Data classification is one of the main techniques of data mining. Different mathematical programming approaches of the data classification were presented in recent years. A technique that uses polyhedral conic functions (PCF) is an effective method for data classification. We present a modified classification algorithm based on PCF functions. Results of numerical experiments on real-world and synthetic data sets demonstrate that the proposed approach is efficient for solving binary data classification problems.
Mathematical Programming Polyhedral Conic Functions Classification Clustering
Veri sınıflandırma, veri madenciliğinin önemli tekniklerinden birisidir. Son yıllarda veri sınıflandırması için farklı matematiksel programlama yaklaşımları sunulmuştur. Çokyüzlü konik fonksiyonları kullanan bir teknik veri sınıflandırması için efektif bir yöntem olmuştur. Bu çalışmada çokyüzlü konik fonksiyonları temel alan geliştirilmiş bir sınıflandırma algoritması sunulmuştur. Gerçek hayat ve sentetik veri kümeleri üzerinde yapılan sayısal deney sonuçları göstermektedir ki sunulan yaklaşım ikili veri sınıflandırma problemlerinin çözümünde etkili olmuştur.
Matematiksel Programlama Çokyüzlü Konik Fonksiyonlar Sınıflandırma Kümeleme
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 30 Ocak 2015 |
Yayımlandığı Sayı | Yıl 2015 Cilt: 3 Sayı: 1 |