Araştırma Makalesi
BibTex RIS Kaynak Göster

An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA)

Yıl 2015, Cilt: 3 Sayı: 1, 219 - 225, 30.01.2015

Öz

Quantum-dot Cellular Automata (QCA) has been considered one of the alternative technologies used in Nanoscale logic design and a promising replacement for conventional Complementary Metal Oxide Semiconductor (CMOS) due to express speed, ultralow power consumption, higher scale integration and higher switching frequency. Since reversible logic circuits are one of the significant components of any digital system, especially Fredkin gate played an important role in designing a high speed and ultralow power consuming digital system. In this paper, an efficient design of Fredkin gate based on QCA logic gates: the QCA wire, majority gate and QCA inverter gate has been presented. Furthermore, compared with the previous design, the number of cells, covered area and latency time of the proposed design have reduced by 62.20%, 76.70%, and 25% respectively and also obviate coplanar wire-crossing. Functional correctness of the presented layout has proved by employing QCADesigner tool. The proposed circuit is a promising constructing in low power consuming fault-tolerance system and can stimulate higher degree of integrated applications in QCA.

Kaynakça

  • Al-Rabadi, A. N., Reversible logic synthesis: From fundamentals to quantum computing. Springer, (2004).
  • Thapliyal, H., & Ranganathan, N.: Testable reversible latches for molecular QCA. In Nanotechnology, NANO'08. 8th IEEE Conference, (2008) pp. 699-702
  • Ma, X., Huang, J., Metra, C., & Lombardi, F., Journal of Electronic Testing 24(1-3) (2008) 297-311.
  • Thapliyal, H., & Ranganathan, N., IEEE Transactions on Nanotechnology 9(1) (2010) 62-69.
  • Landauer, R., IBM J. Research and Development 5(3) (1961) 183-191.
  • Bennett, C. H., IBM J. Research and Development 17(6) (1973) 525-532.
  • Lent, C.S., Tougaw, P.D., Porod, W., (1993) DOI:10.1063/1.108848
  • Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L. (1997) DOI:10.1126/science.277.5328.928
  • Amlani, I., Orlov, A. O., Kummamuru, R. K., Bernstein, G. H., Lent, C. S., & Snider, G. L., Appl. Phys. Lett. 77(5) (2000) 738-740.
  • Wilson, M., Kannangara, K., Smith, G., Simmons, M., & Raguse, B., Nanotechnology: basic science and emerging technologies. CRC Press (2002).
  • Tougaw, P. D., & Lent, C. S., Journal of Applied physics 75(3) (1994) 1818-1825.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical review letters 68(9) (1992) 1371.
  • Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., & West, K. W., Physical review letters 71(4) (1993) 613.
  • Lent, C. S., & Tougaw, P. D., Proceedings of the IEEE 85(4) (1997) 541-557.
  • Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S., & Snider, G. L., Science 284(5412) (1999) 289-291.
  • Orlov, A. O., Amlani, I., Toth, G., Lent, C. S., Bernstein, G. H., & Snider, G. L., Applied physics letters 74(19) (1999) 2875-2877.
  • Bahar, A. N., Habib, M., & Biswas, N. K. (2013) DOI:10.5120/14149-2243
  • Bahar, A. N., Waheed, S., Uddin, M. A., & Habib, M. A., International Journal of Computer Science Engineering (IJCSE) 2(6) (2013) 351-355.
  • Ling-gang, Z., Qing-kang, W., & Yong-bing, D., Journal of Zhejiang University Science A 6(10) (2005) 1090-1094.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical Review B 48(15) (1993) 11488.
  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K., International Journal of Computer Science Issues (IJCSI) 8(6) (2011) 55-60.
  • Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A., IEEE Transactions on Nanotechnology 3(1) (2004) 26-31.
  • Saiful Islam, M., Rahman, M. M., Begum, Z., Hafiz, Z., & Al Mahmud, A. Synthesis of fault tolerant reversible logic circuits. IEEE Circuits and Systems International Conference on Testing and Diagnosis (ICTD) (2009, April) 1-4.
  • T. Toffoli, “Reversible computing”, In Automata, Languages and Programming, Springer-Verlag (1980) 632-644.

Kuantum-noktası Hücresel Otomasyonda (KHO) Fredkin Geçitinin Etkili Bir Tasarım Deseni

Yıl 2015, Cilt: 3 Sayı: 1, 219 - 225, 30.01.2015

Öz

Kuantum-noktası Hücresel Otomasyon (KHO), nano ölçekteki mantık dizaynlarında kullanılan ve süratli hız, ultra düşük güç tüketimi ve yüksek skalada entegrasyon ve yüksek anahtarlama frekansı yüzünden geleneksel Tümler Metal Oksit Yarıiletkenlerin yerini almada gelecek vadeden alternatif teknolojilerden biri olarak kabul edilmektedir. Bu çalışmada, KHO mantık geçitlerine; KHO kablosu, 3-girdi çoğunluk ve KHO dönüştürücü geçitlerine, dayanan Fredkin geçitinin etkili bir dizaynı sunulmuştur. Dahası, önceki dizaynla kıyaslandığında önerilen dizaynın hücrelerinin sayısı, kaplanan alan ve gecikme zamanı sırasıyla %62,20, %76,70 ve %25 azalmıştır ve aynı zamanda eş düzlemli kablo çaprazlamasını önlemiştir. Sunulan tasarımın işlevsel doğruluğu QCADesigner araçları kullanılarak kanıtlanmıştır. Önerilen devre düşük güç tüketen hata-toleranslı system oluşturmaya uygundur ve KHO’da yüksek dereceli entegrasyon uygulamalarını arttırabilir

Kaynakça

  • Al-Rabadi, A. N., Reversible logic synthesis: From fundamentals to quantum computing. Springer, (2004).
  • Thapliyal, H., & Ranganathan, N.: Testable reversible latches for molecular QCA. In Nanotechnology, NANO'08. 8th IEEE Conference, (2008) pp. 699-702
  • Ma, X., Huang, J., Metra, C., & Lombardi, F., Journal of Electronic Testing 24(1-3) (2008) 297-311.
  • Thapliyal, H., & Ranganathan, N., IEEE Transactions on Nanotechnology 9(1) (2010) 62-69.
  • Landauer, R., IBM J. Research and Development 5(3) (1961) 183-191.
  • Bennett, C. H., IBM J. Research and Development 17(6) (1973) 525-532.
  • Lent, C.S., Tougaw, P.D., Porod, W., (1993) DOI:10.1063/1.108848
  • Orlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L. (1997) DOI:10.1126/science.277.5328.928
  • Amlani, I., Orlov, A. O., Kummamuru, R. K., Bernstein, G. H., Lent, C. S., & Snider, G. L., Appl. Phys. Lett. 77(5) (2000) 738-740.
  • Wilson, M., Kannangara, K., Smith, G., Simmons, M., & Raguse, B., Nanotechnology: basic science and emerging technologies. CRC Press (2002).
  • Tougaw, P. D., & Lent, C. S., Journal of Applied physics 75(3) (1994) 1818-1825.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical review letters 68(9) (1992) 1371.
  • Ashoori, R. C., Stormer, H. L., Weiner, J. S., Pfeiffer, L. N., Baldwin, K. W., & West, K. W., Physical review letters 71(4) (1993) 613.
  • Lent, C. S., & Tougaw, P. D., Proceedings of the IEEE 85(4) (1997) 541-557.
  • Amlani, I., Orlov, A. O., Toth, G., Bernstein, G. H., Lent, C. S., & Snider, G. L., Science 284(5412) (1999) 289-291.
  • Orlov, A. O., Amlani, I., Toth, G., Lent, C. S., Bernstein, G. H., & Snider, G. L., Applied physics letters 74(19) (1999) 2875-2877.
  • Bahar, A. N., Habib, M., & Biswas, N. K. (2013) DOI:10.5120/14149-2243
  • Bahar, A. N., Waheed, S., Uddin, M. A., & Habib, M. A., International Journal of Computer Science Engineering (IJCSE) 2(6) (2013) 351-355.
  • Ling-gang, Z., Qing-kang, W., & Yong-bing, D., Journal of Zhejiang University Science A 6(10) (2005) 1090-1094.
  • Meurer, B., Heitmann, D., & Ploog, K., Physical Review B 48(15) (1993) 11488.
  • Roohi, A., Khademolhosseini, H., Sayedsalehi, S., & Navi, K., International Journal of Computer Science Issues (IJCSI) 8(6) (2011) 55-60.
  • Walus, K., Dysart, T. J., Jullien, G. A., & Budiman, R. A., IEEE Transactions on Nanotechnology 3(1) (2004) 26-31.
  • Saiful Islam, M., Rahman, M. M., Begum, Z., Hafiz, Z., & Al Mahmud, A. Synthesis of fault tolerant reversible logic circuits. IEEE Circuits and Systems International Conference on Testing and Diagnosis (ICTD) (2009, April) 1-4.
  • T. Toffoli, “Reversible computing”, In Automata, Languages and Programming, Springer-Verlag (1980) 632-644.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Bahar

Sajjad Waheed Bu kişi benim

Md. Ahsan Habib Bu kişi benim

Yayımlanma Tarihi 30 Ocak 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 3 Sayı: 1

Kaynak Göster

APA Bahar, A., Waheed, S., & Habib, M. A. (2015). An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 3(1), 219-225.
AMA Bahar A, Waheed S, Habib MA. An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). DÜBİTED. Ocak 2015;3(1):219-225.
Chicago Bahar, Ali, Sajjad Waheed, ve Md. Ahsan Habib. “An Efficient Layout Design of Fredkin Gate in Quantum-Dot Cellular Automata (QCA)”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 3, sy. 1 (Ocak 2015): 219-25.
EndNote Bahar A, Waheed S, Habib MA (01 Ocak 2015) An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3 1 219–225.
IEEE A. Bahar, S. Waheed, ve M. A. Habib, “An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA)”, DÜBİTED, c. 3, sy. 1, ss. 219–225, 2015.
ISNAD Bahar, Ali vd. “An Efficient Layout Design of Fredkin Gate in Quantum-Dot Cellular Automata (QCA)”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 3/1 (Ocak 2015), 219-225.
JAMA Bahar A, Waheed S, Habib MA. An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). DÜBİTED. 2015;3:219–225.
MLA Bahar, Ali vd. “An Efficient Layout Design of Fredkin Gate in Quantum-Dot Cellular Automata (QCA)”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, c. 3, sy. 1, 2015, ss. 219-25.
Vancouver Bahar A, Waheed S, Habib MA. An Efficient Layout Design of Fredkin Gate in Quantum-dot Cellular Automata (QCA). DÜBİTED. 2015;3(1):219-25.