Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Combustion Behaviors of Rigid Polyurethane Foams Filled with Barite by Using Cone Calorimeter Tests

Yıl 2018, Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017), 706 - 713, 10.04.2018

Öz

Rigid polyurethane foams are widely used in different industrial applications due to their many superior properties. But these materials can easily ignite and burn. Therefore, different flame retardants and fillers are added into the rigid polyurethane foams to enhance the burning resistance. In this study, barite which contains very high amount (98.3 %) of barium sulfate was added up to 15 % in mass to increase the burning resistance of rigid polyurethane foams. The heat release rate and the total heat releases of the rigid polyurethane foams were obtained from cone calorimeter tests. The smoke and carbon monoxide emissions produced during the combustion were also examined. The addition of 5 % barite into the rigid polyurethane foam resulted in no positive effect on combustion behaviors of the foam, but additions of 10 and 15 % barite caused decreasing of heat release rate, total heat release and production of smoke and carbon monoxide. Consequently, 10 and 15 % barite additions increase the burning resistance of the rigid polyurethane foam at certain levels and at this perspective, barite can be used in rigid polyurethane foams as a filler in consideration of fire resistance. 

Kaynakça

  • [1] Y.L. Liu, , J.Y. He, R.J. Yang, "The preparation and properties of flame-retardant polyisocyanurate–polyurethane foams based on two DOPO derivatives", Journal of Fire Sciences, c. 34, s. 5, ss. 431-444, 2016.
  • [2] Q.Q. Zhao, C.Y. Chen, R.L. Fan, Y.L. Xing, X. Ma, " Halogen-free flame-retardant rigid polyurethane foam with a nitrogen–phosphorus flame retardant", Journal of Fire Sciences. c. 35, s. 2, ss. 99-117, 2017.
  • [3] D.H. Wu, P.H. Zhao, Y.Q. Liu, X.Y. Liu, X.F. Wang, "Halogen Free Flame Retardant Rigid Polyurethane Foam with a Novel Phosphorus-Nitrogen Intumescent Flame Retardant, Journal of Applied Polymer Science, c. 131, s. 11, ss. 1-7, 2014.
  • [4] N. Usta, " Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter", Journal of Applied Polymer Science, c. 124, s. 4, ss. 3372-3382, 2012.
  • [5] I. Van der Veen, J. de Boer, "Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis", Chemosphere, c. 88, s. 10, ss. 1119-1268, 2012.
  • [6] S.H. Kim, M.C. Lee, H.D. Kim, H.C. Park, H.M. Jeong, K.S. Yoon, B.K. Kim, "Nanoclay reinforced rigid polyurethane foams", Journal of Applied Polymer Science, c. 117, s. 4, ss. 1992-1997, 2010.
  • [7] V. Ali, Neelkamal, F.Z. Haque, M. Zulfequar, M. Husain, "Preparation and characterization of polyether-based polyurethane dolomite composite", Journal of Applied Polymer Science, c. 103, s. 4, ss. 2337-2342, 2007.
  • [8] B.J. Czuprynski, Paciorek-Sadowska, J. Liszkowska, "Properties of rigid polyurethane-polyisocyanurate foams modified with the selected fillers", Journal of Applied Polymer Science, c. 115, s. 4, ss. 2460-2469, 2010.
  • [9] G. Beyer, "Flame Retardancy of Thermoplastic Polyurethane and Polyvinyl Chloride by Organoclays", Journal of Fire Sciences, c. 25, s. 1, ss. 65-78, 2007.
  • [10] ASTM E1354-14, "Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter", ASTM International, West Conshohocken, PA, U. S. A., 2004.
  • [11] ISO 5660-1, " Reaction-to-fire tests - Heat release, smoke production and mass loss rate -- Part 1: Heat release rate (cone calorimeter method)", International Organization for Standardization, Geneva, Switzerland, 2002.
  • [12] S. Bourbigot, S. Duquesne, G. Fontaine, S. Bellayer, T. Turf, F. Samyn, "Characterization and Reaction to Fire of Polymer Nanocomposites with and without Conventional Flame Retardants", Molecular Crystals and Liquid Crystals, c. 486, s. 1, ss. 1367-1381, 2008.
  • [13] M.Z. Fu, B.J. Qu, "Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends", Polymer Degradation and Stability, c. 85, s. 1, ss. 633-639, 2004.
  • [14] C.M. Jiao, X.L. Chen, " Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites", Journal of Thermal Analysis and Calorimetry, c. 98, s. 3, ss. 813-818, 2009.
  • [15] A. Subasinghe, D. Bhattacharyya, " Performance of different intumescent ammonium polyphosphate flame retardants in PP/kenaf fibre composites", Composites Part A: Applied Science and Manufacturing, c. 65, ss. 91-99, 2014.
  • [16] X.R. Zheng, G.J. Wang, W. Xu, " Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam", Polymer Degradation and Stability, c. 101, ss. 32-39, 2014.
  • [17] M. Checchin, C. Cecchini, B. Cellarosi, F.O. Sam, " Use of cone calorimeter for evaluating fire performances of polyurethane foams", Polymer Degradation and Stability, c. 64, s. 3, ss. 573-576, 1999.
  • [18] B. Aydogan, N. Usta, " Nanokil ve kabaran alev geciktirici ilavesinin rijit poliüretan köpük malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 30, s. 1, ss. 9-18, 2015.

Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi

Yıl 2018, Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017), 706 - 713, 10.04.2018

Öz

Birçok üstün özelliklerinden
dolayı farklı endüstriyel alanlarda yaygın olarak kullanılan rijit poliüretan
köpük malzemelerin en önemli zayıf özellikleri kolay tutuşma ve yanmalarıdır.
Bu yüzden, rijit poliüretan köpük malzemelerin yanma direncinin arttırılması
amacı ile farklı alev geciktiriciler ve dolgu maddeleri ilave edilmektedir. Bu
çalışmada, rijit poliüretan köpük malzemelerin yanma direncini artırmak amacı
ile çok yüksek oranda (% 98.3) baryum sülfat içeren barit, kütlesel bazda % 5,
10 ve 15 oranlarında dolgu maddesi olarak ilave edilmiştir. Konik kalorimetre
yanma testleri ile barit ilaveli poliüretan köpük malzemelerin zamana bağlı ısı
yayılım hızları ve toplam ısı yayılım miktarları belirlenmiştir. Ayrıca, yanma
sırasında oluşan zararlı emisyonlar olan is ve karbon monoksit oluşumları da
incelenmiştir. % 5 barit ilavesi ile köpük malzemelerin yanma direncinde olumlu
bir değişiklik olmamakla birlikte, % 10 ve % 15 oranlarında barit ilavesi ile
köpük malzemelerin ısı yayılım hızlarında, toplam ısı yayılım miktarlarında, is
ve karbon monoksit emisyonlarında azalmalar belirlenmiştir. Sonuç olarak; % 10
ve 15 oranlarında barit ilavesinin rijit poliüretan köpük malzemelerin yanma
dirençlerini belirli seviyede arttırdığı, bu çerçevede de yanma direnci dikkate
alındığında baritin rijit poliüretan köpük malzemeler için dolgu maddesi olarak
kullanılabileceği değerlendirilmiştir.

Kaynakça

  • [1] Y.L. Liu, , J.Y. He, R.J. Yang, "The preparation and properties of flame-retardant polyisocyanurate–polyurethane foams based on two DOPO derivatives", Journal of Fire Sciences, c. 34, s. 5, ss. 431-444, 2016.
  • [2] Q.Q. Zhao, C.Y. Chen, R.L. Fan, Y.L. Xing, X. Ma, " Halogen-free flame-retardant rigid polyurethane foam with a nitrogen–phosphorus flame retardant", Journal of Fire Sciences. c. 35, s. 2, ss. 99-117, 2017.
  • [3] D.H. Wu, P.H. Zhao, Y.Q. Liu, X.Y. Liu, X.F. Wang, "Halogen Free Flame Retardant Rigid Polyurethane Foam with a Novel Phosphorus-Nitrogen Intumescent Flame Retardant, Journal of Applied Polymer Science, c. 131, s. 11, ss. 1-7, 2014.
  • [4] N. Usta, " Investigation of fire behavior of rigid polyurethane foams containing fly ash and intumescent flame retardant by using a cone calorimeter", Journal of Applied Polymer Science, c. 124, s. 4, ss. 3372-3382, 2012.
  • [5] I. Van der Veen, J. de Boer, "Phosphorus flame retardants: Properties, production, environmental occurrence, toxicity and analysis", Chemosphere, c. 88, s. 10, ss. 1119-1268, 2012.
  • [6] S.H. Kim, M.C. Lee, H.D. Kim, H.C. Park, H.M. Jeong, K.S. Yoon, B.K. Kim, "Nanoclay reinforced rigid polyurethane foams", Journal of Applied Polymer Science, c. 117, s. 4, ss. 1992-1997, 2010.
  • [7] V. Ali, Neelkamal, F.Z. Haque, M. Zulfequar, M. Husain, "Preparation and characterization of polyether-based polyurethane dolomite composite", Journal of Applied Polymer Science, c. 103, s. 4, ss. 2337-2342, 2007.
  • [8] B.J. Czuprynski, Paciorek-Sadowska, J. Liszkowska, "Properties of rigid polyurethane-polyisocyanurate foams modified with the selected fillers", Journal of Applied Polymer Science, c. 115, s. 4, ss. 2460-2469, 2010.
  • [9] G. Beyer, "Flame Retardancy of Thermoplastic Polyurethane and Polyvinyl Chloride by Organoclays", Journal of Fire Sciences, c. 25, s. 1, ss. 65-78, 2007.
  • [10] ASTM E1354-14, "Standard Test Method for Heat and Visible Smoke Release Rates for Materials and Products Using an Oxygen Consumption Calorimeter", ASTM International, West Conshohocken, PA, U. S. A., 2004.
  • [11] ISO 5660-1, " Reaction-to-fire tests - Heat release, smoke production and mass loss rate -- Part 1: Heat release rate (cone calorimeter method)", International Organization for Standardization, Geneva, Switzerland, 2002.
  • [12] S. Bourbigot, S. Duquesne, G. Fontaine, S. Bellayer, T. Turf, F. Samyn, "Characterization and Reaction to Fire of Polymer Nanocomposites with and without Conventional Flame Retardants", Molecular Crystals and Liquid Crystals, c. 486, s. 1, ss. 1367-1381, 2008.
  • [13] M.Z. Fu, B.J. Qu, "Synergistic flame retardant mechanism of fumed silica in ethylene-vinyl acetate/magnesium hydroxide blends", Polymer Degradation and Stability, c. 85, s. 1, ss. 633-639, 2004.
  • [14] C.M. Jiao, X.L. Chen, " Synergistic effects of zinc oxide with layered double hydroxides in EVA/LDH composites", Journal of Thermal Analysis and Calorimetry, c. 98, s. 3, ss. 813-818, 2009.
  • [15] A. Subasinghe, D. Bhattacharyya, " Performance of different intumescent ammonium polyphosphate flame retardants in PP/kenaf fibre composites", Composites Part A: Applied Science and Manufacturing, c. 65, ss. 91-99, 2014.
  • [16] X.R. Zheng, G.J. Wang, W. Xu, " Roles of organically-modified montmorillonite and phosphorous flame retardant during the combustion of rigid polyurethane foam", Polymer Degradation and Stability, c. 101, ss. 32-39, 2014.
  • [17] M. Checchin, C. Cecchini, B. Cellarosi, F.O. Sam, " Use of cone calorimeter for evaluating fire performances of polyurethane foams", Polymer Degradation and Stability, c. 64, s. 3, ss. 573-576, 1999.
  • [18] B. Aydogan, N. Usta, " Nanokil ve kabaran alev geciktirici ilavesinin rijit poliüretan köpük malzemelerin ısıl bozunma ve yanma davranışlarına etkilerinin incelenmesi, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, c. 30, s. 1, ss. 9-18, 2015.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nazim Usta

Bilal Aydoğan

Yayımlanma Tarihi 10 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt:6 Sayı:3 (2018) (Özel Sayı: UMAS 2017)

Kaynak Göster

APA Usta, N., & Aydoğan, B. (2018). Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi. Duzce University Journal of Science and Technology, 6(3), 706-713.
AMA Usta N, Aydoğan B. Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi. DÜBİTED. Nisan 2018;6(3):706-713.
Chicago Usta, Nazim, ve Bilal Aydoğan. “Konik Kalorimetre Ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi”. Duzce University Journal of Science and Technology 6, sy. 3 (Nisan 2018): 706-13.
EndNote Usta N, Aydoğan B (01 Nisan 2018) Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi. Duzce University Journal of Science and Technology 6 3 706–713.
IEEE N. Usta ve B. Aydoğan, “Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi”, DÜBİTED, c. 6, sy. 3, ss. 706–713, 2018.
ISNAD Usta, Nazim - Aydoğan, Bilal. “Konik Kalorimetre Ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi”. Duzce University Journal of Science and Technology 6/3 (Nisan 2018), 706-713.
JAMA Usta N, Aydoğan B. Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi. DÜBİTED. 2018;6:706–713.
MLA Usta, Nazim ve Bilal Aydoğan. “Konik Kalorimetre Ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi”. Duzce University Journal of Science and Technology, c. 6, sy. 3, 2018, ss. 706-13.
Vancouver Usta N, Aydoğan B. Konik Kalorimetre ile Barit İlaveli Rijit Poliüretan Köpük Malzemelerin Yanma Davranışlarının İncelenmesi. DÜBİTED. 2018;6(3):706-13.