.;! E e lﬁr

=] zil
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So that 6(z) = %80 — 7, we know that [y;(x)| < 1/4 and $,(z) > (9/32)%55)

then
(9/32)% 2+ 2 ‘502‘;"(+) ) < (z) < 1/4

or
:t:,+1

©/32) %L < (@) <1/4
. c(a:)z:, z;+1
A0 st
C(@) > (9/32) %5 . 1(b+S1)

1.

or 9,(z) < 1/4 then $H2 < 1/4 or C(z) < (1/4)%21.

i
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OZET

Kesilmig kuvvet serisi dagihmimdan elde edilmig 6rneklemin yardimm ile agirlandirilong
hata fonksiyonlan kullamlarak parametrelerin tahmini yapiliyor.
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ABSTRACT

The aim of this paper is to show how econometrics, information systems,
and statistical infrastructures are independent, and can be viewed together as a
means to optimally impact the decisional structure in any given society. This
paper also aims to formulate some ideas on econometrics towards the coming
years as a tool for analyzing international interdependency.

With the advent of the information age, tremendous amounts of highly
disaggregated information flows have had an increased influence over the
social sciences both theoretically and empirically, as well as over the decision
making structures. This necessitates a reexamination of the existing economic
theories in order to accurately reflect today's realities. In this sense,
econometrics can be used as the primary tool in terms of the quantitative
aspect for increasing the value added to economic theory and the social
sciences as a whole.

Additionally, this reexamination should take advantage of the advances in
information systems and in statistical infrastructures. To the extent that
information is received in a timely and thorough manner, and is utilized
through statistical analysis, decisional structures will succeed in achieving
their targets in a rapidly changing world environment.

In conclusion, this paper sets out to show that the intense flow of
information and the improvement in quantification techniques will have a
strong impact on the social sciences. Furthermore, there will be a
corresponding revision of the theoretical aspect of the social sciences due to
the strong link between the empirical and theoretical aspects of the socidl
sciences. This will be essential because the large new flows of disaggregated
information and wide use of quantification techniques and data processing,
assisted by information technology, will render the existing theories
insufficient. The reformulation of the theories will be based on the increased
information available, and will be based on an interdisciplinary approach. This
will necessitate the reform of the existing theories and quantification
techniques.

1. Introduction
Over the past few decades, the world has been experiencing a phenomenon which
has seen the proliferation of information at exponential rates. Thus, this era has been
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appropriately termed the "information age", and has been likened in its significance to the
Industrial Revolution in terms of its impact on the entire modus operendi of the global system.

The challenge at hand is how to utilize or design information systems that will
appropriately and efficiently optimize the availability of information in a manner that will
most favorably impact the decisional structure of policy makers. The most effective means for
doing so is through the extensive coordination of econometrics, information systems, and
statistical infrastructures. _

As each phase of technological advancement propels the reverberations of change
throughout the global system, the existing static models for installing and accessing
information systems, which allow decision makers to know their alternatives and to make
decisions on the most up to date information, become insufficient.

The aim of this paper is to review the interaction between econometrics, information
systems and statistical infrastructures and to demonstrate the need for further examination of
this interaction so as to create a dynamic model of information processing, analyzing and
accessibility. The ultimate goal is to produce an optimal coordination of the aforementioned
components so that decision makers can function most productively in the global system to
the benefit of all the countries, institutions, and individuals within this system.

This paper also aims to formulate some ideas on econometrics towards the coming
years as a tool for analyzing international interdependency. Finally, one additional aim of this
paper is to demonstrate how the existing theories will be rendered insufficient due to the large
flows of disaggregated information and the wide use of quantification techniques and data
processing, assisted by information technology. This will necessitate the reform of the
existing theories and quantification techniques in the social sciences.

2. Some Comments on the Specification Methodology of Social and Economic
Phenomena

The specification of social and economic phenomena presents numerous and
substantial difficulties arising from biases in the specification methodology and from
measurement problems.

In particular, the uniqueness of social and economic phenomena, in the sense of
taking place at a particular point in history, geography, and society, makes it difficult to
undertake controlled experiments as in the natural sciences. The problem is compounded
further due to the close relationship between human behavior and the existing social and
economic phenomena.

Individuals, or decision makers, are affected by the existing social and economic
phenomena when making decisions. Once decisions are made and acted upon, the social and
economic phenomena that form the basis of future decisions change. Additionally, the
continuous structural changes taking place due to the dynamic nature of social and economic
phenomena add to the difficulties in making generalizations.

To alleviate these problems, the analysis and quantification of any soc1a1 and
economic phenomena requires the understanding of the global structure which is of one of a
chaotic, complex, and stochastic nature.

As shown in Diagrams 1 and 2, the nature of specification methodology may limit
our understanding of social and economic phenomena. As Diagram 1 implies, a certain
information set is collected as is determined by our own perceptions of reality or by the
paradigm in which we find ourselves. Our biases in quantification and in qﬁantitative

interpretation put further restrictions on our understandmg of social and economic
phenomena.
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Diagram 1 Diagram 2

G : Global
system
(D : 1:An Information set E:Economics
. Q: Quantification
: @ T :Quantitative Interpret
Q
@

Within the existing mathematical tools currently being utilized , the global structure
remains indefinable. What actually occurs then in analyzing and quantifying social and
economic phenomena is a subset approach which is a partial analysis of the phenomena
disconnected form the global structure (Diagrams 3 and 4)

Diagram 3

Diagram 4
Specification——Estimation — Use
(X) __ analogy X) AC : Alternative cost
AC E E: Impact of E type
Stochastic phenomenon Model 4' specification variable
ov

OV: Impact of other variables

t

At the first stage, analysis and understanding of the global structure is processed
within an interdisciplinary approach ; then , via this information , the elaboration of any
specification at the structural level occurs. This approach would lead to a different
specification, which represents less alternative costs in the medium and long terms, compared
to a specification, which limits itself to the structural level.

However, even if our specification methodology is free of the problems mentioned
above, certain specification problems arising from the lack of data or from mis-measurement
problems exist because the specification methodology is determined independently of the data
collection process. Thus , a social scientist has to rely on a data base which answers to the
needs of governments and businesses. That is , some data required by the specification
methodology "may not be available in published form , or may not exist at all"
(Johnson,1991). The best example of this is expectation data. If expectations play an
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important role in our specifications, then the lack of data on expectations poses a great
difficulty.

In this respect, this problem might be overcome to some extent if the data base
creation process, or if institutions, pay attention to the needs of different specification
methodologies as well as to the needs of the governments and businesses.

3. The Link Between Economic Theory, Information Theory, Econometries ,
Information Systems , and Statistical Infrastructures

In this section , the roles of econometrics , information system and statistical
infrastructures in particular are reviewed. This section demonstrates why the link between

these three areas is so important to structural efficiency in the decision making process , and
therefore to the global system,

- 3.1. Information Theory

The decision making process depends upon receiving timely and accurate
information. Furthermore , the decision making process is only optimized depending upon the
value of the information circulating throughout the organization and to the decision makers.
Information theory is a framework approach that allows quantification measures to be applied
to information systems so as to quantify the information in a meaningful way for the decision
makers. The emphasis of information theory is on facilitating the information receiving the
users, as opposed to data processing, which is concerned with processing data almost
irrespective of the users ability to use that data.

3.2. Econometrics and Economic Theory

The economic issues that are studied naturally relate to that area within the social
sciences that is concerned with the description and analysis of production, distribution, and
consumption of goods and services within a society. While econometrics has traditionally
been limited to the field of economics, it can in fact be considered as a quantification method
for all of the social sciences. The validity of this claim derives from the fact that social
sciences are concerned primarily with human society or with individuals as members of that
society. All social sciences use statistical data to assess or project models measuring various
aspects of such societies. Statistics scientifically reinforce the theories or models of society
that are being studied, and in this sense they provide a system of measurement used to
understand the status of societies.

Thus, the embetterment of society, which necessitates the analysis of social data,
requires that a quantitative methodology be employed to determine trends and the
effectiveness of policy. Specifically, econometrics is constantly used as the means to bring a

- value added to not only economics, but to the whole of social sciences by adding the
irreplaceable value of scientific measurement.

. Indeed, the role of econometrics is more important in social sciences today than ever.
Given the advent of the. information age, tremendous amounts of highly disaggregated
information flows have had an increased influence over the social sciences both theoretically
and empirically as well as over the decision making structures.

With this dramatic increase in disaggregated information, the absorption of the
relevant information can be done most.efficiently when the information has been quantified.
This has resulted in an increase in the level of quantification in the social sciences , and
thereby a change in the structure of social sciences. This quantification process faces two
fundamental and related issues. '

The first one is rapid changes in the world economy, which brings up the question of
the ability of detecting structural changes. Relationships estimated by econometrics are time ,
data and location specific. If there is a continuous change in the structural aspects , then not
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only do we need to alter our model specifications , but also revise our data base. If we use
econometrics without paying attention to these structural changes, then the coefficients of the
models will be misleading us rather than guiding us.

This brings up to the second question on the methodology of econometrics. Today,
there are three main approaches to econometric methodology, the Bayesians, Classical, and
the Agnostics. The pioneering works in the Bayesian tradition include Zellner (1971) and
Leamer (1978). The Classical who dominate their field estimate their parameters on the basis
of economic theory and proceed with tests such as 't' , F and x2 statistics to support the
validity of their theorizing. However, as Johnston (1991) mentions , "charges of data mining
and other abuses have confused this tribe and they are presently in some disarray." On the
other hand, Agnostics, led by Sims (1980) , argue that economic theory is no help in

. ..specifying the form of relationships. This approach relies on vector autoregressions
- (VAR’s) methods. However, this method has many problems arising from collinearity and too
many coefficients, and suffers from empiricism. This requires, then, a reevaluation of the
tools, theories and estimations to be used by decision makers in the coming decades.
International macro modeling is an example of such a search. Its importance is heightened by
the need for better international policy coordination.

Specifically, though, several proposals for reconsidering international
macroeconomic modeling can be made. These might include 1) the need for further
theoretical and empirical studies on the interdependence of the world economy, transmission
of fluctuations, and internationally coordinated policies, 2) the impact of structural changes on
the capacity of international macroeconomic models in exploring and forecasting the
economic phenomena; and a closer link between micro and macro economic considerations,
3) more emphasis on medium-term modeling, 4) the identification of institutional, national,
regional, behavioral specification, and some economic behavioral changes, 5) more
international coherence on the trade of goods, services, and financial and information flows,
6) the identification of the socioeconomic behavioral changes and the increasing importance
of social protection and public expenditure, and 7) a policy oriented problem solving
approach through sectoral disaggregation of structural models on the one hand, and central

and satellite modelling, exploration modelling, and valid reduced forms for policy analysis on
the other (Artus, Giivenen, 1986).

3.3. Information Systems

Information systems are necessary at almost all levels in society. All organizations
need a sufficient flow of information in order for decision makers to make the decisions that
face them each day. Indeed, the entire decisional structure depends on the free flow of
information. The information system, in order to be useful to the decision makers, must be in
a form so as to promote the dissemination of information in a useable form and in a timely
fashion. In the context of the present information age, an information system will be
considered successful based on its ability to condense the most significant information
quickly to its users. Additionally, since decision-making is usually an interdisciplinary
process, the information used must suit the nature of this process, and be therefore, of use in
this regard.

When examining information system in the context of understanding social and
economic phenomena, it is necessary to point out the uniqueness of social and economic
phenomena in a particular point in history, geography, and society. This makes it difficult to
undertake controlled experiments as in the natural sciences. Although recent literature has
propounded the “birth of a new science”, where order and pattern replace what was formerly
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considered random (Gleick, 1987), there still exist many gaps in our knowledge base. The
issue is further complicated because of the close relationship between human behavior and the
existing social and economic phenomena.

As was mentioned earlier, individuals, or decision markers, are affected by the
existing social and economic phenomena when making decisions. Once decisions are made
and acted upon, the social and economic phenomena that form the basis of future decisions
are changed. As was also mentioned, alleviating these problems requires the analysis and
quantification of any social and economic phenomena within the context of understanding the
global structure. Understanding the global structure necessitates the use of the quantification
methodology of the social sciences, which are intimately tied to behavior patterns.

Because the social sciences are primarily linked to behavior patterns, the strong bond

_between behavior patterns and information flows will be a main determinant in the evolution
of the social sciences and the decision making structure. As mentioned above, the volume of
the disaggregated information available necessitates quantification for simplification
purposes; and the underlying tool for simplification purposes; and the underlying tool for this
within the context of behavioral patterns in human society is econometrics. Thus, in the 1990s
and the decades that follow, we will be witnessing a phase where an interdisciplinary and
quantitative approach, both theoretically and empirically, will become a necessary
precondition. With this, the endogenization of information flows, and thus information -
systems, will also become a necessary precondition. These trends are already having a strong
impact on the decisional systems, and this has shown the need for a reconsideration of the
existing theories and research being undertaken from this perspective.

Other extremely important factors in creating optimal decisional structures by
extracting the maximum value possible from information flows are the freedom of opinion
and the freedom of expression. These allow the creation of information and its transmission in
the broadest possible terms, which positively impact the decisional structure in that decision
makers have wider scope from which to view their alternatives. This is the basis on which
policy makers rely in making economic, social and political decisions. Clearly then, a clear
link and interdependency can bee seen between the scientific process of collecting, and
disseminating information on the one hand, and decision making on the other. In this regard,
the independence of science is most essential to the decision making process, and the means
for transforming the information flows generated by scientists into digestible form, namely
econometrics, is the bridge between scientists and decision makers.

The role of having flexible, information system cannot be underestimated. So, the
first stage in this process is the analysis and understanding of the global structure within an
interdisciplinary approach. Via this information, the elaboration of any specification at the
structural level may then occur.

Information flows are the core ingredients in the functioning of open market
economies in democratic societies. The markets would be unable to function properly without
transparency and unrestricted access to the most current information, While information
system are at the center of the world’s economic structure, it is also widely appreciated that
the transparency that result from free information flows, and appropriate statistical
infrastructures to present this information in a useable format, is vital to achieving the highest
possible level of democracy in any given society.

However, it must also be acknowledged that certain specification problems arise
from the lack of data or from mismeasurement problems because the specification
methodology is determined independently of the data collection process. In other words,
social scientists must rely on database which basically answer to the needs of governments

and business, thus causing an alteration in scope of the specification methodologies
(Giivenen, 1991).

52



3.4. Statistical Inferastructures

The main purpose of a statistical mﬁastructure is to provide information services.
Thus, it may be considered a subset of a given information infrastructure, or of the
information system. The statistical infrastructure uses an information system to collect, store,

retrieve, transform, process and communicate information through the latest available
~ technology.

Today, as mandated by the United Nation’s “Fundamental Pnnclples of Official
Statistics in the Region of the Economic Commission for Europe,” the primary aim of official
statistics, and therefore of the statistical infrastructures, is to “provide an indispensable
element in the information system of a democratic society, serving the government, the
economy, and the public with data about the economic, demographic, social and

- environmental situation... to be compiled and made available on an impartial basis by official
. statistical agencies to honor citizens entitlement to public information.” This adoption of the
~ 47th session of the United Nations Economic Commission for Europe goes on to include the
resolution “to facilitate a correct interpretation of the data, the statistical agencies are to
present information according to scientific standards on the sources, methods and procedures
of the statistics.” It adds that “the coordination among statistical agencies within countries is
essential to achieve consistency and efficiency in the statistical system. The use of statistical
agencies in each country of international concepts, classifications and methods promotes the
consistency and efficiency of statistical systems at all official levels. Bilateral and multilateral
cooperation in statistics contributes to the improvement of systems of official statistics in all
countries.” These points clearly show the emphasis being placed today on the scientific
approach to information systems and the standardization of statistical infrastructures to the
benefit of the global system of collecting and utilizing the voluminous amount of
disaggregated information flows.

Given the enormous amount of change that technological advancements and
information technology are causing in the global system, the statistical infrastructure becomes
increasingly important in collecting, sorting and producing the information in a meaningful
way, The flexibility of the statistical infrastructure must be proportional to the speed at which
information flows are generated.

At present, information structures are insufficient and have not been maximizing the
potential of the information flows ir terms of their beneficial possibilities for the decision
making structure. This is largely due to the fact that the existing economic theories are limited
in their current ability to optimize the use of the massive amount of information for the
decision making structure. What is needed is a new, interdisciplinary approach that combines
the scientific quantification and statistical-economic methodologies.

By combining these elements, statistical infrastructures can achieve improved levels
of accurate and timely information. This is the direction, it would seem, that future research
needs to be directed towards to reach a flexible statistical infrastructure that decision makers
can utilize to make their decisions among a given set of alternatives.

To conclude this section, it should be emphasized once again that the overall goal is
to benefit the global system by enhancing the choose of alternatives for decision makers. This
can be realized by quantifying the information flows into viable means of analyzing and
absorbing information at the institutional and individual levels so as to produce standardized
and globally accessible data sets. In short, this is the equivalent to the optimization of the
interaction between econometrics, information systems and statistical infrastructures.
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4. The Interdependence Between Information Structures and Decision Making
Structures :

In rapidly changing economic conditions, an information structure should alert
decision making structures so that they may undertake timely policy measures. Even in the
most developed countries, such as the United State, it is well known that monthly and
quarterly figures are revised several times before the actual numbers are finalized. This
 implies that the preliminary numbers may suggest a downturn in the economy when actually
there is an upward trend. Or, forecasts of the economy may be in the wrong direction.
Especially when the outside and inside lags are taken into account, policy action may worsen
the situation rather than helping to solve it. That is, the information structure of the economy
and the capacity of the decision making structure to take advantage of the information
structure become crucial in determining the performance of the economy.

_ . The relationship between the information structure and the decision making structure

- should develop in such a way that it will lead to continuous improvements in both structures.
That is, information structures should provide the decision making structure with the -
necessary information, whereas the decision making structure should convey its demands on
the information structure in a clear manner. Through this relationship, both structures should
be able to focus on and sort out the information that is crucial for decision makers out of the
numerous information points seemingly relevant for policy making.

In democratic societies, information systems facilitate the transmission of
information which can always be verified for validity and regenerated according to scientific
criteria. The existence of such an information system is the means by which a market
economy is able to function properly, for in a market economy, all agents need a credible
statistical infrastructure and reliable information. This is necessarily true because
decentralized decision making is inherent in any market economy. In other words, the
existence of reliable and timely information are the exact reasons why market uncertainties
are reduced to a viable level. This is indeed the reality of the impact that information systems
have on decision making structures. .

It is noteworthy to point out that the dissemination of the information coming from
the information flows are, in fact, the most reliable source of data when observing economic
and social trends. Clearly then, the soundness of the information infrastructure has a direct
impact on how the decision making procéss operates. The next logical deduction is that since
statistics are the foundation of information systems, and since democratic forms of
governments rely heavily on the free flow of information, statistics, and their method of

arriving at their quantified state, namely econometrics, play a fundamental role in the
democratic process.

5. Conclusion

Because the world is entering an era of globalization, where local and national
economies are becoming increasingly interdependent, economic, technological, and social
trends are quickly transcending regional and national boundaries. This makes it imperative for

each country to harmonize its interests with others to have updated information on the latest
developments and advances.

Globalization is occurring very rapidly primarily because a new element in the global
system has been introduced, namely disaggregated information flows at unprecedented levels.
There is also an entirely new system of explanatory variables because of this. This implies
that there will be rapid change in both economic theory and quantification techniques which
will thereby incur a transformation in these areas. With respect to the social sciences, the

impact will be possible to explain the interaction between the global structure and the “E” as
well as other social sciences.



The challenge for social scientists is to restructure the formulation ‘of the
specification methodology so that it is formed in relation to the data collection process
according to the needs of these scientists as opposed to only the needs of businesses and
governments. In other words, the data collection process and the formulation of the data bases
must also be based on the specification methodologies of social scientists. In light of the
abundance of the free flow of disaggregated information, the current economic theory and
" quantification methods can be reformulated so as to better understand the global structure

with the available tools, and perhaps with the creation of newer and more efficient tools. It is
inevitable that there will be changes in the theoretical and quantification methodologies of the
social sciences since the world, the global structure and therefore the basis of our
quantification methods are changing. :
. +-+%  Ideally, such a reformulation will bring about more coherence in the system.
. Through the flow of information and the optimal formulation of statistical infrastructures,
- economic theory will be improved because the global structure will be closer to being
explained in analytical terms.

- The era of information will mark a higher level in the progression of mankind
because an inseparable link has been formed between statistical infrastructures and
democracy. Freedom of opinion and expression lie at the center of establishing scientific and
transparent information flows. These freedom allow the creation of information and its
subsequent transmission to occur in an optimal manner. This benefits decision making and the
decisional structure at the highest level because it broadens the scope for the realm of the data
in methodology specifications.

Furthermore, in market economies, where decentralized decision making is inherent
to the system, the existence of reliable and timely information reduce market uncertainties to
viable levels. By reducing the imperfections in the market structure through optimizing the
use of information flows, the market structure functions more efficiently and results in an
improved allocation of resources. Increases in the volume of information flows also mean that
problem solving will occur at increagingly disaggregated levels, and by using the appropriate
quantitative techniques, there will be a revision of the economic theory and of the
quantification techniques that will best suit needs of the agents in the free market economy.

To summarize, the transmission of information, through its accumulation and
quantification, is the definition of the statistical production process. Econometrics is the tool
by which this is achieved, and is irreplaceable in quantifying the social sciences to the
maximum extent possible. The availability of reliable information at all levels within a given
society facilitates the decentralized decisional structure. This allows societies to successfully
confront the challenges presented by the rapidly changing conditions sweeping through the
global structure. Because statistical information is a tool for knowledge, analysis, decision
making and evaluation, decision makers are empowered with the necessary information to
advance their societies’ standard of living and the overall progression of mankind. Thus,
through an interdisciplinary approach, the global structure and explanatory variables used to
understand it will reach higher planes.

At present, changes in the focus of modeling for achieving the above mentioned
goals are vitally needed. It is hoped that subsequent discussions and further research will be
stimulated according to the needs of new economic theory and quantification formulations,
and of a growing and improving decisional structure.
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Ozet

Ekonometri, bilgi sistemleri ve istatistik alt yapilar bir birine bagimh olup beraberce
bir toplumda karar sistemlerini optimal olarak etkileyen araglardir. Meveut ekonomi ve sosyal
bilimler kavramlaninin yogun bilgi akis1 ve niceliklendirme tekniklerindeki ilerlemelerden
onemli Olgiide etkilendigi goriilmektedir. Istatistik alt yapilarim hizh ve giivenilir bilgi
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sunumlar ve etkili veri igleme araglar hizla artan bilgi akig1 saglamakla sosyal bilimlerin
deneysel ve kuramsal yonlerinde giigli baglarin olusumuna yol agmaktadir. Bu ise, sosyal
bilimlerde varolan teorilerin ve g¢oziimleme yoOntemlerinin reforma ugratilmas: anlamina
gelmektedir.
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