Araştırma Makalesi
BibTex RIS Kaynak Göster

Determination and Verification of Material Constitutive Equation Parameters of Ferritic Stainless Steel

Yıl 2019, Cilt: 7 Sayı: 1, 628 - 639, 31.01.2019
https://doi.org/10.29130/dubited.485087

Öz

Stainless steels; especially ferritic ones are used in heat resistant devices, home appliances, construction
materials due to their high corrosion resistance, high and low temperature availability, mechanical strength and
long-time durability. In this study, it was aimed to identify the material constitutive equation parameters
(Johnson Cook-JC) of the AISI 430 ferritic stainless steel depending on the gage length variation and to verify
the parameters statistically. After preparing tensile samples with seven different gage lengths (0.5, 1, 2, 5, 10, 20,
50 mm), the samples were subjected to tensile tests at the same deformation speed (2 mm/sec). Here, the variation of the yield stress depending on the strain rate was investigated because the deformation speed was
kept constant and the gage length was changed. Both quasi-static and dynamic tensile tests were conducted on
the same setup. The materials were also subjected to tensile tests at different temperatures on reference strain
rate to observe the change of the yield stresses at elevated temperatures. At the same temperature, when the
strain rate was increased from 0.2 to 0.4 s-1
, the yield stress was found to increase by about 5%. Furthermore, it
was determined that the yield stress decreased by 27% by increasing the furnace temperature from 300 ° C to
600 ° C at the same tensile speed. As a result of these tests, the JC parameters of the material were determined
and finally, the validity of these parameters was proved statistically.

Kaynakça

  • [1] J. Ožbolt, F. Oršanić, G. Balabanić ve M. Kušter,” Modeling damage in concrete caused by corrosion of reinforcement: Coupled 3D FE model”, Int. J. Fracture., vol. 178, pp. 233–244, 2012.
  • [2] N. Kahraman, A. Durgutlu ve B. Gülenç, “Investigation of the Effect of Hydrogen Addition to Argon Shielding Gas on Weld Zone Morphology of TIG Welded 316L Stainless Steel”, J. Polytechnic., pp. 223–228, 2004.
  • [3] Y. Hu, C.B. Yang, L.H. Teh ve Y.B. Yang, “Reduction factors for stainless steel bolts at elevated temperatures”, J. Constr. Steel. Res., vol. 148, pp. 198–205, 2018.
  • [4] Y. Bu ve L. Gardner, ” Local stability of laser-welded stainless steel I-sections in bending”, J. Constr. Steel. Res., vol. 148, pp. 49–64, 2018.
  • [5] C.C. Silva, J.P. Farias, H.C. Miranda, R.F. Guimarães, J.W.A. Menezes ve M.A.M. Neto, “Microstructural characterization of the HAZ in AISI 444 ferritic stainless steel welds”, Mater. Charact., vol. 59, pp. 528–533, 2008.
  • [6] M. E. Korkmaz, T. Meral ve M. Günay, “AISI 420 Martenzitik Paslanmaz Çeliğin Delinebilirliğinin Sonlu Elemanlar Yöntemiyle Analizi”, Gazi Müh. Bil. Der., c. 4, s. 3, ss. 223–229, 2018.
  • [7] L. Wang, C. Song, F. Sun, L. Li ve Q. Zhai, “Microstructure and mechanical properties of 12 wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization”, Mater. Design., vol. 30, pp. 49–56, 2009.
  • [8] R. Kaçar ve S. Gündüz, “Increasing the strength of AISI 430 ferritic stainless steel by static strain ageing”, Kovove Mater., vol. 47, pp. 185-191, 2009.
  • [9] A. Lakshminarayanan, K. Shanmugam, V. Balasubramanian, “Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints”, J. Iron. Steel. Res. Int., vol. 16, pp. 62–16, 2009.
  • [10] K. Shanmugam, A.K. Lakshminarayanan ve V. Balasubramanian, “Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints”, Int. J. Pres. Ves. Pip., vol. 86, pp. 517–524, 2009.
  • [11] B. Song ve B. Sanborn, “Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates”, Int. J. Impact Eng., vol. 119, pp. 40–44, 2018.
  • [12] Q. Luan, T.B. Britton ve T.S. Jun, “Strain rate sensitivity in commercial pure titanium: The competition between slip and deformation twinning.”, Mat. Sci. Eng. A., vol. 734, pp. 385–397, 2018.
  • [13] M. Yaghoobi ve G.Z. Voyiadjis, “The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates”, Acta Mater., vol. 151, pp. 1–10, 2018.
  • [14] M.E. Korkmaz, P. Verleysen ve M. Günay, “Identification of Constitutive Model Parameters for Nimonic 80A Superalloy.”, T. Indıan. I. Metals., vol. 71, i. 12, pp. 2945-2952, 2018.
  • [15] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, vol. 50, pp. 19–28, 2014.
  • [16] W. Jomaa, O. Mechri, J. Lévesque, V. Songmene, P. Bocher ve A. Gakwaya, “Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy”, J. Manuf. Process., vol. 26, pp. 446–458, 2017.
  • [17] X. Teng, D. Huo, W. Chen, E. Wong, L. Zheng ve I. Shyha, “Finite element modelling on cutting mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius”, J. Manuf. Process., vol. 32, pp. 116–126, 2018.
  • [18] J. Yang, X. Wang ve M. Kang, “Finite element simulation of surface roughness in diamond turning of spherical surfaces”, J. Manuf. Process. vol. 31, pp. 768–775, 2018.
  • [19] Y. Hu, L. Shen, S. Nie, B. Yang ve W. Sha, “FE simulation and experimental tests of highstrength structural bolts under tension”, J. Constr. Steel. Res. vol. 126, pp. 174–186, 2016.
  • [20] M. Chen, S. Fan, Y. Tao, S. Li ve M. Liu, “Design of the distortional buckling capacity of stainless steel lipped C-section columns”, J. Constr. Steel. Res. vol. 147, pp. 116–131, 2018.
  • [21] M.E. Korkmaz ve M. Günay, “Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel”, Arab. J. Sci. Eng., vol. 43, i. 9, pp. 4863-4870, 2018.
  • [22] M. Günay, M.E. Korkmaz ve N. Yaşar, “Finite element modeling of tool stresses on ceramic tools in hard turning” Mechanika, vol. 23, i. 3, pp. 432-440, 2017.
  • [23] A. Dorogoy ve D. Rittel, “Determination of the johnson-cook material parameters using the SCS specimen”, Exper. Mech., vol. 49, pp. 881–885, 2009.
  • [24] R.J. Immanuel ve S.K. Panigrahi, “Deformation behavior of ultrafine grained A356 material processed by cryorolling and development of Johnson–Cook model”, Mat. Sci. Eng. A., vol. 712, pp. 747–756, 2018.
  • [25] M. Akbari, S. Buhl, C. Leinenbach ve K. Wegener, ” A new value for Johnson Cook damage limit criterion in machining with large negative rake angle as basis for understanding of grinding”, J. Mater. Process. Tech., vol. 234, pp. 58–71, 2016.
  • [26] D.I. Lalwani, N.K. Mehta ve P.K. Jain, “Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model”, J. Mater. Process. Tech., vol. 209, pp. 5305–5312, 2009.
  • [27] S. Gupta, S. Abotula ve A. Shukla, “Determination of Johnson–Cook Parameters for Cast Aluminum Alloys”, J. Eng. Mater.-T ASME., vol. 136, i. 3, 2014.
  • [28] A. Shrot ve M. Bäker, “Determination of Johnson – Cook parameters from machining simulations”, Comp. Mater. Sci., vol. 52, pp. 298–304, 2012.
  • [29] A. Banerjee, S. Dhar, S. Acharyya, D. Datta ve N. Nayak, “Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel”, Mat. Sci. Eng. A., vol. 640, pp. 200–209, 2015.
  • [30] F. Kara, K. Aslantas and A. Çiçek, “Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network”, Appl. Soft Comput., vol. 38, pp. 64-74, 2016.
  • [31] J.M. Kollman, A. Merdes, L. Mourey ve D.A. Agard, “Microtubule nucleation by γ-tubulin complexes”, Nat. Rev. Mol. Cell. Bio., vol. 12, pp. 709–721, 2011.
  • [32] G. Quan, J. Pan ve X. Wang, “Prediction of the Hot Compressive Deformation Behavior for Superalloy Nimonic 80A by BP-ANN Model”, App. Sci., vol. 6, pp. 66, 2016.
  • [33] D. Samantaray, S. Mandal ve A.K. Bhaduri, “A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel”, Comp. Mater. Sci., vol. 47, pp. 568–576, 2009.
  • [34] J. Calvo, J.M. Cabrera, M.P. Guerrero-Mata, M. De La Garza ve J.F. Puigjaner, “Characterization of the hot deformation behaviour of nimonic 80A and 263 Ni-based superalloys”, Proceedings of the 10th International Conference on Technology of Plasticity, Aachen, Almanya, 2011, pp. 892–896.
  • [35] F. Kara, K. Aslantas and A. Çiçek, “ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel”, Neural Comput & Applic, vol. 26, i. 1, pp. 237-250, 2015.

Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması

Yıl 2019, Cilt: 7 Sayı: 1, 628 - 639, 31.01.2019
https://doi.org/10.29130/dubited.485087

Öz

Paslanmaz çelikler; özellikle ferritik olanlar, yüksek korozyon direnci, yüksek ve düşük sıcaklık dayanımı,
mekanik mukavemet ve uzun süre dayanıklılık sebebiyle ısıya dayanıklı cihazlar, ev aletleri ve inşaat
malzemelerinde kullanılmaktadır. Bu çalışmada, AISI 430 ferritik paslanmaz çeliğin malzeme yapısal denklem
parametrelerinin (Johnson-Cook-JC), geyç uzunluğu değişimine bağlı olarak belirlenmesi ve istatistiksel olarak
doğrulanması amaçlanmıştır. Yedi farklı geyç uzunluğu (0.5, 1, 2, 5, 10, 20, 50 mm) ile çekme numuneleri
hazırlandıktan sonra, numuneler aynı deformasyon hızında (2 mm / sn) gerilme testlerine tabi tutulmuştur.
Burada, gerinim hızına bağlı olarak akma gerilmesinin değişimi incelenmiştir, çünkü deformasyon hızı sabit
tutulmuştur ve geyç uzunluğu değiştirilmiştir. Aynı cihaz üzerinde yarı statik ve dinamik çekme testleri
yapılmıştır. Malzemeler ayrıca, yüksek sıcaklıklarda akma gerilmelerinin değişimini gözlemlemek için referans
gerinim hızında farklı sıcaklıklarda çekme deneylerine tabi tutulmuştur. Aynı sıcaklıkta, gerinim hızının 0,2’den
0,4 s
-1
’e artırılması ile akma gerilmesi değerinin yaklaşık %5 arttığı tespit edilmiştir. Ayrıca, aynı çekme hızında
fırın sıcaklığının 300 °C‘den 600 °C‘ye çıkarılmasıyla akma gerilmesinin %27 azaldığı belirlenmiştir. Bu testler
sonucunda malzemenin JC parametreleri belirlenmiştir ve son olarak bu parametreler istatistiksel olarak
kanıtlanmıştır.

Kaynakça

  • [1] J. Ožbolt, F. Oršanić, G. Balabanić ve M. Kušter,” Modeling damage in concrete caused by corrosion of reinforcement: Coupled 3D FE model”, Int. J. Fracture., vol. 178, pp. 233–244, 2012.
  • [2] N. Kahraman, A. Durgutlu ve B. Gülenç, “Investigation of the Effect of Hydrogen Addition to Argon Shielding Gas on Weld Zone Morphology of TIG Welded 316L Stainless Steel”, J. Polytechnic., pp. 223–228, 2004.
  • [3] Y. Hu, C.B. Yang, L.H. Teh ve Y.B. Yang, “Reduction factors for stainless steel bolts at elevated temperatures”, J. Constr. Steel. Res., vol. 148, pp. 198–205, 2018.
  • [4] Y. Bu ve L. Gardner, ” Local stability of laser-welded stainless steel I-sections in bending”, J. Constr. Steel. Res., vol. 148, pp. 49–64, 2018.
  • [5] C.C. Silva, J.P. Farias, H.C. Miranda, R.F. Guimarães, J.W.A. Menezes ve M.A.M. Neto, “Microstructural characterization of the HAZ in AISI 444 ferritic stainless steel welds”, Mater. Charact., vol. 59, pp. 528–533, 2008.
  • [6] M. E. Korkmaz, T. Meral ve M. Günay, “AISI 420 Martenzitik Paslanmaz Çeliğin Delinebilirliğinin Sonlu Elemanlar Yöntemiyle Analizi”, Gazi Müh. Bil. Der., c. 4, s. 3, ss. 223–229, 2018.
  • [7] L. Wang, C. Song, F. Sun, L. Li ve Q. Zhai, “Microstructure and mechanical properties of 12 wt.% Cr ferritic stainless steel with Ti and Nb dual stabilization”, Mater. Design., vol. 30, pp. 49–56, 2009.
  • [8] R. Kaçar ve S. Gündüz, “Increasing the strength of AISI 430 ferritic stainless steel by static strain ageing”, Kovove Mater., vol. 47, pp. 185-191, 2009.
  • [9] A. Lakshminarayanan, K. Shanmugam, V. Balasubramanian, “Effect of Autogenous Arc Welding Processes on Tensile and Impact Properties of Ferritic Stainless Steel Joints”, J. Iron. Steel. Res. Int., vol. 16, pp. 62–16, 2009.
  • [10] K. Shanmugam, A.K. Lakshminarayanan ve V. Balasubramanian, “Effect of weld metal properties on fatigue crack growth behaviour of gas tungsten arc welded AISI 409M grade ferritic stainless steel joints”, Int. J. Pres. Ves. Pip., vol. 86, pp. 517–524, 2009.
  • [11] B. Song ve B. Sanborn, “Relationship of compressive stress-strain response of engineering materials obtained at constant engineering and true strain rates”, Int. J. Impact Eng., vol. 119, pp. 40–44, 2018.
  • [12] Q. Luan, T.B. Britton ve T.S. Jun, “Strain rate sensitivity in commercial pure titanium: The competition between slip and deformation twinning.”, Mat. Sci. Eng. A., vol. 734, pp. 385–397, 2018.
  • [13] M. Yaghoobi ve G.Z. Voyiadjis, “The effects of temperature and strain rate in fcc and bcc metals during extreme deformation rates”, Acta Mater., vol. 151, pp. 1–10, 2018.
  • [14] M.E. Korkmaz, P. Verleysen ve M. Günay, “Identification of Constitutive Model Parameters for Nimonic 80A Superalloy.”, T. Indıan. I. Metals., vol. 71, i. 12, pp. 2945-2952, 2018.
  • [15] T. Kıvak, “Optimization of surface roughness and flank wear using the Taguchi method in milling of Hadfield steel with PVD and CVD coated inserts”, Measurement, vol. 50, pp. 19–28, 2014.
  • [16] W. Jomaa, O. Mechri, J. Lévesque, V. Songmene, P. Bocher ve A. Gakwaya, “Finite element simulation and analysis of serrated chip formation during high–speed machining of AA7075–T651 alloy”, J. Manuf. Process., vol. 26, pp. 446–458, 2017.
  • [17] X. Teng, D. Huo, W. Chen, E. Wong, L. Zheng ve I. Shyha, “Finite element modelling on cutting mechanism of nano Mg/SiC metal matrix composites considering cutting edge radius”, J. Manuf. Process., vol. 32, pp. 116–126, 2018.
  • [18] J. Yang, X. Wang ve M. Kang, “Finite element simulation of surface roughness in diamond turning of spherical surfaces”, J. Manuf. Process. vol. 31, pp. 768–775, 2018.
  • [19] Y. Hu, L. Shen, S. Nie, B. Yang ve W. Sha, “FE simulation and experimental tests of highstrength structural bolts under tension”, J. Constr. Steel. Res. vol. 126, pp. 174–186, 2016.
  • [20] M. Chen, S. Fan, Y. Tao, S. Li ve M. Liu, “Design of the distortional buckling capacity of stainless steel lipped C-section columns”, J. Constr. Steel. Res. vol. 147, pp. 116–131, 2018.
  • [21] M.E. Korkmaz ve M. Günay, “Finite Element Modelling of Cutting Forces and Power Consumption in Turning of AISI 420 Martensitic Stainless Steel”, Arab. J. Sci. Eng., vol. 43, i. 9, pp. 4863-4870, 2018.
  • [22] M. Günay, M.E. Korkmaz ve N. Yaşar, “Finite element modeling of tool stresses on ceramic tools in hard turning” Mechanika, vol. 23, i. 3, pp. 432-440, 2017.
  • [23] A. Dorogoy ve D. Rittel, “Determination of the johnson-cook material parameters using the SCS specimen”, Exper. Mech., vol. 49, pp. 881–885, 2009.
  • [24] R.J. Immanuel ve S.K. Panigrahi, “Deformation behavior of ultrafine grained A356 material processed by cryorolling and development of Johnson–Cook model”, Mat. Sci. Eng. A., vol. 712, pp. 747–756, 2018.
  • [25] M. Akbari, S. Buhl, C. Leinenbach ve K. Wegener, ” A new value for Johnson Cook damage limit criterion in machining with large negative rake angle as basis for understanding of grinding”, J. Mater. Process. Tech., vol. 234, pp. 58–71, 2016.
  • [26] D.I. Lalwani, N.K. Mehta ve P.K. Jain, “Extension of Oxley’s predictive machining theory for Johnson and Cook flow stress model”, J. Mater. Process. Tech., vol. 209, pp. 5305–5312, 2009.
  • [27] S. Gupta, S. Abotula ve A. Shukla, “Determination of Johnson–Cook Parameters for Cast Aluminum Alloys”, J. Eng. Mater.-T ASME., vol. 136, i. 3, 2014.
  • [28] A. Shrot ve M. Bäker, “Determination of Johnson – Cook parameters from machining simulations”, Comp. Mater. Sci., vol. 52, pp. 298–304, 2012.
  • [29] A. Banerjee, S. Dhar, S. Acharyya, D. Datta ve N. Nayak, “Determination of Johnson cook material and failure model constants and numerical modelling of Charpy impact test of armour steel”, Mat. Sci. Eng. A., vol. 640, pp. 200–209, 2015.
  • [30] F. Kara, K. Aslantas and A. Çiçek, “Prediction of cutting temperature in orthogonal machining of AISI 316L using artificial neural network”, Appl. Soft Comput., vol. 38, pp. 64-74, 2016.
  • [31] J.M. Kollman, A. Merdes, L. Mourey ve D.A. Agard, “Microtubule nucleation by γ-tubulin complexes”, Nat. Rev. Mol. Cell. Bio., vol. 12, pp. 709–721, 2011.
  • [32] G. Quan, J. Pan ve X. Wang, “Prediction of the Hot Compressive Deformation Behavior for Superalloy Nimonic 80A by BP-ANN Model”, App. Sci., vol. 6, pp. 66, 2016.
  • [33] D. Samantaray, S. Mandal ve A.K. Bhaduri, “A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel”, Comp. Mater. Sci., vol. 47, pp. 568–576, 2009.
  • [34] J. Calvo, J.M. Cabrera, M.P. Guerrero-Mata, M. De La Garza ve J.F. Puigjaner, “Characterization of the hot deformation behaviour of nimonic 80A and 263 Ni-based superalloys”, Proceedings of the 10th International Conference on Technology of Plasticity, Aachen, Almanya, 2011, pp. 892–896.
  • [35] F. Kara, K. Aslantas and A. Çiçek, “ANN and multiple regression method-based modelling of cutting forces in orthogonal machining of AISI 316L stainless steel”, Neural Comput & Applic, vol. 26, i. 1, pp. 237-250, 2015.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Erdi Korkmaz 0000-0002-0481-6002

Yayımlanma Tarihi 31 Ocak 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 1

Kaynak Göster

APA Korkmaz, M. E. (2019). Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 7(1), 628-639. https://doi.org/10.29130/dubited.485087
AMA Korkmaz ME. Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması. DÜBİTED. Ocak 2019;7(1):628-639. doi:10.29130/dubited.485087
Chicago Korkmaz, Mehmet Erdi. “Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi Ve Doğrulanması”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 7, sy. 1 (Ocak 2019): 628-39. https://doi.org/10.29130/dubited.485087.
EndNote Korkmaz ME (01 Ocak 2019) Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7 1 628–639.
IEEE M. E. Korkmaz, “Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması”, DÜBİTED, c. 7, sy. 1, ss. 628–639, 2019, doi: 10.29130/dubited.485087.
ISNAD Korkmaz, Mehmet Erdi. “Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi Ve Doğrulanması”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 7/1 (Ocak 2019), 628-639. https://doi.org/10.29130/dubited.485087.
JAMA Korkmaz ME. Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması. DÜBİTED. 2019;7:628–639.
MLA Korkmaz, Mehmet Erdi. “Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi Ve Doğrulanması”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 7, sy. 1, 2019, ss. 628-39, doi:10.29130/dubited.485087.
Vancouver Korkmaz ME. Ferritik Paslanmaz Çeliğin Malzeme Yapısal Denklem Parametrelerinin Belirlenmesi ve Doğrulanması. DÜBİTED. 2019;7(1):628-39.