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Abstract

Let X be an observable random vector and ¥ a random variable to be observed
in future. Assume that the joint distribution of X and Y depends on an unknown
parameter. In this paper we consider a way of the construction of a prediction
interval for Y based on X for a discrete exponential family of distributions. In
particular we asymptotically construct the prediction interval in the binomial and
Poisson cases, and give practical applications to the prediction of the number of
wins of the Japanese professional baseball teams and that of home runs of the play-
ers in the major league of the United States.

Key Words: (Similar) prediction region; prediction intervals; confidence coef-
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1. Introduction

In a statistical inference, we may consider a predictive procedure for an unobserved
random variable based on an observable random vector (see, e.g. Guttman(1970), Lau-
ritzen(1974), Takeuchi(1975), Hinkley(1979), Butler(1986), Akahira(1990), Bj¢rnstad(1990),
Geisser(1993), Takada(1996), Barndorfi-Nielsen and Cox(1996)).

Suppose that X = (Xj, -, X;n) is an observable random vector, ¥ is a random vari-
able to be observed in future, and the joint distribution of (X,Y") depends on an unknown
parameter # in ©, where © is a parameter space. Let ) be a space representing the pos-

sible outcomes of Y. If for any @ (0 < a < 1) there exists a subset Sx ( of ) based on
X such that

P{Y € S5x} >21—a, for all 8 €O, (1)

then Sx is called a prediction region of Y at confidence coefficient 1 — o If ) is a subset
of R! and Sx is an interval [a(X), b(X)], then Sx is called a prediction interval of ¥ at
confidence coefficient 1 — o (see Figure 1). If X takes a realized value @ = (Z1y 1 Zm),
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then the interval [a(z),b(z)] is called a prediction interval of ¥ at confidence coefficient
100(1 — @)%. If, in particular, the equality in (1) holds, then the prediction region Sx is
said to be similar.

In this paper we consider the case when the joint distribution of (X,Y’) belongs to a
discrete exponential family of distributions with an unknown one-dimensional parameter
§. Since there exists a complete and sufficient statistic T', using a conditional distribution
of Y given T we obtain the conditional mean, variance and third cumulant, and give a
way to construct a prediction interval of ¥’ based on X, by the Cornish-Fisher expansion.
Indeed, for the binomial and Poisson cases, we asymptotically obtain the prediction in-
tervals and curves for Y, and give practical applications to the prediction of the number
of wins of the Japanese professional baseball teams and that of home runs of the players
in the major league of the United States. '

Figure 1: Prediction interval Sx of ¥ based on X

2. Prediction intervals for a discrete exponential family of distributions

Suppose that Xi,- -+, Xm, Y1,+-+, Y, are independent and identically distributed ran-
dom variables according to a one-parameter exponential type distribution with a proba-
bility mass function (or p.m.f. for short)

f(z;6) = c(6)h(z) exp{n(0)i(z)}

forz =0,1,2,-+-,0 € © = R!, where c(9) and h(z) are nonnegative real-valued functions
of @ and z, respectively, and 7(0) and () are real-valued functions of 6 and z, respectively.
Then the joint p.m.f. of X;,---, X, Y3, -, Y, is given
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fxl."wxm.yh'",yu (:rls Ty Y1y Yng 6) m+n(6) H h(l‘,) H h(y:

- €Xp {n(ﬂ) (z t(z;) + Z t(yj)) } :
i=1 - i=1

Letting T := Y ", ¢(X;) + )5, ¢(Y;), T is a complete and sufficient statistic for 8, hence
" thé conditional p.m.f. of X;,-+-, Xp, Y1, -, Y, given T is independent of 8. So, using

the conditional distribution of ¥ := }°7_ Lt(‘.*’s.) given the sufficient statistic 7', we can

construct a prediction interval which is independent of unknown parameter 6. Actually,
we construct a prediction interval of ¥ according to the following procedures (i) to (iii).

(i) Let fyir(-|t) be a conditional p.m.f. of Y given T = t. Since T is sufficient for 6, it
follows that fyjr(+|¢) is independent of 8. Using fyir(+|t), we obtain the conditional mean
pe := E[Y|T = t], the conditional variance o7 := Var(Y|T' = ¢) and the conditional third
cumulant k3, := k3(Y|T' =t) = E[(Y — pe)?|T =t] of Y given T = ¢.

(ii) Using the Cornish-Fisher expansion with y, o7 and &3, in (i), we asymptotically get
y(t), 7(t) such that
Ply@) <Y <g®)IT =t} =1-a (2)

for any a (0 < @ < 1) and any t € RL.

(iii) From (2), we have for any 6 € ©
PY(T) <Y <g(T)} =1-c.

Since T := Y, #(X:) + 15 t(Y;) = Lz, #(X:) +Y is complete and sufficient, we
asymptotically obtain a( - ), b( - ) such that

P{aX) <Y <bX)}=1-«a
Then the interval [a(X), b(X)] is a prediction interval of ¥ at confidence coefficient 1 —cx.

2.1. Binomial case

Suppose that X is an observable random variable, ¥ is a random variable to be
observed in future, and X and Y are independent. Further, assume that X is distributed
according to the binomial distribution B(m,p) whose p.m.f.

fx(m;p)=(T)p’q’“" (z=0,1,---,m; 0<p<1l and g=1-p),
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and Y is distributed according to the binomial distribution B(n,p), where m and n are
known natural numbers, and p is unknown. Then we construct a prediction interval of ¥
based on X at confidence coefficient 1 — . Since the joint p.m.f. of (X,Y’) is given by

m T e
fxy(z,y;p) = ( . ) ( v )p‘“q’“"‘ (=+3)

(2=0,1,..c;m; y=0,1,...,m; 0<p <1, g=1-p),

it follows that the statistic 7 := X +Y is sufficient for p, and T is distributed according
to the binomial distribution B(m +n, p). Then the conditional p.m.f. of Y given T = { is

Frir(ylt) = ( Z ) ( tT? )

(max(0,t —m) < y < min(¢, n)),
(")

t

which is independent of p. This means that the prediction interval of ¥ based on the
sufficient statistic T' is constructed independently of p. The distribution with the above
pm.f. fyir(ylt) is called the hyperge.ometric distribution H(¢,n,m +n). When T' = ¢
is given, the conditional mean y;, the conditional variance o and the conditional third
cumulant k3 of Y are given by

in
m+n’

e = E[Y|T=t=

tmn(m+n —t)
(m+nP2m+n-1)

0? = Var(Y|T=t)=

tmn(m — n)(m+n —t)(m +n — 2t)

kse = k(YT =t)= (m+nPm+n—-1(m+n—-2) °’

respectively.
When m and n are large, using the Cornish-Fisher expansion we asymptotically obtain

the upper 100(c/2) percentile y,/2(t) of the hypergeometric distribution H(t,n,m + n)
such that

P{min(t,n) - yo/at) <Y < YopaIT =t} =1 - av. 3)
First, by the Cornish-Fisher expansion we have

Yasa(t) — pe + 3
T

K3t 2
=ua;2+-6;§uaf2+“°,
t
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that is,

]. 'K.3’g
ya,fz(t) = Ht— '2“ + Otlq/2 t+ 673”3‘*’? oo

_ in 1+ 1= t ) mn
T Tmtn gl m+n) m+n)(m+n—1)

m—n 2t 3
| = 4
T 6(m+n—2) (1 m—l—n)u"‘m_l- ’ (4)

where 1,/5 is the upper 100(e/2) percentile of the standard normal distribution N(0,1).
Letting ¥ := yoa(t), a := n/(m+n), b:=mn/{(m+n)(m+n-1)}, c:=(m—n)/(m+
n—2), u=1uq and t:=z+y, then we obtain from (4)

g a(z +7y) ——+u\/(z+y) l——ﬂ)b—i-%(l—w)ug, (5)

+n m+n

which implies that

[{1—a+3(ij_n]}y—-{a—g—(—ni%}m—-_gu2+%r'——.b(m+y) (1—;11)1;2.

Hence we have

{1} fom g} o (-1} o g o

2
Aetolon 22

. 2
bz + y)u’ + e 5
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which implies that

[{1 —RY 3(niu:n)}2+ mbfn] v
fi-rrgita}bsital -2

| w? 2 w2 |, [rc, { cu® } 3]
- —|qzu‘—14d1—a+ +bu”|y
® {a 3(m+n)} +m+n]$ 15" } 3(m + n)

Bctildg o 1l Con . 0s (6)
+ {5 1}{“ 3(m+n)} |+

Putting

we have from (6)

Ay’ —2(Bz + D)y +Cz* 4+ 2Bz + F =0
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whose solution is given by

y=%{B.’c+D:I:\[(B$+D)2—A(C$2+2E£+F)}-

From (3), we asymptotically get a prediction interval [a(X),b(X)] of ¥ at confidence
coefficient 1 — a such that

Pla(X)<Y <bX)}=1-a

for 0 < p < 1. Then a(X) and b(X) are given by

o(X)= 7 {Ba+D~/(Bs+ DP - ACs* +2Bz + F) },

b(X) = %{B:c+ D ++/(Bz + D) — A(Cz? +2Ez + F)}.

Drawing the curves Y = a(X) and Y = b(X), i.e. the prediction curves of ¥, we can get
the prediction interval of Y in Figures 2 and 3. ;

Figure 2: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coefficient
l-aform=n=25

l-o0 ; ——————99%, — — — — 95%, — 90%
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Figure 3: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coefficient
1—a for m =30 and n = 50

l-o: ———99%, — — — — 95%, — 9g0%

2.2. Poisson case

Suppose X is an observable random variable, Y is a random variable to be unobserved,
and X and Y are independent. Further, we assume that X is distributed according to
the Poisson distribution Po(mA\) whose p.m.f.

e~ ™mA (mk)x
x!

fX(I)= (:L"'_:Uslsé;"'; A)O),

and Y is distributed according to the Poisson Po(n\), when m and n are known natural
numbers, and A is unknown. Then we construct a prediction interval of Y based on X.
Since the joint p.m.f. of (X,Y) is given by

e~ (m+n)Apzpu \e+y

fX.Y(a:ly; A) = I!y!

(8=0,1,2,...;y=0,1,2,...; myn=1,2,...; A>0),

it follows that the statistic T := X + Y is sufficient for )\, and T is distributed according
to the Poisson distribution Po((m+mn)A). Then the conditional p.m.f. of Y given T =t is
the binomial distribution B(t,n/(m+n)) which is independent of \. This means that the
prediction interval of Y based on the sufficient statistic 7" is constructed independently
of unknown parameter \. When T" = ¢ is given, the conditional mean y, the conditional
variance o7 and the conditional third cumulant k3t of Y are given by
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n
pe = BIYIT=f= ",
- tmn

tmn(m — n)

R3p = w3(Y|T =1t) = (m+n)pE °

réspectively. When m and n are very large, in a similar way to (3) using the Cornish—
Fisher expansion we asymptotically obtain the upper 100(a/2) percentile y,/2(t) of the
binomial distribution B(t,n/(m + n)) such that

P{t —yosa(t) LY S yapo(t)|T =t} =1 - 0. (7)
By the Cornish-Fisher expansion we have

Yos2(t) = e + 3
gy

_ + K3t 2 -
= Uq/2 ﬁf'%;ﬂa,fz )

that is,

1 K -
ya}?(t) = He— 5 + Otla/2 + gg_“:;‘ui,'? s

nt 1 mnt m—n

T myn 3l (m +n)? +6(m+n

)u§,2+---, (8)

where u,, is the upper 100(c/2) percentile of the standard normal distribution N(0, 1).
Letting ¥ = yas2(t), a = n/(m +n), b:=mn/(m+n)? c:= (m —n)/{6(m+n)},
U = Uqys and t := 2 + y, then we obtain from (8)

1
y=alz+y) -5 +uvb(z+y)+ o, (9)
which implies that

{y— a(z +y) — cu? + -;-}2 = b(z + y)u’.

Hence we have

1-a)’y* + 2{(Gz—a):c+acu2-—cu2—~%bu2+-;-—%}y
+ a'z’+2(acu’ - b’ — ozt cfut+ g -’ =0.  (10)
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Putting A := (1—a)?, B :=a—a?, C:=a?, D:=—{acv® — cv® — (l?/2) — 1/2+a/2},
E := acu® — (W?/2) — a/2, F :=c*u®+1/4 — cu?, we have from (10)

Ay’ - 2(Bz+ D)y +Cz*+2Ez+F =0

whose solution is given by

y=7{Bz+ D+ (Bzt D} - ACF + 2Bz + F) .

From (7), we asymptotically get a prediction interval [a(X),b(X)] of Y at confidence
coefficient 1 — @ such that

PlaX) <Y <b(X)}=1-0a

for A > 0. Then a(X) and b(X) are given by

.
" A

a(X) {B::: +D—+/(Bz+ DY — A(Cz® + 2Bz + F)} :

B(X) = % {Bs+D+/(Ba+ D)~ A(Ca? + 2Bz + F) }.

Drawing the curves Y = a(X) and Y = b(X), i.e. the prediction curves for Y, we can
get the prediction interval of Y in Figures 4 and 5.

Figure 4: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coéfficient
l-—aform=n=25

l-a: ———99% , — — — — 095% , — 90%
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Figure 5: Prediction curves Y = a(X) and Y = b(X) for Y at confidence coefficient
1 —a for m = 30 and n = 50

1-a: 0%, —— — — 9%, —— 90%

2.3. Randomized prediction function

In the previous sections, we consider a non-randomized prediction interval, but we

need to take a randomized prediction interval to attain the confidence coefficient 1 —
(Takeuchi, 1975). '

If for any (0 < a < 1) there exists an interval [a(X), 5(X)] such that
PlaX) <Y <bX)} >1-aq, (11)

for all § € ©, then the interval is called a prediction interval of Y at confidence coefficient

1 — a. We also define a randomized prediction function ¢ at confidence coefficient 1 — o
- _

i for a(z,y) <y <b(z,y),
QS(:B, y) == { 0 for y < a(a:, y), y > b(:ﬂ, y)!

where a(,y) and b(x, y) are functions satisfying
Ef¢(X, V)] 21-a. (12)

for all 6 € ©. Let ¢(z,y) be a randomized prediction function at confidence level 1 — a,
and x be any fixed. Then there exists y*(z) such that ¢(z, y) is monotone increasing in y
for 0 < y < y*(x), monotone decreasing in y for y*(z) < y. Then the set {y|d(x,y) > u}
also becomes an interval [c(z,u), d(, )] for all u(0 < u < 1) when = is arbitrarily fixed.
So, letting U be a uniformly distributed random variable over the interval [0, 1], then
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P{c(X,U) Y < d(X,U)} = B[¢(X,Y)]

for all @ € © and, if we take ¢ such that

El¢(X,Y)]|=1—g, (13)

.then we obtain a similar randomized prediction function ¢ at confidence coefficient 1 — a.
“We also get a randomized prediction interval

{Y|¢(X,Y) 2 U} = [e(X, V), d(X, U)]

at confidence coefficient 1 — o, based to X. Since, in a discrete exponential family of
distributions with a parameter 6, a complete and sufficient statistic 7 = T'(X) for 6
exists, hence a necessary and sufficient condition for (13) to hold is

EBX,Y)T|=1-a. (14)

Now, we consider the binomial case in Section 2.1 as a toncrete example. Suppose
that X is an observable random variable, Y is a random variable to be observed in future,
and X and Y are independent. Further, assume that X is distributed according to the
binomial distribution B(m,p) and Y is distributed according to the binomial distribution
B(n,p), where m and n are known natural numbers, and p is unknown. The statistic
T := X 47Y is sufficient for p, and T is distributed according to the binomial distribution

B(m+mn,p). For each t =0,1,---,m+n we take a randomized prediction function ¢;(y)
such that |

0 & for y <wo(t), y> wnlt),
_ ) Tlt for y = yo(t),
@W=Y W) for y=m(),
1 for yo(t) <y < wi(?),

where integers yo(t), 31(2) (0 < %o(t) < %1(t) < n) and Yo(t), 1a(t) (0 < 70(t) < 1,0 <
7(t) < 1) are determined by (14). But, the way of the construction of a randomized

prediction function ¢;(y) is not unique. Here, we choose yo(t), 11(t), 7o(t) and v, (t) such
that -

P{Y <wo(®)|T =t} + (1~ %() P{Y = so(®)IT =} = ,

P{Y > (t)|T =t} + (L= @) P{Y =T =t} = 5.

Indeed, we consider the case when a = 0.05, 0.10 for m = n = 20. Since, in the case,
the conditional joint distribution of Y given T' = t is symmetric with respect to m and
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n, T ana zv — I, y aud Zu — ¥, It 1S eNougn TO CONSIAEr ONLy tne case U = T S ZU. in tne
case, Yo(t) = 7 (t) and the values of yo(t), y1(t), ~o(t) are given by Tables 1 and 2. From
'_I‘a.bles 1 and 2, using a uniformly distributed random number over the interval [0, 1], we
obtain a randomized prediction interval

(Y |éxar(Y) 2 U} = [e(X, U), d(X, U)]

at confidence coefficient 1 — «. As a result, the difference between the non-randomized
prediction interval and the randomized one seems to be small (see Figures 6 and 7). It is
also easier to construct a non-randomized prediction interval (curve) in a way in Section
2.1 than to do a randomized prediction one.

t [ %0(t) | 21(2) | Yo(2)
0 0 0 0.975
1 0 1 0.95
2 0 2 0.8974
3 0 3 0.7833
4 0 4 0.5284
5 1 4 0.9902
6 1 53 0.8155
7 1 6 0.4988
8 2 6 0.9666
9 2 7 0.7183
10 2 8 10,2627
11 3 8 0.8467
12 3 9 0.4721
13 4 9 10.9316
14 4 10 | 0.5943
15 5 10 | 0.9886
16 5 11 | 0.6679
17 5 12 | 0.0807
18 6 12 | 0.7079
19 6 13 | 0.1346
20 7 13 | 0.7207

Table 1: The values of yo(t), ¥1(), 7o(t) in the randomized prediction function
¢:(y) for @ = 0.05
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Figure 6: The dots representing the randomized prediction interval of Y based on the
randomized prediction function ¢, at the confidence coefficient (c.c.) 0.95 and the
non-randomized prediction curves at the c.c. 0.95 given in Section 2.1

t || wolt) [ va(t) | w(t)

o o 0 [ 095

1 o 1 0.9

2 o 2 |0.7947
3 0 3 | 0.5667
4 o 4 | 0.0569
5 | 1 4 | 0.8206
6 | 1 5 |0.5061
71 2 5 |0.9730
8 | 2 6 | 0.7055
9 [ 2 7 |0.2542
10 3 7 |0.8313
i 3 8 | 0.4442
12| 4 8 |0.9193
13 4 9 |0.5619
14| 5 9 |0.9815
15| 5 10 | 0.6375
6 5 11 | 0.0644
17 6 11 | 0.6835
18 6 12 | 0.1274
9 7 12 | 0.7053
2010 7 13 [ 0.1472

Table 2: The values of yo(t), v1(t), 70(t) in the randomized prediction function
d¢(y) for a = 0.10
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Y

0 5 10 15 20

Figure 7: The dots representing the randomized prediction interval of Y based on the
randomized prediction function ¢; at the confidence coefficient (c.c.) 0.9 and the
non-randomized prediction curves at the c.c. 0.9 given in Section 2.1

3. Applications of the prediction interval

First, when some professional baseball team had m games and X wins in them, we
consider a prediction interval for the number Y of wins in n residual games, applying to
the binomial case. Second, some professional baseball player hited X home runs until
certain time, we consider a prediction interval for the number Y of home runs in the rest
of games based on X, applying to the Poisson case.

Example 1 (Prediction of the number of wins of the Japanese professional
baseball teams). The day, September 10, 1998 was near to the end of the professional
baseball season in Japan. In the Central League consisting of six teams, the team ” Giants”

had the third place but six successive wins up to the day, hence the fans were interested
in the final result of the season. So, for the three teams ”Bay Stars”, "Dragons” and
”Giants”, we obtain a prediction interval for the number of wins in the rest of games.
When each team had m games and X wins in them, we obtain a prediction interval of the
number Y of wins in the n games of the rest for the team, applying to the binomial case.

Indeed, we get the prediction intervals of Y and prediction curves for Y at confidence

coefficient 100(1 — )% including the randomized confidence intervals (see Tables 3 and
4 and Figures 8 to 13).
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Team’s | Nos. of finished | Nos. of wins | Nos. of defeats | No. of draw | Nos. of the rest
name games of games
-Bay Stars 110(109) 65 44 1 26
Dragons 115(114) 63 51 1 21
Giants 119 64 55 0 16

Table 3: The result of the three teams in September 10, 1998.

In:the above table, ( - ) means the number of finished games except for the draw. Here,
the numbers of the rest of games include those of the draw games, since it is ruled that
the draw games are played again in the Central League.

Then we have prediction intervals of the number of wins in the rest of games as follows.

Confidence coefficient(%) Bay Stars Dragons Giants
- 99 [7.435, 21.748] | [4.483, 17.250] | [2.447, 13.442]
95 9.227, 20.199 6.034, 15.824] | [3.769, 12.197
90 [10.146, 19.381] | [6.833, 15.074] | [4.452, 11.546
80 [11.203, 18.419] | [7.757, 14.197] | [5.243, 10.786
70 [11.914, 17.759] | [8.381, 13.597] | [5.778, 10.267
60 [12.478, 17.229] | [8.878, 13.117] | [6.203, 9.852]
50 [12.960, 16.770] | [9.303, 12.703] | [6.568, 9.494]
The real numbers of wins in
( - ) games of the rest 14 (26) 12 (21) 9 (16)

Table 4: The prediction intervals of the number of wins in the rest of games for the
three teams ” Bay Stars”, ” Dragons” and ” Giants”

Next, at the end of the time of the first half of the season in 1998, that is, in July 21,
1998, the rest of games of the upper three teams was following.

Team’s | Nos. of finished | Nos. of wins | Nos. of defeats | No. of draw | Nos. of the rest

name games ' of games
Bay Stars T4 45 28 1 62
Dragons 77 42 34 1 59

Giants 79 41 38 0 56

Table 5: The result of the three teams in July 21, 1998.

Then we obtain prediction intervals of the number of wins at confidence coefficient 100(1—
@)% in the latter half of the season in 1998 (see Table 6).
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Confidence coefficient: 99%; ——— 9% - — — — — 90%
80% ¥ ST T e 70%; 60‘%
— - — -50%

3s

30

25

Figure 9: The prediction curves Y = a(X) and Y = b(X) for ” Dragons”

Confidence coefficient: W ———— O - o —
Bhs mommemms 70%; 60%
— — -5
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ConPidence: coebPicient: 99% ; 95% 08
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Figure 11: The dots representing the randomized prediction interval for ” Bay Stars”
based on the randomized prediction function at the confidence coefficient (c.c.) 0.95 and
the non-randomized prediction curves at the c.c. 0.95 given Section 2.1
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X
20
15

/ 7
n b =g
2 =
5
= i x
0 20 40 60 80 100 120

Figure 12: The dots representing the randomized prediction interval for ” Dragons”
based on the randomized prediction function at the confidence coefficient (c.c.) 0.95 and
the non-randomized prediction curves at the c.c. 0.95 given Section 2.1

o =
1 o s
prd 4
7= =
~
” Z 4
/ v g
/ R
23 sl o X
20 40 G0 80 100 120

Figure 13: The dots representing the randomized prediction interval for ” Giants” based
on the randomized prediction function at the confidence coefficient (c.c.) 0.95 and the
non-randomized prediction curves at the c.c. 0.95 given Section 2:1°
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Confidence coefficient(%) Bay Stars Dragons Giants
99 [23.4401, 49.8896] | [18.5622, 44.3707] | [15.7539, 40.5331]
95 [26.7683, 47.0776] | [21.6591, 41.4794] | [18.6568, 37.6838]
90 28.4767, 45.5848] | [23.2636, 39.9608] | [20.1675, 36.1955]
30 30.4449, 43.8215] | [25.1249, 38.1810] | [21.9261, 34.4582
70 31.7693, 42.6079] | [26.3854, 36.9646] | [23.1207, 33.2751
60 32.8184, 41.6306] | [27.3885, 35.99] | [24.0737, 32.3295]

; 50 [33.7154, 40.7836] | [28.2495, 35.1489)] | [24.8932, 31.5152]

[ The real numbers of wins in
' the latter half 34 33 32

Table 6: The prediction intervals of the number of wins for the three teams ”Bay Stars”,
"Dragons” and ”Giants” in the latter half

We also get the prediction curves of wins of the three teams at confidence coefficient
100(1 — @)% in the latter half (see Figures 14 to 16). From the above, we see that the
way of construction of a prediction interval in the binomial case in Section 2.1 seems to

be reasonable,

Confidence coefficient:

- 99%;
— 80%:
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Confidence coefficient: 99% ; ——— 95%; 90%
80%: —------- 70%; 60%
— - — -50%

Figure 16: The prediction curves Y = a(X) and Y = b(X) for ” Giants”

Confidence coefficient: 9% ————— 9k - — — — — 9%
80%: ===mmesn 0% —————— 60%
— - — -50%
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Example 2 (Prediction of the number of home runs in the major league).
In the major league in the United States, Mark McGwire and Sammy Sosa hited 61 and
58 home runs in September 8, 1998, respectively. When a player hited X home runs in
the finished games, we obtain a prediction interval of the number ¥ of home runs in the
rest of games, applying the Poisson case. Indeed, we get the prediction intervals and the
prediction curves for Y at confidence coefficient 100(1 — )% including the randomized
confidence intervals (see Table 7 and Figures 17 and 18).

Confidence coefficient(%) McGwire Sosa
99 [1.071, 16.690] | [0.868, 16.101]
95 : [2.371, 14.213] | [2.122, 13.669]
90 [3.001, 13.014] | [2.819, 12.495]
80 3.968, 11.689] | [3.669, 11.197]
70 : 4,589, 10.829] | [4.271, 10.355]
60 5.099, 10.164] | [4.767, 9.705
50 [5.549, 9.607] | [5.205, 9.161
The real number of home runs
in 19 games of the rest 9 8

Table 7: The prediction intervals of the number of home runs of
McGwire and Sosa in 19 games of the rest

Figure 17: The prediction curves of the number Y of home runs of
McGwire and Sosa in 19 games of the rest

Coufidence coefEicient: 9% ; 95%: - = — — — 90%
e QR TmTmmmen 0% ———60%
— - — 5%
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Figure 18: The dots representing the randomized prediction interval for McGwire and
Sosa based on the randomized prediction function at the confidence coefficient (c.c.)
0.95 and the non-randomized prediction curves at the c.c. 0.95 given in Section 2.2

Next, at the time when McGwire played 116 games, he hited 46 home runs and the
number of his rest of games was 47. On the other hand, at the time when Sosa played
118 games, he hited 44 home runs and the number of his rest of games was 45. Then we
get prediction intervals and prediction curves of Y at confidence coefficient 100(1 — )%
(see Table 8, Figures 15 to 16). '

Confidence coefficient(%) McGwire Sosa.
99 6.69146, 33.1830] | [5.57338, 30.5031]

95 [9.05895, 29.1299] | [7.7759 , 26.65692)
90 10.3445, 27.1589] | [8.97485, 24.7928]
80 [11.8914, 24.9703] | [10.4201, 22.7229)
70 [12.9755, 23.5434] | [11.4344, 21.3747
60

[13.8607, 22.4374]

[12.2635, 20.3306]

The real number of home runs
in ( - ) games of the rest

24 (47)

92 (45)

Table 8: The prediction intervals of the number of home runs of
McGwire and Sosa in games of the rest

From the above, we see that the way of construction of a prediction interval in the

Poisson case in Section 2.2 seems to be reasonable.
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Figure 19: The prediction curves of the number of home runs of McGwire
in games of the rest

Confidence coefficient: 99% 5 o - — — — = 90%
| B === 70%; 60%
bl

Figure 20: The prediction curves of the number of home runs of Sosa
in games of the rest

Confidence coefficient: 99%; —— 95%:; - — — — —90%
BN wmmmmeme 70%; 60%
— - — -s50%
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OZET

X gozlenen rasgele vectsr ve Y gelecekde gbzlenecek rasgele deffigken olsun. X ve
Y ’nin ortak dagilimimin bilinmeyen parametreden bagomh oldugunu varsayalhim. Bu
makalede biz kesikli fistel dagilimlar ailesi i¢in Y 'nin X'e dayali $ngorii giiven araligim
kurmaga galisiyoruz. Ozel halde binomial ve Poisson dagihimlan durumunda éngéru
gliven arahklan kuruluyor ve pratik problemler {izerinde uygulamalar yapiliyor.
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Abstract
The total expansion on powers € — 0 of the functional

He(X, f) = Mlexp(—€e 2X\Te) f(e T4(Te))),A > 0

is obtained. Here £(2) is m- dimensional homogeneous diffusion process and 7. is the
first exit time of the process £(¢) from the sphere of radius e. A solution of this problem

is reduced to the computation of the total expansion of solutions of some specific elliptic
boundary problems.

Key Words:Stochastic equations, small ball, exit time, elliptic boundary problem.

1. Introduction

We consider the solution of m - dimensional stochastic differential equation
dé(t) = a(€(®))dt + > b(£(t))dws(t), €(0) =0.
. =1

- Here bi(),a() : R™ — R™ are some smooth functions. Consider the open ball B, = |
{z : |2| < €}, and let B := B;,5 = 8By. Denote by T. = inf{t : £(t) ¢ B.} the first exit
time of the process £(¢) from the sphere S, = 8B..

In this paper we deal with the asymptotic expansion of the following functional
£(To)

€

B\, f) = Mlexp(-32)f(E22)], A0

This problem for Brownian motion was researched in [1]- [3]. In these papers only a
few first members of corresponding expansion were defined when w(t) takes values in some
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manifold. In particular, in [3] the forms for the first three members of expansion were
obtained with the help of probability approach.
The physics problems which led to research of diffusion processes in small ball are de-

scribed in [4,5]. The functional H(), f) is related to observations over a diffusion process
in the sphere S at a proper scale.

In this paper the procedure of total expansion is suggested for fixed space R™. Our

approach here is based on the expansion of the solution of related elhpnc boundary problems
with small parameters.

2. The main results

Let us define the differential operator in the space C?(B).

Lu(z) = ia,( oulz) | 155 ZUD S btaou(e)

2= %3 k=1

As it is known [6], He(), f) = v(e2), 0) where v(¢~2), ) is a solution of the following
boundary problem

e 2x(e 2\, y) — Lo(e 2\, y) =0; y € B, v(e )\ z) = f(%), z € 0B..

After the change of the variable z = y/¢, the function v¢(}, z) = v(e72), €z) will be a
solution to the following problem:

€ 2xe(), z) — Leve(A,2) =0; z€ B;

ve(M\ 2) = f(2), z€S

Here

82u(z
8z:0z; = E bi(€2)br;(€2)-

L 12‘31(53) ( ) Z

1,7=1
The expansion of solution v, we seek in the form

A z) Zekuk(A Z)

k>0

To find the system of equations for the functions vk, we assume at first that a;(z) and

bri(z),1 < k,7 < m are analytical functions in zero. That means the following Taylor-series
expansions take place

a;i(ez) = Zaa(z)e‘, brj(€2) =.Zbkj{(25)€1. (1)

>0 >0
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By definition it means, that
8 a;(0)
alz)=5 >

T 1<h L i<m T E

1 0'by;(0)
bk'! z) i’ o _.__J___z. -
4 i 15:‘15-2-;55:5:1: R Oz, "

Denote

Apia(2) :=§bkj,(z)bm_,(z), Lw(:c):% > aau(z?gbkj(o)bh(u).

1<i,5<m 0z
Thus, if a;(2) and by;(2) are analytical functions then the operator L. has the following
form:
Le=€Lo+ e Ly+---+€Lnpa+---,

Here

Zam 1\2 )_+';' Z

i=] 1<i,5<m

Bz.az; ZAJ“J“(Z il

Formally the functions ug(], z), k > 0 should be the solutions of the following system of
elliptic problems

k=0: Jup(, z) — Loug(A,2) =0,z €intB; ug(M,2) = f(2),2 € S,

k
k >1: Aﬂk(k, Z) - Lou;,(.\, z) = ZL,‘HJ;__,,Z = int‘.B; uk(.\, z) = 0, zeS (2)
=1

Thus, free members of the operator part of the k-th problem k > 1 in the system 2
are defined with the help of first k coefficients from the expansions (1) and solutions of the

previous problems. For further analysis of the system (2) we shall introduce some definitions
and results from the theory of elliptic equations [5].
Definitions:

§) - bounded area in m - dimensional Euclidean space E,,
S - boundary of Q, {} - completion of 2,
osc{u(z); 2}- fluctuation u(z) on Q:

osc{u(z); 2} = vrai mg.xu(:r) —vrai n}_ilnu(a:),

K, is an arbitrary open ball in space E,, €2, := K,NQ.
We consider that a function u(z) satisfies Holder condition with parameter-o; o € (0,1)
and bounded Holder constant |u|()q in domain  if the following equality takes place
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sup p~*osc{u; O} = |ul(w).a;

where sup is calculated over all connected components ¥, of all Qp,p < po.
Let Co,o(Q) be a Banach space of all continuous functions u(z) z € 2, with the bounded
norm |u)(a),a. The norm in Coq is defined as follows

Ul =max fu + ey

Here, D* is a symbol of the derivative u(z) in = of the k order, C1 (%) is Banach space

. of-contmuous in ) functions with continuous derivative in Q of the [ order, and the fo]lowmg
value is bounded

|'"'|I,a.ﬂ = ZZma.x |Dk ‘U))l + ZlDlula.ﬂ
k=0 (k)

Here, symbol ¥ denotes the summation over all derwatwes of order k.
(%)

It is possible to consider elements from Cjo(£2) as functions which are continuous and !
times continuously differentiable in 2. To do this it is necessary to complete a definition of
u(z) and its derivatives on boundary S by a continuity.

Introduce the classification of boundaries. Let z° = (21, -, #2,) be some point of bound-
ary S of domain 2. We consider that (y1,+ -+, ¥m) is a local cartesian system of coordinates
with the centre in a point z°, if y and z are connected by equality y; = dx(zx — 23),1 =
1,---m, where dj is the orthogonal numerical matrix and the axis y, is directed along
external normal (in respect to §2) to S in a point z°.

We say, a surface S belongs to cdlass Cja,l > 1,a € [0, 1], if there is a value p > 0 such,
that the intersection of S with a sphere K, having the centre at a point z° € S is a connected
surface. The equation of this surface in a local cartesian system of axes (31, .. .,yn) With the
centre in a point z° has the form y, = w(y, -+, ¥n-1), and W(Y1,***,Yn-1) is a function of
the class Cj, in the domain {2, and this function being projection of K,M.S on plane y, = 0.

Let us consider the equation

Z a; ; (m)umzj + Za,(m)u,‘ + a(z)u = f(x) (3)

1<4,9<m

Coefficients of this equation and free member f(z) are defined in the bounded domain {2
and belong to space Ci—24(Q),! > 2, € (0,1).
Assume also that condition a;; = a;; is satisfied and equation (3) is elliptic in Q:

Z“’la(m &&i >VE§;; v =const >0 (4).

For the function u(z) satlsfymg the equation (3) and the following condition on the
boundary S:

uls = ¢(s), (5)
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the following Theorem of existence [5, page.142] takes place.

Theorem 1 If coefficients of A belong to the space Gu,,_,;@), satisfy inequalities (4) and

a(z) < 0; S belongs to C; 4, then the problem (3), (5) has the unique solution in C2,a(Q) for
all f(z) from Cpo(f2) and all p(s) from Cy4(S).

Using Theorem 1 we shall prove, that the partial sum )’:‘: ux€® is an approximation to ve.
k=0

Theorems 2. Suppose the following conditions are satisfied
1°.  Functions a;(z) and bui(z) 1 < k,i < m have n-th and n + 1- th continuous
derivatives in zero.
2°. f(2) € CoalS). | _
3. The functions uk(), z) are the solutions of system (2) if k < n.

Then functions ux(},2),0 < k < n and p(},2) = v(A, 2) — f} ux(X, 2)€* satisfy the
k=0
following relations '

’uk(A, z) S GQ,Q(B), sup |#e(/\, z)l S E""HK,
A>0, zEB
where K is a constant.

Proof. From the condition 1° the following representations take place

n—1

ai(ez) = zq.,-;(z)e‘ + ain(2)€”,

ka(Ez) == Zbkﬁ(z)g i bkjwi'l(z)ewla i: k:.? '_" ma
=0

More precisely, the functions a;,(z) and bgjny1(2) have the following form:

oL s oG

= )1 Iy
n! lsjlsm az_ﬁ e aZj“

8(2) = (Breza, -, Omezm), 0<6:;<1, i=T,m.

1 &H-lbkj z
bﬁwk1(3)=m12 ———*m i

" z . »
: n In+17
S.’il‘_:m azjl .. azj“_FL

/3(2) = (ﬁlezla' e }ﬁme‘zm)! 056 < 1,

i=1m.

Further, conditions of Theorem 2 and Theorem 1 imply that there is a unique solution
ug(A, z) for the first problem in the system (2) such that ug € Cz,a(B). Taking into account
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this inclusion, the condition 1° and the construction of the free member of second problems
in (2), we conclude that the free member of this problem belongs to the space Co,a(B). Now
again using Theorem 1, we obtain the unique solution u; (A, 2) of the second problem in the
system (2) such that u; € Cz4(B). By analogy, it can be proved that there exists unique
solutions ug, - - - , 4, of corresponding problems of the system (2) and u; € Cau(B) i<n.
Thus, the function (), z) is defined correctly. ;From the definition of functions v and

ug,k=0,1,...,n and the decomposition of the operator L it follows, that p is a solution
of the following problem

— (62(6_2L0 4.4 En_an + E“_IL,H_]_)-I-

I=n+2 s=0k=14,5=1

2n4-2 I m m 3 az
+ 30 055§ bty ) e

= iiﬂa(z) aiun-z(k, 2+ Y é(i{:&ﬂ(z)%ﬁl_,()\, 2))+

i=1i=0 l=n+1 =1 s=0

3n+2 m m 1l s . 32
+ X € (Z 2 20O brjr(2)bris—r(2)) 57— -s(A, Z)) 1= "M K n(X, 2);

I=n+1 “Mk=1ij=1s=0 r=0 020z;

here for 1 <4, <m

o o ad(z) 3 if I<n - _ bkj;(z) - if [<n+1
a"‘(z)_{ 0 ; if I>n. b""(z)_{ 0 ; if I>n+l

and by analogy, functions (), z) are defined as follows:

2 w(z) ; if [<n
u;()\,z):{ l(()) ; if I>n

Here K(), z) € Coo(B) for any € and sup |Ke(X, 2)| < K < o0.
- €0, A\>0, zcB
Following results of the paper [7, page.135], we obtain the following a priori estimation
of the function p,: '

— Pz
max (X, 2)| < max(a — ™)X

pe(X, 2) | et K
b]

xmax{mgx | e h € B8 B[P A (o) — (@] F Mo — e )
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Here Aji(ez) == ﬁ b%,(ez). The constants B and a are fixed positive values, defined
k=1 =
from the condition of positiveness of the following functions in the ball B:

Pe P (A (ex)B — ay(ex)), a—e P2

;From the latter, the following estimation implies

max le(X, 2)] £ €Ky, Ki < oo.

. The proof is complete.
‘Thus, under conditions of this Theorem, the following representation is valid:

H(M\ 1) = 3 Fun(A,0) + 0(e™*).

Now we describe the one of possible schemes of the solution of the problems in the system
(2)-
The solution ug(, 2) of the first task in (2) we seek as the sum of two functions up (2)

and ugz(A, 2) : uo = ugy + ugz. The function ug; is the solution of known Dirichlet problem
of the elliptic equation

Lougy = 0;  ug1(2)|zes = f(2)-
The function wug, is the solution of the following nonhomogeneous problem with zero
boundary condition

Lougy = Augg + Augy;  Uoz|zes = 0. (3)

The function ug; we shall define by the Fourier method. Denote the subspace of the
functions of Cy o(B), which accept zero value onto the surface S, by the Hog,q(B). Define
scalar product in Hg o(B) similar to the paper [8,sec. 3]:

”Z{jz / |Def |2dz.

lsi<2 B B

(f:Dtona = Y [ D*fD*gds, ||quo.,.a(Br~=J

Again, similar to [6, sec.3,) it is possible to show, that Hos o(B) is Hilbert space. Let g
and Fi(z), k > 1 be corresponding eigenvalues and eigenfunctions of the following task:

LoB(z) =A\B(z), ze€intB;  P(2)|zes =0.

As it is known (8, page 191], these eigenvalues are real values and A\x — —o0 as k — oo,
eigenfunctions form complete orthonormalized system in the space Hg3a(B).
As ugs € Hyz o, the following representation takes place
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ug2(A, 2) = coe(N) Br(2)-

E>1
Further, substituting this relation into (3) after integration we obtain the equations for
coefficients cop(A):
Axcor(A) = Acor(A) + A _/ u01(2) Br(2)dz.
B

'This relation implies the following equality

A _
cor(A) = ] ug1(2) Br(2)dz.
Ak —A
B
All further solutions have similar representations:

Un(A, 2) = Zcmk where,

k=1

to ) = X;—"_—A / @L,(z)um_,()\, z)) Bel(2)dz.
B \s=i
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OZET

H.(\, f) = Mlexp(—e2\T.) f(e *¢(T%))], A = 0 fonksiyonelinin € kuvvetinin € — 0
iken toplam agilimim verdik. Burada €(t) m— boyutlu homojen diffuzyon siireci ve T, &(t)
siireci i¢in € yaricaph kiireden ilk gikig zamamm géstermektedir. Problemin ¢oziimii baz 6zel
elliptik simir problemlerinin ¢dziimlerinin toplam agihmmin hesaplanmasina indirgenmisgtir.
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REPAIR DEVICE WITH INSTANTANEOUS
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Abstract
Let g be probability of failure of a system in a regeneration period. Let 7, be time from the
moment when all units of a system are in running order to failure of a system. These characteristics
of reliability have been investigated. Asymptotic estimates for g and 7, are given.
Key Words: failure of a system, probability, distribution function, random process

1. Introduction

Special reliability problems arise in connection with servicing of automatic machines. As early as
1933 A.Y.Khintchine investigated the problem of servicing of some automatic machines by a single
repairman [1]. Later the similar problem was studied by C.Palm [2]. In 1954 J.Taylor and
R.R.P.Jackson considered the problem of provision of spare aircraft machines [3]. Since then many
papers have been published dealing with reliability of different systems with repairing of failing
units(for more information we refer to [4], [5], [6] and [7]). A.D.Solovjev studied characteristics of
reliability for a general restored system. He obtained the following two-sided estimates for
probability ¢ of failure of a system in a regeneration period in the case of one repair device without
instantaneous service:
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®) b1
bn_,liqsl_zn_lbo s 1
where
(u) (Ax) & —Ax |
by 4= J.A.—(}:-—e P(u > x)cb:, k=12K ,n 2)

are probabilities that at least £ units come to the repair device during the time v of repairing of the
first unit of a system [8]. Also, A.D.Solovjev proved the following limiting theorem for
reg'eﬁ&ative

'proce;ssw of special type. (A regeneration period consists of two parts, times of each part are
independent random variables. The first part & has exponential distribution with parameter 4 , the
second part n has a general distribution with the mean T;) [8].

Theorem. If A7, — 0, then

P(Agz >x)—>e™*, . 3)
where 7 is time from start of working of a system to failure of it.

2. Statement of Results

Following A.D.Solovjev [8] we shall treat the case when units of a restored system are serviced
by a single repair device. However, it has instantaneous service.

The model describing the situation. There are n+1 units in a system. At first one unit is a working
one and # units are in reserve. At the moment of failure of the working unit a unit of the reserve
takes it’s place. The failing unit is headed for the repair device. After repairing it returns in the
system and takes a free place in the reserve. As time goes on the repair device requires
instantaneous service, which interrupts repairing of a failing unit. After ending of instantaneous
service for the repair device this failing unit is repaired in it. Failing units are repaired one by one in
the order of coming to the repair device. Repairing for failing units takes place only for lack of

instantaneous service for the repair device. Failure of the system occurs if a-working unit fails and
the reserve is empty at this moment of time.

93



RELIABILITY OF A RESTORED SYSTEM

Notations and conceptions. Let Ay and A be parameters of exponential distribution for time of
lack of instantaneous service for the repair device and for time of trouble-free operation of the units
correspondingly.

Let I'(x) and G(x) be distribution functions for time of instantaneous service for the repair
device and for time of repairing for a unit correspondingly. Let 7, be time from the moment when
all units of the system are in running order to failure of the system. Denote b*f q probability of
failure of a system in a regeneration period.

Dendte by I (x) the distribution function of the sum of  independent random variables, which
are distributed as I(x).

Times of trouble-free operation of the units, times of repairing for the units and times of lack of
instantaneous service for the repair device are independent random variables. Let v(¢) be a number
of failing units of the system at the moment of time f. Random process v(t) is a regenerative one.
Moments of transition of this process to the state {0} (when v(f)=0) are the moments of
regeneration.

Let w; be stationary time of possible waiting for start of repairing of the first unit which comes

to the repair device in a regeneration period. Let y, = dei" (x) be mathematical expectation of time
0

of instantaneous service for the repair device.

Denote by p; stationary probability of instantaneous service for the repair device and let
Po =1— p; be probability of the opposite event.

From the theory of alternating processes of regeneration [9],

1 _ oY1
L e
1+ 4971 1+ gy

0 with probability p,
W =

Po=

B T @:}}T“j@ _T(e)ar.

0 with probability p,

Let v' be time from the start of repairing of a unit, which comes to the repair device, to the
ending of it’s repairing, including instantaneous service for the repair device.
Denote by Go(x) the distribution function for time v' . It can be found as: _

Go(x)=P'<x)= | Z(‘l"r) L (x - 1)dG() @)

0 k=0
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Let v=w; +0' beﬁme_ﬁomthemomeﬂofﬁﬂu:eoftﬁeﬁrstmittoit’smﬂrepaiﬁngina
regeneration period. Denote by b{°) ,k=1,2,K ,n the same probabilities as (2).
We improved the two-sided estimates (1) for probability g in the case of a restored system for a
repair device with instantaneous service. For these estimates we used another way of proof than

A.D.Solovjev did for (1). Using the improved analogue of (1) and the limiting theorem (3) we can
find asymptotic estimates for ¢ and 7.
The two-sided inequality and asymptotic estimates can be successfully applied in practical

| .sit'da'éons.

3. Proofs of Results

Lemma 1. For probability g the following inequality is true:

p®) -C(g,A ) .
() n— AosAs7q
bn—l C(Z'O’A',yl)SQ‘( -—;8 )ezn_l _-1) . (5)’

where C(g,4,7,) is a constant which depends on 49,4,7;.

Proof. Let g; be probability of failure of the smmhmmphymmpahdﬁrﬂwmmk&m,
provided that there are i units with full time of repairing in it at the start of this employment period
and instantaneous service for the repair device does not happen. Denote by al®) =53] - 5{*)
probabilities that i units come to the repair device during the time v of repairing of the first unit of
the system. Then

qS[b(“) + Za(“)qf) -ClAgsA,71)

i1
_b(ul Zaz @ik » k=12K,n-1, (go=0).

Using equalities for a{®) and a{®), we obtain |

n-1
qs[bﬁ:i’l +3 (g — g o™ —q,ﬂb!.‘l’,)-c(zo,z,n) : ©)

i=1

©) .5 @) ©
Qg — Q1 =bp j + Z(‘Iu-t-l = ‘1&&-2)’;1_’1 - qn—lbr::l .

i=1

95



RELIABILITY OF A RESTORED SYSTEM
Setting Xy =¢,%; =9 Gz » k=2K,n-1 andmmg the following inequalities
a®) <b®), af) <p®) <P),
we obtain such system of inequalities

n—1
;o s[b,tg; 3 Zb}f,)x,-]c(ﬁ-o,l,n)

i=]1

: n—k
Xk < br(:il + Zbi(fl)xkﬂ'—l ] k= 23K Y 1 (7)
i=1
* o0
Denote by X= M . b= M ,
Xn-1 b((},u)

c® o) A ),
o 5 A ¥
M O O M
o A o B

’ C =C(2'0!A‘:YI)‘

We can rewrite this system of inequalities in the matrix form as
X <bh+BX.
3
Using the inequality %) -5{®) <5®) .5®).C} | i=01,K ,n, we obtain

Bb<s™ -1)-Z-5,

where
C 0 A O
7= 010
MO O 0
0 A 01
and
xsb4Bb+B’b+Ksi[bg'J(z*L1)]'.z-b.
n=0
Hence, we get

bn—(u)l ‘C(%Jk‘h)
= S 9
g=x; < l_b(()“)(zﬂhl _l) ( )
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The left-hand side inequality for ¢ is obvious.

Lemma2. I 500" ~1)-0 , then g~C(hg, 2,7, %)

Proof. It follows immediately from the Lemma 1.

Let ¢ be time of a regeneration period of the random process v(t). From the above Lemmas and
the limiting theorem (3) we conclude the following theorem:

Theorem. Let b((,")(z""l —-1)—)0 and b) Bg® —2—C(Ag,4,7;)— 0. Then the following asymptotic

" (Bg)?

formula for the random variable 7, holds:

©) ATo >x)~+e“". (10)

Acknowledgements

The authors wish to express their gratitude to A.D.Solovjev for formulation of the problem.

References

[1] A.Y Khintchine: About the mean time of machine interference. Mat. Sb., 40 (1933), 119 — 123
(in Russian).
[2] C.Palm: The Distribution of Repairmen in Servicing Automatic Machines. Industritidn. Norden,
75 (1947), 75 — 80, 90 — 94, 119 — 123 (in Swedish).
[3] J.Taylor, R.R.P.Jackson: An Application of the Birth and Death Process to the Provision of
Spare Machines. Operational Research Quart., 5 (1954), 95 — 108.
[4 P.Naor: Normal Approximation to Machine Interference with Many Repairmen. Journ. Roy.
Stat. Soc., Ser. B, 19 (1957), 334 —341. |
[5] D.Gaver: A Probability Problem Arising in Reliability and Traffic Studies. Operatibn;i Research,
12 (4) (1964).

97



RELIABILITY OF A RESTORED SYSTEM
6] C.Mack, K.Stoodley: Machine Interference with Two Repairmen when Repair Time is Constant.
New Journ, Statist. and Oper. Res., 4 (2) (1968).

[7] M.Hollander, F.Proschan: Testing whether new is better than used. Ann. Math. Statist., 43 (4)
(1972), 1136 - 1146.

[8] Mathematical problems of reliability theory. Radio i svyaz, Moscow, 1983 (in Russian).
[9] D.R.Cox: Renewal Theory. Methuen, Wiley, Lnd. — N.Y., 1962.

OZET
Bir tekrar iireme periodunda sistemin bozulmast olasilig1 ¢ olsun. Sistemin biitiin birimleri aligir
durumda iken sistemnin bozuluncaya kadar gegen siire ise 7 olsun. Giivenirlifin bu karakteristikleri

incelenmigtir.
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Abstract

Many time series as they occur in practice are not stationary. For example,
the economies of many countries are developing or growing. The typical eco-
nomic indicators will be showing a ”trend” through time. This trend may be in
the mean, the variance, or both. Such ndnstationary time series are sometimes
called evolutionary. In this study, the distribution of records for the first order
nonstationary autoregressive processes are investigated. The upper records are
considered but the same theory for the lower records can be carried out simi-
larly by considering the sequence of random variables as {—X; :1=1,2,3,....} .
The distribution of the record times is derived and it is shown that record times
have a Markovian property.

1. Introduction

Let X3, X, ..., Xn, ... be a sequence of random variables and

M(n) = Maz(X;, X5, ..., Xn), n=123,..
Define the record times as follows:
U@)=1, Uln+1)=min(j:j>U(n),X;> Xum), n=123,..
Let Xy(m) = M(U(n)) be n th record value, n = 1,2, 3, ....By convention X is a

record value.

Developments of record theory have been reviewed by many authors including
Galambos (1982), Nevzorov (1988), Nagaraja (1988), Arnold and Balakrishnan (1989),
- Arnold, Balakrishnan and Nagaraja (1992), Ahsanullah (1995).

It is well known that for the sequences of independent and identically distributed
(ii.d.) random variables X, X, ..., X,, ... with distribution function (d.f.) F the
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‘sequence of record times {U(n),n > 1} form a Markov chain with transient proba-
bilities

- E> j>n—-1>2
: = - =jt= M1 of
P{U(ﬂ) klU(ﬂ 1) =3} { 0 for any other values of j and k

For independent and identically distributed random variables with distribution
function F' and probability density function f the distribution of nth record value is

Fa(z) = i {X Uy < :c}

1 In(1-F(z)) 1 z 1 n—1
RO S —~1_—t g5 N,
m=1) of = i) of (’“ = F(a:)) f(z)de
the probability density function of Xy is

1 1 n—1
o) = gy (=) 7@

The joint probability density function of n records Xy (), Xu(), ..., Xv(n) i8 given
by

£ T®n—
f(ﬂ:l Tq, ...,:En) = T_L(F‘_(IZJ_I—)-"FFL%_I—ISJ'(E“) TROS. Bl N S Hp S0
’ 0 otherwise

The joint probability density function of Xu) and Xuyg), (1 < j), is
_ (R(=)y ' f(z:) [R(z;) — R(z:)f 1

fii(zi, x5) = G- 1- F(z:) (G—i—1)! f(z5), —c0o< 1< ... <2Tp <00

where R(z) = —In(1 — F(z)).

Let £ =1 and £, = Im(n)>m(n—1)) for n = 2,3, 4, .... That is, £,s are indicators of
upper records. It is known that for mdependent and ldmtlcally distributed random
variables the record indicators £,, n > 1 are independent random variables and
P{{p = 1} = Z for n = 1,2,3,... (see, Renyi (1962)). As noted by Nevzorova,
Nevzorov and Balakrishnan (1997) tlus property of record indicators a]m holds for
symmetrically dependent random variables.

Nevzorov (1985) introduced the so-called F* scheme, which is defined as a se-
quence of independent random variables {X;} with distribution functions Fi(z) =
{F(z)}*, for i = 1,2,3,... where F(z) is a continuous distribution function and
a, 0, ... are positive constants.

Nevzorov (1985) has shown that the record indicators &,,n > 1 are also indepen-
dent for the F'* scheme. Ballerini and Resnick (1987) consider & new record model
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in which the random vanapies {A;; can pe aependent pPut tne Joms amseriouson of
maxima My, Ma, ...M,, coincides for any n = 1,2,3, ... with the joint distribution of
the corresponding vector for some F* scheme. The record indicators £,,n > 1 are
also independent for Ballarini-Resnick scheme. '
* Ballerini (1994) considered the general class of dependent random variables, so-
called Archimedian copula process with independent record indicators. A sequence
of random variables {X;} with marginal distribution functions {F;} is said to be an
Archimedian copula (AC) if for any n = 1,2, 3, ..., we obtain

n
P{Xl <ty s A < tn} =B (Z A(E(t,))) i
=1
where B is a monotone dependence function such that B(0) =1 and A = B~ is the
inverse of the dependence function B.

Note that the independence of record indicators &,,n > 1 characterize the {F*}
scheme. There are some papers in this direction. For example see Borokov and
Pfeifer (1995), Nevzorov (1993). But the mathematical theory of records has not
been worked when the independence and identically distributiveness of the original
random variables are discarded. Moreover, the stationarity condition of the original
series is also removed.

Time series have many applications in different fields of sciences such as economics,
engineering. In economics, the recorded history of economy is often in the form
of the autoregressive models. Economic behavior is quantified in such a series as
consumer price index, unemployment, gross national product, population, income,
and consumption. In the area of time series, X, = pX,—1 + €, has been considered
and many testing procedures have been developed for testing Hy : p = 1 against
stationary alternatives. A practical and most popular one is the regression approach.
Dickey and Fuller (1979) used a regression approach for testing the null hypothesis
Hp : p = 1 against stationary alternatives and they give the critical values of the
test statistics. In Figure 1, IBM daily stock price, its autocorrelations and partial
autocorrelations are plotted. From the time plot, it is seen that the series is increasing
over time. This tells that the series is nonstationary in some way. Some tests are
applied to this series and concluded that the process is nonstationary. -‘We do not
repeat their tests but instead directly look at the identification plots which will give
us a rough idea of the order and stationarity of the series. We see that the decay
of the autocorrelations are very slow and the partial autocorrelation function has a
large spike (nearly 1) at the first lag, and others are small. We also look at the first
difference of the original series. From SAS’s PROC UNIVARIATE, we see that the
first difference series look like a white noise sequence. That is, X, = Xp_1 + € (
én are independent and identically distributed random variables with mean zero and
constant variance ¢2) fit is appropriate for the IBM data.

Looking at the theoretical model, the random variables X, X3,...X,,, ... are not
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independent and identically distributed, neither. Moreover, the process is not sta-

tionary (in the wide sense) because Var(X,) = no? when X, = 0. In this paper we

will study the distribution of the record times when the random variables form the
model

Xo=Xpn1+6, €n iid. (0,0%)

2. Record Indicators

©  As noted earlier, for some certain class of models the record indicators {£,,n >
-1} are independent. That is the events {X;is a record} and {X; is a record} are
independent. However, in our case it will be shown that the record indicators are
dependent random variables. Consider the first order autoregressive model

Xﬂ = Xp-1+ €, n=1,2,3,... (1)

where €,’s are independent and identically distributed random variables with mean
zero and variance o2. Congider the random variable v which is defined as follows:
v=niff {5:<0,5,<0,...,5,-; £0,8, > 0}, where,S'_--')::ﬁJ Feller (1971) gives

the form of the distribution of r.v. v :
P{U :n} = P{Sl 50132 SU:"wSﬂ—l < D}Sﬂ > O} = Tny ’ == 1!2!3""
The probability generating function of the r.v. v is

T(s) =D mms" , 0<s<1l

The distribution {7,} is completely determined by the probabilities P{S, > 0}
and vise versa as a result of the following identity (see Feller 1971, p.413)

logl 'r() E P{Sn>0}

ﬂ--l

The assertion remains valid if the signs > and < are replaced by > and <, re-
spectively. These results are valid for any random variables €, €3, .... But when we
assume that €,’s are symmetrically distributed, then the result is simplified as

(2n)!
(2n — 1)(n!)222»
Assume that €, €3, ..., €, ... is a sequence of independent and identically distrib-

uted random variables with a symmetric distribution function F, mean zero and
variance 0°.

T =

, n=123,.. (2)
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Consider the model (1) X, = X,,_; + €, where the random variable X has a
distribution function F,. Note that X, = X+ f: €j = Xo+ Sy, where S, =€;+ €2+
. =
... + €, . Define the random variable

M(ﬂ) = MﬁfB(Xl, Xg, ...,Xn), n=123,..
and the record indicators as follows:
L=l &= I{M(ﬂ)}M(n-l)}: n=2,3,4,..

That is, &, = 1 if X,, is a record and &, = 0 otherwise. By convention P{{; =
1} =1 and some probabilities can be calculated as follows:

P{lo=1}=P{Xy> X;} = P{Xo+ &1+ &> Xo+ €} = P{ez > 0} =

[N

and similarly
P{&s=1}=P{X3> X3, Xa > X1} = P{Xo+e1+ea+ €3> Xo+ €1 + €,
Xote+e+e>Xo+e}t=P{e>0,e+e >0}

1
=P{€3>0}"P{£3>O,€2+€3<0}=§—T2=g

Analogously one can write

P{fy=1} = P{eg > 0,63+ €4 > 0} — P{eg > 0,€3 + €4 > 0,62 + €3 + €4 < 0}

— Ty —1T3

[

and for a general case, it is easy to see that

1
P{En=1}=—2'—T2—T3—-...—Tn_.1

where

Tn=P{e1 < 0,61+ €<0,...,6i+€+...+ 61 < 0,61+ €2+ ... + €1 > 0}
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(e
(2n — 1)(nt)2220

Moreover without having any difficulties one can calculate some joint probabilities
as follows:

Pla=L6=1}=P{> X} =3, Pla=16=0}=PX; < Xi}=3,

1
P{tfg =‘1,§3= 1}"‘—‘P{X2 > X],Xz <X3}ﬁ P{€2 >0,E3 > 0} = 1

Since
13 3

Pla=16=1}=; #Plo=1}Pl=1} =32 =

the record indicators &,’s are not independent. That is, the events { X is a record}
and {X; is a record} are dependent.

3. Distribution of U(2)

In this section, we will derive the distribution of the second record time. This is

going to simplify finding the distribution of the n th record time. Now we state the
following theorem.

Theorem 1. Consider the nonstationary first order autoregressive time series
model X, = X, 1+€, , n=1,2,3,... where ¢,’s are independent and identically
distributed random variables with mean zero and variance o2. If €,’s have a symmetric

and continuous distribution function F, then the distribution of the second record
time is ‘

P{D(2) =n}=1 4 , n=234,.... (3)
~ where 7, is defined in (2).

Proof. The event that the second record time being n is the event that the
value of the first random variable is larger that all the values of the random variables
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X2, X3, ..., Xn_1 but it is smaller than the value of the random variable X,,. That is,
In order to find the distribution of the second record time we need to calculate the
following:

P{U(Z) = ﬂ} = P‘{Xl > Xg,X}_ > Xg,...,X]_ > X,-,__.]_,Xl < Xn}
=P{Xo+e1>Xo+e1+e,Xo+6>Xo+6e+e+63, ...,

Xﬁ‘l‘fl>Xo+€1+...+€u_.1,XO+E]_ <Xg+€1+u-+€n}

= P{ez < 0,63+ €5 <0, ., €34 oo + €y < 0, €2 + .. + € > 0}

=Pl < 0,61 +€<0,...,61+ ... + €n2 < 0,62+ ... + €p—1 > 0} = T

which completes the proof of the theorem.{

Theorem 2. The sequence of random variables U(1), U(2), U(3), ..., U(n), ... form
a Markov chain with transient probabilities 7;_; for j > 7. That is, the conditional
probability of U(n) being at the state j does not depend on the past states except
the state of U(n — 1). In other words, when j > i we have the following:

P{U(n) = j|U(n —1) = i,U(n — 2) = in_2, ..., U(3) = i3, U(2) = i}

= PO = 0 -0 =it = { 4L @

Proof. Us.mg the conditional probability formula
P{U(n) =jlUn—1) =i,U(n—2) =ip_3,...,U(3) = i3, U(2) = ia}

_PUM =4, Un-1)=i,Un—2) =in s, UB) =is,UQ2) =i} _a
P{U(ﬂ e 1) == i, U(‘ﬂ = 2) = 3',.__.2, ceny U(3) = '53, U(2) = 32} ,B

where
o= P{U() =3,V —1) =4, U(n —2) = ins,,U(3) = is, U(2) = iz}
= P{Xl > X9, X1 > X3,...,X1 > X¢3_1,X1 < Xig;Xig 3 Xigni gyases

: X,‘, > Xis-—la X{, < X‘ia; ...,Xgﬂ_z > Xi,._g-l»ls "'Xt'n—a > X,
X,-“_z < X,-; X;> Xi+1: X; > X.H_g, e, O Xj_l,Xg < XJ}
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= P{Xu+Sl > Xo+ S2,..., Xo+ 51 > Xo + Sip—1, Xo + 51 < Xo + Siy;
Xo+ S;, > Xo+ Sin+11 vy Xo+ S5, > Xo + Sgs___.h.Xo -+ St'n < Xp+ Sgs; ¥ios
Xo+ Sin_q > Xo+ Siy_s41 - Xo+ iy > Xo+ Si1, Xo+ S, < Xo+ S
Xo+S; > Xo+ Siy1y ., Xo+ Si > Xo+ Sj—1, Xo + Si < Xo + S5}

=Ple < 0,2+ €3 <0,...,60+ ... + €51 < 0,62+ ... + €, > 0;

€41 < 0, €141 + €542 <0,y €41 F o €551 <0, 65541 + .+ €551 > 05
€inot1 <06, o1t 6, 342<0,6, s+t 61 <06, o1+ ..+ 6>0;
€ir1 < 0,641 + €42 <0,y €409 + .+ €3 < 0,649 + ... + €3 > 0}
Since €,'s are independently distributed random variables, this probability can be
written as

=Plea<0,62+€3<0,...,694 ...+ 6,1 < 0,e3+... + €, > 0}
P{e‘iz-l-l <0, €541 + €2 < 0, oy €igt1 ot €51 < 0,654 + €531 > ﬂ}

P{e!'n—z-i-l <0, €inat1 T €ip_a42 <0, ..., €Cinotl t oo+ 6 <0,6, s +...+6> 0}
Pleiy1 <0, €41+ €532 < 0,y €541 + o + €521 < 0, €541 + ... + €5 > 0}

Using the same argument, the probability in the denominator can be calculated
as

ﬁ= P{EZ < 0)€2+€3 < U,---,62+ ....+£i2_1 < 0’€2+ ___+£‘.2 > 0].
Pleip1 <0, €41 + €542 <0, ees €ig41 + o+ Ei5 1 < 0, €047 + oo+ €551 > 0}

P{einar1 < 0,6, p11+ €, 512 <0,..y€ip_gp1 + oo + €1 < 0,6, _g41 + ... + & > 0}
and thus the conditional probability in the left hand side of (4) is

P{U(n) = jlU(n —1) =4,U(n — 2) = in_a, ..., U(3) =13, U(2) = in}
= P{ei41 <0, €41+ €642 < 0,0y €541 + oo+ -1 < 0,641 + ... + €5 > 0} (5)
= Tj_‘-

In order to calculate the right hand side of (4), we use the same argume.nt.Without
repeating the same calculations, the probability on the right hand side of (4) is

P{U(n) = jlU(n—1) =i}
= P{Eﬂ.}_ < 0,641+ €42 <0, ..., i tantE.a % 0,641+ ...+ €; > 0} (6)

= Tj-—-i

The identities in (5) and (6) imply that the sequence of random variables U(1),
U(2),..., U{n),.... form a Markov chain with transient probabilities 7;_; and this
completes the proof.)
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To clarify the results, we take n = 4 and show that

P{U(4) = isU(3) = i3,U(2) = i} = P{U(4) =i,|U(3) = is}
The right hand side of (7) is

P{U(4) = ig|U(3) = i3, U(2) = iz}. = %i

where

) = P{U(4) =14, U(3) = %3,U(2) = %2}

= P{X]_ > X0, X, > X, ..., X]_ > Xia—l: X < ng;
Xiy > X1, Xig > Xigr2,y o0y Xig > Kig—1, Xig < Xig;
Xis > Xig1, Xig > Xig12, -, Xig > Xig1, Xy < Xy}

=P{ea < 0,ea+€3<0,...,ea+ ... +€5,1 < 0,60+ ... + €, > 0;
€11 < 0, €11 + €012 <0,y €ipg1 + oo+ Eig—1 <0, €041 + oo €5 > 0;
€ig+1 < 0, €541 + €4542 < 0y €541 + oo H 631 <0, €550 + ..+ € > 0}

=P{es < 0,62 +€3<0,...,€a+ ... + €iy—1 < 0,62+ ... + €, > 0}
P{ei41 <0, €541 + €042 < 0, ey €594 + . + €551 < 0,65041 + ... + €55 > 0}
P{E“3+] < 0, €igt1 T+ €igy2 < 0._. N R | e €ig—1 < 0, E“3+1'+ o & €y > 0}

= Tig—1Tig—igTig—ia

and
By = P{U(3) =45,U(2) = 13}

= P{Xl > X2, Xy > X3,y X1 > Xig1, X1 < X5
Xiy > Xip1, Xiy > Xigi2, ooy Xig > Xig1, Xig < X}

= P{Eg < 0, €+ €3 < 0, ey €2 + ... +Gi2_.1 < 0-, €9 + oo+ €ip > 0}
Plen41 <0, €41 + €342 < 0,0y €541 + ooe + €551 < 0, 65343 + ... + €43 > 0}
= Tig—1Tig—ig

That is the conditional probability is

P{U(4) = i,|U(3) = i3, U(2) = ia}. = %
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__ Tig—1Tig—ig Tig—is

= Tig—is
Tig—1Tig—ia

In order to calculate the probability on the left hand side of (7) we will use the
total probability formula. The left hand side of (7) is '

P{U(4) = isJU(3) = is} = ‘—;f
where

as = P{U(4) = ig, U(3) = ig} = iP{U(@ = iy, U(3) = i, U(2) = ig}

=

the probability in the sums is calculated in obtaining the probability &y = T3, 1Tig—iz Tig—is
and thus

Qg = P{U(4) == iq,, U(3) = 1'.3} — E Tig~1Tig—ig Tig—izg = Tig—ia Z Tig—1Tig—ig |
ig=2 12=2

and similarly

Ba= P{U(3) =is} = éP{U(a) i, T8) =AY = T FoiFice

i2=2
and thus we have

o0
Tig—is b Tig—1Tig—iz
i2=2

RHS=21-=TQ_§°=LHS=%= =
ﬂl ' ﬁz Z‘ Tia—1Tia—ia

ig=2
and hence the equality holds.
The main result of this study follows from the Theorems 1 and Theorem 2

Theorem 3. The distribution of the n th record time is
_ -1
Fo(j) = P{U(n) =i} = > Fa(i)7iu-
=n—1

Proof. Using the Theorem 2 and Theorem 3 with the formula of total probability
concludes the proof:

Fuli) = PUM) =3} = T PUm) =3lU(n—1) = K}PUMm—1) =}

o ®
= hg;-_l Fa(d)Tj-s-
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To calculate the distribution of the third record time we write
k-1 k—1
PUQB) =k} =Y P{U@®) =klU@Q) =i}P{UQR) =i} =Y Th-iTi
=2 =2

rest of the probabilities can be calculated recursively.
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OZET

Bu cahgmada duragan olmayan birinci dereceden otoregressiv zaman serileri igin

rekor degerlerin dagihmlan incelenmigtir. Bu bagimh rasgele degi er dizisi igin
rekor zamanlarinin dagihmlan elde edilmig ve rekor zamanlar dizisinin Markov zinciri
olugturdugu gosterilmistir. '

Figure 1: IBM Daily Stock Prices
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