Derleme
BibTex RIS Kaynak Göster

General Evaluations of Nanoparticles

Yıl 2018, Cilt: 5 Sayı: 1, 191 - 236, 31.01.2018
https://doi.org/10.31202/ecjse.361663

Öz

Nanoparticles have actually been in our lives for many years and begun to possess inevitable place in the life cycle with the gradual development of nanotechnology. Recent studies and improvement indicate that the use of nanoparticles will be expected to increase in many areas such as biology, medicine, engineering and optics in the future. In this review, nanoparticles, their applications, damage and damage prevention methods are discussed.

Kaynakça

  • 1. Guzman, K. A. D., Taylor, M. R., Banfield, J. F., “Environmental Risks of Nanotechnology: National Nanotechnology Initiative Funding”, Environ. Sci. Technol., 2006, 40:1401–1407.
  • 2. Roco, M. C., “Environmentally Responsible Development of Nanotechnology”, Environ. Sci. Technol., 2005, 39:106A–112A.
  • 3. https://www.nano.gov/nanotech-101/special, Access Date: 16.11.2017.
  • 4. Colvin, V., “Responsible Nanotechnology: Looking Beyond the Good News”, Eurekalert 2002.
  • 5. Oberdorster, G., Oberdorster, E., Oberdorster, J., “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles”, Environmental Health Perspectives, 2005, 113 (7), 823–839.
  • 6. Pierce, J., “Safe as Sunshine?”, The Engineer, 2004.
  • 7. Hubler, A., Osuagwu, O., "Digital Quantum Batteries: Energy and Information Storage in Nanovacuum Tube Arrays", Complexity, 2010.
  • 8. Stephenson, C., Hubler, A., "Stability and Conductivity of Self Assembled Wires in a Transverse Electric Field", Sci. Rep. 5, 2015, 5: 15044.
  • 9. Hubler, A., Lyon, D., "Gap Size Dependence of the Dielectric Strength in Nano Vacuum Gaps", IEEE, 2013, 20: 1467–1471.
  • 10. Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., Tyagi, H., "Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids", Journal of Applied Physics, 2013, 113: 011301.
  • 11. http://www2.le.ac.uk/institution/fpgr/archive-of-past festivals /2015 /meet/2013 /science /yazdanfar/images/nanoscale.jpg/view, Access Date: 16.11.2017.
  • 12. Taylor, R. A., Otanicar, T., Rosengarten, G., "Nanofluid–Based Optical Filter Optimization for PV/T Systems", Light: Science & Applications, 2012, 1 (10): e34.
  • 13. Hewakuruppu, Y. L., Dombrovsky, L. A., Chen, C., Timchenko, V., Jiang, X., Baek, S., Taylor, R. A., "Plasmonic "Pump–Probe" Method to Study Semi–Transparent Nanofluids", Applied Optics, 2013, 52 (24): 6041–6050. 14. Taylor, R., A., Otanicar, T. P., Herukerrupu, Y., Bremond, F., Rosengarten, G., Hawkes, E. R., Jiang, X., Coulombe, S., "Feasibility of Nanofluid–Based Optical Filters", Applied Optics, 2013, 52 (7): 1413–22.
  • 15. Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., Schué, F. O., "Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012)", Pure and Applied Chemistry, 2012, 84 (2).
  • 16. MacNaught, A. D., Wilkinson, A. R., eds., “Compendium of Chemical Terminology: IUPAC Recommendations (2nd ed.)” Blackwell Science, 1997.
  • 17. Alemán, J., Chadwick, A. V., He, J., Hess, M., Horie, K., Jones, R. G., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., Penczek, S., Stepto, R. F. T., "Definitions of Terms Relating to the Structure and Processing of Sols, Gels, Networks, and Inorganic–Organic Hybrid Materials (IUPAC Recommendations 2007)", Pure and Applied Chemistry, 2007, 79 (10): 1801.
  • 18. Granqvist, C., Buhrman, R., Wyns, J., Sievers, A., "Far–Infrared Absorption in Ultrafine Al Particles", Physical Review Letters, 1976, 37 (10): 625–629.
  • 19. José, M., Morachis, E. A. M., Adah A., Paul, A., Insel, J. M., “Pharmacological Reviews”, July 2012, 64 (3) 505–519.
  • 20. Franks, G. V. & Lange, F. F., "Plastic–to–Brittle Transition of Saturated, Alumina Powder Compacts", J. Am. Ceram. Soc., 1996, 79 (12): 3161–3168.
  • 21. Nowack, B., “Pollution Prevention and Treatment Using Nanotechnology”, In: Krug, H.F., editor, Nanotechnology, Springer, 2010.
  • 22. “Microwaves in Nanoparticle Synthesis”, First Edition, Edited by Satoshi Horikoshi and Nick Serpone, Wiley–VCH Verlag GmbH & Co. KGaA, 2013.
  • 23. Hayashi, C., Uyeda, R. & Tasaki, A., “Ultra–Fine Particles: Exploratory Science and Technology”, (1997 Translation of the Japan Report of the Related ERATO Project 1981–86), Noyes Publications, 1997.
  • 24. Kiss, L. B., Söderlund, J., Niklasson, G. A., Granqvist, C. G., "New Approach to the Origin of Lognormal Size Distributions of Nanoparticles", Nanotechnology, 1999, 10: 25–28.
  • 25. Buzea, C., Pacheco, I. I., Robbie, K., "Nanomaterials and Nanoparticles: Sources and Toxicity", Biointerphases, 2007, 2 (4): MR17–MR71.
  • 26. ASTM E 2456–06 Standard Terminology Relating to Nanotechnology.
  • 27. Fahlman, B. D., “Materials Chemistry”, Springer, 2007, pp. 282–283.
  • 28. “Nanotechnology Timeline|Nano”, www.nano.gov, Retrieved 12 December 2016, Access Date: 16.11.2017.
  • 29. Laurent, S., Forge, D., Port, M., Roch, Robic, C., Vander E. L., Muller, R. N., "Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications", Chemical Reviews, 2008, 108 (6): 2064–110.
  • 30. Schulz, D. et al., "Inductively Heated Bridgman Method for the Growth of Zinc Oxide Single Crystals", Journal of Crystal Growth, 2008, 310 (7–9): 1832–1835.
  • 31. Buschow, K. H. G., “Hand Book of Magnetic Materials”, Elsevier, 2006.
  • 32. Teja, A. S., Koh, P.–Y., "Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles", Progress in Crystal Growth and Characterization of Materials, 2009, 55: 22.
  • 33. Sugimoto, T., Matijević, E., “Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels”, Journal of Colloid and Interface Science, Elsevier, 1980, 227–243.
  • 34. Massart, R., Roger, J., Cabuil, V., “New Trends in Chemistry of Magnetic Colloids: Polar and Non Polar Magnetic Fluids, Emulsions, Capsules and Vesicles”, Brazilian Journal of Physics, 1995, 135–141.
  • 35. Laughlin, R., “An Expedient Technique for Determining Solubility Phase Boundaries in Surfactant Water Systems”, Journal of Colloid and Interface Science, 1976, 55–239.
  • 36. Beilby, G. T., “The Effects of Heat and of Solvents on Thin Films of Metal”, Proceedings of the Royal Society A, 1903, 72 (477–486): 226–235.
  • 37. Turner, T., “Transparent Silver and Other Metallic Films”, Proceedings of the Royal Society A (Transparent Silver and Other Metallic Films), 1908, 81 (548): 301–310.
  • 38. Hansen, S., Michelson, E., Kamper, A., Borling, P., Stuer–Lauridsen, F., Baun, A., “Categorization Framework to Aid Exposure Assessment of Nanomaterials in Consumer Products”, Ecotoxicology, 2008, 17, 438–447.
  • 39. Gubin, S. P., “Magnetic Nanoparticles”, Wiley–VCH, 2009.
  • 40. http://www.understandingnano.com/nanotechnology-energy.html, Access Date: 16.11.2017.
  • 41. http://www.crnano.org/whatis "Dais Analytic Corporation", Access Date: 16.11.2017.
  • 42. Johlin, E., Al–Obeidi, A., Nogay, G., Stuckelberger, M., Buonassisi, T., Grossman, J. C., “Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics”, ACS Applied Materials & Interfaces, 2016, 8 (24): 15169–15176.
  • 43. Sheehan, S. W., Noh, H., Brudvig, G. W., Cao, H., Schmuttenmaer, C. A., “Plasmonic Enhancement of Dye–Sensitized Solar Cells Using Core–Shell–Shell Nanostructures”, The Journal of Physical Chemistry C, 2013, 117 (2): 927–934.
  • 44. Branham, M. S., Hsu, W.–C., Yerci, S., Loomis, J., Boriskina, S. V., Hoard, B. R., Han, S. E., Chen, G., “15.7 % Efficient 10–μm–Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures”, Advanced Materials, 2015, 27(13): 2182–2188.
  • 45. Mann, S. A., Grote, R. R., Osgood, R. M., Alù, A., Garnett, E. C., “Opportunities and Limitations for Nanophotonic Structures to Exceed the Shockley–Queisser Limit”, ACS Nano, 2016, 10 (9): 8620–8631.
  • 46. Lee et al., “Fabrication of Supercapacitor Electrodes Using Fluorinated Single–Walled Carbon Nanotubes”, American Chemical Society, May 2003, Volume 103.
  • 47. https://webberenergyblog.wordpress.com/2013/05/05/increasing-solar-efficiency-by-using-nanotechnology-application/, Access Date: 16.11.2017.
  • 48. “About the National Nanotechnology Initiative”, United States National Nanotechnology Initiative, 2016.
  • 49. Paull, J., “Nanotechnology: No Free Lunch”, Platter, 2010, 1(1) 8–17.
  • 50. Paull, J., “Nanomaterials in Food and Agriculture: The Big Issue of Small Matter for Organic Food and Farming”, In: Neuhoff, D.; Halberg, N.; Rasmussen, I. A.; Hermansen, J. E.; Ssekyewa, C. and Sohn, S. M. (Eds.) Proceedings of the Third Scientific Conference of ISOFAR, Bonn, 2011, 2, pp. 96–99.
  • 51. Sun, T., Zhang, Y. S., Pang, B., Xia, Y., “Engineered Nanoparticles for Drug Delivery in Cancer Therapy”, October 2014, Angewandte Chemie International Edition 46 (5).
  • 52. Wagner, V., Dullaart, A, Bock, A. K., Zweck, A., “The Emerging Nanomedicine Landscape”, Nat. Biotechnol., 2006, 24 (10): 1211–1217.
  • 53. Freitas, R. A. Jr., “What is Nanomedicine?”, Nanomedicine: Nanotechnology, Biology and Medicine, 2005, 1 (1): 2–9.
  • 54. “Nanotechnology in Medicine and the Biosciences” by Coombs, R. R. H., Robinson, D. W., 1996.
  • 55. Muhammad, I., Chanbasha, B., Madiha, T., Muhammad, D., Nadeem, B., Farrukh, S., “Impact of Nanoparticles on Human and Environment: Review of Toxicity Factors, Exposures, Control Strategies, and Future Prospects”, March 2015, Volume 22, Issue 6, pp. 4122–4143.
  • 56. “Nanotechnology: A Gentle Introduction to the Next Big Idea” by Ratner, M. A., Ratner, D., 2002.
  • 57. http://spie.org/newsroom/1568-carbon-nanodevices-for-sensors-actuators-and-electronics, Access Date: 16.11.2017.
  • 58. Zhuang, Z., Viscusi, D., “CDC–NIOSH Science Blog–Respiratory Protection for Workers Handling Engineering Nanoparticles”, National Institute for Occupational Safety and Health, 2012.
  • 59. Ehud, G., “Plenty of Room for Biology at the Bottom: An Introduction to Bionanotechnology”, Imperial College Press, 2007.
  • 60. “Nanobiology”, Nanotech–Now.com, Access Date: 16.11.2017.
  • 61. http://www.azonano.com/article.aspx?ArticleID=3028, Access Date: 16.11.2017.
  • 62. Ng, C. K., Sivakumar, K., Liu, X., Madhaiyan, M., Ji, L., Yang, L., Tang, C., Song, H., Kjelleberg, S., Cao, B., “Influence of Outer Membrane C–Type Cytochromes on Particle Size and Activity of Extracellular Nanoparticles Produced by Shewanella Oneidensis”, Biotechnology and Bioengineering, 2013, 110 (7): 1831–7.
  • 63. Savelyev, Y., Gonchar, A., Movchan, B., Gornostay, A., Vozianov, S., Rudenko, A., Rozhnova, R., Travinskaya, T., “Antibacterial Polyurethane Materials with Silver and Copper Nanoparticles”, Materials Today: Proceedings, 2017, 87–94.
  • 64. http://www.medyafabrikasi.com/referanslarimiz/entekno-materials, Access Date: 16.11.2017.
  • 65. Gogotsi, Y., “How Safe are Nanotubes and Other Nanofilaments?” Mat. Res. Innovat., 2003, 7, 192–194.
  • 66. Buzea, C., Pacheco, I. and Robbie, K., “Nanomaterials and Nanoparticles: Sources and Toxicity”, Biointerphases, 2017, 2 (1007) MR17–MR71.
  • 67. Lam, C. W., James, J. T., McCluskey, R., Hunter, R. L., “Pulmonary Toxicity of Single–Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation” Toxicol. Sci., 2004, 77 (1), 126–134.
  • 68. “Carcinog. Ecotoxicol Rev.”, J. Environ. Sci. Health C Environ., Author manuscript; available in PMC, 2010.
  • 69. ETC Group Down on the Farm: The Impact of Nano–Scale Technologies on Food and Agriculture; Erosion, Technology and Concentration: 2004.
  • 70. “Opportunities and Uncertainties”, The Royal Society & The Royal Academy of Engineering Nanoscience and Nanotechnologies, London, 2004.
  • 71. Ashok, K. S., “Chapter 9 Human and Environmental Risk Characterization of Nanoparticles Book: Engineered Nanoparticles”, Elsevier, 2016, 451–514. 72. Kahru, A., Dubourguier, H.–C., “From Ecotoxicology to Nanoecotoxicology”, Toxicology, 2010, 105–119.
  • 73. Kennedy, A. J., Diamond, S., Stanley, J. K., Coleman, J. J., Jeffery, A. S., Mark, A. Chappell, M. A., Laird, J., Bednar, A., “Chapter 6 Nanomaterials Ecotoxicology a Case Study with Nanosilver Book: Nanotechnology Environmental Health and Safety”, Elsevier, 2014, 117–151.
  • 74. https://www.slideshare.net/SentryAirSystems/industrial-hygienists-should-address-nanoparticle-respiratory-hazards, Access Date: 16.11.2017.
  • 75.http://www.machinedesign.com/ASP/strArticleID/59554/strSite/MDSite/viewSelectedArticle.asp 2005, Access Date: 16.11.2017.
  • 76. http://www. cientifica. eu/index. php?option=com_content&task=view&id=37&Itemid=74 2005, Access Date: 16.11.2017.
  • 77. Roco, M. C., “U.S. National Nanotechnology Initiative: Planning for the Next Five Years”, In the Nano–Micro Interface: Bridging the Micro and Nano Worlds, Edited by Hans–Jörg Fecht and Matthias Werner, Ed.; WILEY–VCH Verlag GmbH & Co. KGaA: Weinheim, 2004, pp. 1–10.
  • 78. “Project of Emerging Nanotechnologies at the Woodrow Wilson International Center for Scholars A Nanotechnology Consumer Product Inventory”, http://www. nanotechproject. org/44 2007.
  • 79. http://www.news-medical.net/life-sciences/Safety-of-Nanoparticles.aspx, Access Date: 16.11.2017.
  • 80. Sun, X., Shi, J., Zou, X., Wang, C., Yang, Y., Zhang, H., “Silver Nanoparticles Interact with the Cell Membrane and Increase Endothelial Permeability by Promoting VE–Cadherin İnternalization”, Journal of Hazardous Materials, 2016, 570–578.
  • 81. Colvin, V., “The Potential Environmental Impact of Engineered Nanomaterials”, Nature Biotechnology, 2003, 21 (10), 1166–1170.
  • 82. KHAN, “Chemical Hazards of Nanoparticles to Human and Environment Orient” J. Chem., 2013, Vol. 29(4), 1399–1408.
  • 83. Lee, W. –H., Loo, C. –Y., Traini, D., Young, P. M., “Inhalation of Nanoparticle–Based Drug for Lung Cancer Treatment: Advantages and Challenges”, Asian Journal of Pharmaceutical Sciences, 2015, 481–489.
  • 84. http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08551, Access Date: 16.11.2017.
  • 85. “European Commission Nanotechnologies: A Preliminary Risk Analysis on the Basis of a Workshop Organized in Brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission; European Commission Community Health and Consumer Protection”, 2004.
  • 86. http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08551, Access Date: 16.11.2017.
  • 87. Fortner, K. B., Chad, A., Grotegut, C. E., Ransom, R. C., Bentley, L. F., Lan, L., R. Heine, R. P., Seed, P. C., Murtha, A. P., “Bacteria Localization and Chorion Thinning among Preterm Premature Rupture of Membranes”, Plos One Tenth Anniversay, 2004.
  • 88. Sayes, C. M., Gobin, A. M., Ausman, K. D., Mendez, J, West, J. L., Colvin, V. L., “Nano–C60 Cytotoxicity is due to Lipid Peroxidation”, Elsevier, 2005, 7587–7595. 89. Lovern, S. B., Strickler, J. R. and Klaper, R., “Behavioral and Physiological Changes in Daphnia Magna When Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano–C60, and C60HxC70Hx)”, HHS Public Access, 2007, 4465–4470.
  • 90. Templeton, N., Xu, S., Roush, D. J., Chen, H., “13C Metabolic Flux Analysis Identifies Limitations to Increasing Specific Productivity in Fed–Batch and Perfusion”, Metabolic Engineering, 2017, 126–133.
  • 91. Canesi, L, Ciacci, C., Balbi, T., “Interactive Effects of Nanoparticles with Other Contaminants in Aquatic Organisms: Friend or Foe?”, Marine Environmental Research, Elsevier, 2015, 12–134.
  • 92. Smith, C. J., Shaw, B. J., Handy, R. D., “Toxicity of Single Walled Carbon Nanotubes to Rainbow Trout, (Oncorhynchus Mykiss): Respiratory Toxicity, Organ Pathologies, and Other Physiological Effects”, Elsevier, 2007, 94–109.
  • 93. Kashiwada, S., “Distribution of Nanoparticles in the See–through Medaka (Oryzias latipes)”, Environmental Health Perspectives, 2006, 1697–1702.
  • 94. “Environmental Pollution”, January 2015, Vol. 196, pp. 185–193.
  • 95. Anjum, N. A., Rodrigo, M. A. M., Moulick, A., Heger, Z., Kopel, P., Zítka, O., Adam, V., Lukatkin, A. S., Duarte, A. C., Pereira, E., Kizek, R., “Transport Phenomena of Nanoparticles in Plants and Animals/Humans”, Environmental Research, 2016, 233–243.
  • 96. Amde, M., Liu, J.–F., Tan, Z.–Q., Bekana, D., “Transformation and Bioavailability of Metal Oxide Nanoparticles in Aquatic and Terrestrial Environments: A Review”, Environmental Pollution, 2017, 250–267.
  • 97. https://chem.uiowa.edu/grassian-research-group/impact-manufactured-nanomaterials-metal-and-metal-oxides-the-environment, Access Date: 16.11.2017.
  • 98. Sheng, Z., Liu, Y., “Potential Impacts of Silver Nanoparticles on Bacteria in the Aquatic Environment”, Journal of Environmental Management, 2017, 290–296.
  • 99. Shamaila, S., Sajjad, A. K. L., Ryma, Najam–ul–Athar, Farooqi, S. A., Jabeen, N., Majeed, S., Farooq, I., “Advancements in Nanoparticle Fabrication by Hazard Free Eco-Friendly Green Routes”, Applied Materials Today, 2016, 150–199.
  • 100.Khan, I., Saeed, K., Khan, I., “Nanoparticles: Properties, Applications and Toxicities”, Elsevier, 2017.
  • 101.Ribeiro, A. R., Leite, P. E., Falagan–Lotsch, P., B–Netti, F., Micheletti, C., Budtz, H. C., Jacobsen, N. R., Lisboa–Filho, P. N., Rocha, L. A., Kühnel, D., Hristozov, D., Granjeiro, J. M., “Challenges on the Toxicological Predictions of Engineered Nanoparticles”, NanoImpact, 2017, 59–72.
  • 102.Zhu, S., Oberdörster, E., Haasch, M. L., “Toxicity of an Engineered Nanoparticle (Fullerene, C60) in Two Aquatic Species, Daphnia and Fathead Minnow”, Marine Environmental Research, 2006, 5–9.
  • 103.Wais, U., Jackson, A. W., He, T., Zhang, H., “Formation of Hydrophobic Drug Nanoparticles via Ambient Solvent Evaporation Facilitated by Branched Diblock Copolymers”, International Journal of Pharmaceutics, 2017, 245–253.
  • 104.Oberdörster, G., “Safety Assessment for Nanotechnology and Nanomedicine: Concepts of Nanotoxicology”, Journal of Internal Medicine, 2010, 89–105.
  • 105.Lecoanet, H., Hotze, M., Wiesner, M., “Comparison of Electrokinetic Properties of Colloidal Fullerenes (n-C60) Formed Using Two Procedures”, PubMed, 2005, 6343–51.
  • 106. Sayed, A. El–Din H., Soliman, H. A. M., “Developmental Toxicity and DNA Damaging Properties of Silver Nanoparticles in the Catfish (Clarias Gariepinus)”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, 34–40.
  • 107.Gharbi, N., Moussa, F., Pressac, M., Tomberli, V., Bensasson, R. V., “In Vivo Acute Toxicity of Two C 60 Derivatives”, 2014.
  • 108.Bottini, M., Rosato, N., Bottini, N., “PEG–Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead”, Biomacromolecules, 2011, 3381–3393.
  • 109.Mahmoud, N. N., Alkilany, A. M., Dietrich, D., Karst, U., Al–Bakri, A. G., Khalil, E. A., “Preferential Accumulation of Gold Nanorods into Human Skin Hair Follicles: Effect of Nanoparticle Surface Chemistry”, Journal of Colloid and Interface Science, 2017, 95–102.
  • 110.http://www.news-medical.net/life-sciences/Safety-of-Nanoparticles.aspx)87, Access Date: 16.11.2017.
  • 111. Ragelle, H., Danhier, F., Préat, V., Langer, R. & Anderson, D. G., “Nanoparticle–Based Drug Delivery Systems: A Commercial and Regulatory Outlook as the Field Matures”, 2016, 851–864.
  • 112. Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini–Nami, S., Mehrzadi, S., Shakeri–Zadeh, A., Kamrava, S. K., “Nanotechnology in Hyperthermia Cancer Therapy: From Fundamental Principles to Advanced Applications”, Journal of Controlled Release, 2016, 205–221.
  • 113. Gao, W., Chen, Y., Zhang, Y., Zhang, Q., Zhang, L., “Nanoparticle–Based Local Antimicrobial Drug Delivery”, Advanced Drug Delivery Reviews, 2017.
  • 114. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., Duhan, S., “Nanotechnology: The New Perspective in Precision Agriculture”, Biotechnology Reports, 2016.
  • 115. Kunduru, K. R., Nazarkovsky, M., Farah, S., Pawar, R. P., Basu, A., Domb, A. J., “2 Nanotechnology for Water Purification: Applications of Nanotechnology Methods in Waste Water Treatment”, Water Purification, 2017, 33–74.
  • 116. Uskokovic, V., “Nanotechnologies in Preventive and Regenerative Medicine”, Chapter 1 Nanotechnologies for Early Diagnosis, in Situ Disease Monitoring, and Prevention, Elsevier, 2018, 1–92E.
  • 117. Abdin, Z., Alim, M. A., Saidur, R., Islam, M. R., Rashmi, W., Mekhilef, S., Wadi, A., “Solar Energy Harvesting with the Application of Nanotechnology”, Renewable and Sustainable Energy Reviews, 2013, 837–852.
  • 118. Hussein, A. K., “Applications of Nanotechnology to Improve the Performance of Solar Collectors–Recent Advances and Overview”, Renewable and Sustainable Energy Reviews, 2016, 767–797.
  • 119. Akpinar, I. A., Gültekin, K., Akpinar, S., Akbulut, H., Ozel, A., “Research on Strength of Nanocomposite Adhesively Bonded Composite Joints”, Composites Part B: Engineering, 2017, 143–152.
  • 120. Sabatier, M., Chollet, B., “Is There a First Mover Advantage in Science? Pioneering Behavior and Scientific Production in Nanotechnology”, Research Policy, Elsevier, 2017, 522–533.
  • 121. Dong, H., Gao, Y., Sinko, P. J., Wu, Z., Xu, J., Jia, L., “The Nanotechnology Race between China and the United States”, Nano Today, 2016, pp. 7–12.
  • 122. Lazaro, A., Yu, Q. L., Brouwers, H. J. H., “4 Nanotechnologies for Sustainable Construction”, Elsevier, 2016, 55–78.
  • 123.Lowery, A. R., Gobin, A. M., Day, E. S., Halas, N. J., West, J. L., “Immunonanoshells for Targeted Photothermal Ablation of Tumor Cells”, PubMed, 2006, 149–154.
  • 124.Tekade, R. K., Maheshwari, R., Soni, N., Tekade, M., Chougule, M. B., “Chapter 1 Nanotechnology for the Development of Nanomedicine, Nanotechnology–Based Approaches for Targeting and Delivery of Drugs and Genes”, Elsevier, 2017, 3–61.
  • 125. Lau, H. C., Yu, M., Nguyen, Q. P., “Nanotechnology for Oilfield Applications: Challenges and Impact”, Journal of Petroleum Science and Engineering, 2017.
  • 126. Mihindukulasuriya, S. D. F., Lim, L.–T., “Nanotechnology Development in Food Packaging: A Review”, Trends in Food Science & Technology, 2014.
  • 127. “Chapter Five Nanotechnology for Food Packaging and Food Quality Assessment”, Advances in Food and Nutrition Research, Elsevier, 2017, 149–204.
  • 128. Misra, R., Acharya, S., Sahoo, S. K., “Cancer Nanotechnology: Application of Nanotechnology in Cancer Therapy”, Drug Discovery Today, 2010, 842–850.
  • 129.Hull, L. C., Farrell, D., Grodzinski, P., “Highlights of Recent Developments and Trends in Cancer Nanotechnology Research–View from NCI Alliance for Nanotechnology in Cancer”, Biotechnology Advances, 2014.
  • 130. Leite, M. L., da Cunha, N. B., Costa, F. F., “Antimicrobial Peptides, Nanotechnology, and Natural Metabolites as Novel Approaches for Cancer Treatment”, Pharmacology & Therapeutics, 2017.

Nanotaneciklerin Genel Değerlendirilmesi

Yıl 2018, Cilt: 5 Sayı: 1, 191 - 236, 31.01.2018
https://doi.org/10.31202/ecjse.361663

Öz

Nanotanecikler aslında uzun yıllardır hayatımızda yeralan nanoteknolojinin giderek gelişmesiyle yaşam döngüsünde büyük bir yer edinmeye başlamıştır. Teknolojideki son dönem çalışma ve gelişmeler kullanımlarının gelecekte daha da artacağını göstermektedir. Biyoloji, tıp, mühendislik, optik gibi birçok alandaki geniş kullanımlarının yanı sıra insanlara ve ekosisteme verdiği zararlarda büyük tartışma konusu olmuştur. Bu derleme yazısında nanotanecikler, kullanım alanları, zararları ve zararlarını önleyici yöntemler ele alınmaktadır.

Kaynakça

  • 1. Guzman, K. A. D., Taylor, M. R., Banfield, J. F., “Environmental Risks of Nanotechnology: National Nanotechnology Initiative Funding”, Environ. Sci. Technol., 2006, 40:1401–1407.
  • 2. Roco, M. C., “Environmentally Responsible Development of Nanotechnology”, Environ. Sci. Technol., 2005, 39:106A–112A.
  • 3. https://www.nano.gov/nanotech-101/special, Access Date: 16.11.2017.
  • 4. Colvin, V., “Responsible Nanotechnology: Looking Beyond the Good News”, Eurekalert 2002.
  • 5. Oberdorster, G., Oberdorster, E., Oberdorster, J., “Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles”, Environmental Health Perspectives, 2005, 113 (7), 823–839.
  • 6. Pierce, J., “Safe as Sunshine?”, The Engineer, 2004.
  • 7. Hubler, A., Osuagwu, O., "Digital Quantum Batteries: Energy and Information Storage in Nanovacuum Tube Arrays", Complexity, 2010.
  • 8. Stephenson, C., Hubler, A., "Stability and Conductivity of Self Assembled Wires in a Transverse Electric Field", Sci. Rep. 5, 2015, 5: 15044.
  • 9. Hubler, A., Lyon, D., "Gap Size Dependence of the Dielectric Strength in Nano Vacuum Gaps", IEEE, 2013, 20: 1467–1471.
  • 10. Taylor, R., Coulombe, S., Otanicar, T., Phelan, P., Gunawan, A., Lv, W., Rosengarten, G., Prasher, R., Tyagi, H., "Small Particles, Big Impacts: A Review of the Diverse Applications of Nanofluids", Journal of Applied Physics, 2013, 113: 011301.
  • 11. http://www2.le.ac.uk/institution/fpgr/archive-of-past festivals /2015 /meet/2013 /science /yazdanfar/images/nanoscale.jpg/view, Access Date: 16.11.2017.
  • 12. Taylor, R. A., Otanicar, T., Rosengarten, G., "Nanofluid–Based Optical Filter Optimization for PV/T Systems", Light: Science & Applications, 2012, 1 (10): e34.
  • 13. Hewakuruppu, Y. L., Dombrovsky, L. A., Chen, C., Timchenko, V., Jiang, X., Baek, S., Taylor, R. A., "Plasmonic "Pump–Probe" Method to Study Semi–Transparent Nanofluids", Applied Optics, 2013, 52 (24): 6041–6050. 14. Taylor, R., A., Otanicar, T. P., Herukerrupu, Y., Bremond, F., Rosengarten, G., Hawkes, E. R., Jiang, X., Coulombe, S., "Feasibility of Nanofluid–Based Optical Filters", Applied Optics, 2013, 52 (7): 1413–22.
  • 15. Vert, M., Doi, Y., Hellwich, K. H., Hess, M., Hodge, P., Kubisa, P., Rinaudo, M., Schué, F. O., "Terminology for Biorelated Polymers and Applications (IUPAC Recommendations 2012)", Pure and Applied Chemistry, 2012, 84 (2).
  • 16. MacNaught, A. D., Wilkinson, A. R., eds., “Compendium of Chemical Terminology: IUPAC Recommendations (2nd ed.)” Blackwell Science, 1997.
  • 17. Alemán, J., Chadwick, A. V., He, J., Hess, M., Horie, K., Jones, R. G., Kratochvíl, P., Meisel, I., Mita, I., Moad, G., Penczek, S., Stepto, R. F. T., "Definitions of Terms Relating to the Structure and Processing of Sols, Gels, Networks, and Inorganic–Organic Hybrid Materials (IUPAC Recommendations 2007)", Pure and Applied Chemistry, 2007, 79 (10): 1801.
  • 18. Granqvist, C., Buhrman, R., Wyns, J., Sievers, A., "Far–Infrared Absorption in Ultrafine Al Particles", Physical Review Letters, 1976, 37 (10): 625–629.
  • 19. José, M., Morachis, E. A. M., Adah A., Paul, A., Insel, J. M., “Pharmacological Reviews”, July 2012, 64 (3) 505–519.
  • 20. Franks, G. V. & Lange, F. F., "Plastic–to–Brittle Transition of Saturated, Alumina Powder Compacts", J. Am. Ceram. Soc., 1996, 79 (12): 3161–3168.
  • 21. Nowack, B., “Pollution Prevention and Treatment Using Nanotechnology”, In: Krug, H.F., editor, Nanotechnology, Springer, 2010.
  • 22. “Microwaves in Nanoparticle Synthesis”, First Edition, Edited by Satoshi Horikoshi and Nick Serpone, Wiley–VCH Verlag GmbH & Co. KGaA, 2013.
  • 23. Hayashi, C., Uyeda, R. & Tasaki, A., “Ultra–Fine Particles: Exploratory Science and Technology”, (1997 Translation of the Japan Report of the Related ERATO Project 1981–86), Noyes Publications, 1997.
  • 24. Kiss, L. B., Söderlund, J., Niklasson, G. A., Granqvist, C. G., "New Approach to the Origin of Lognormal Size Distributions of Nanoparticles", Nanotechnology, 1999, 10: 25–28.
  • 25. Buzea, C., Pacheco, I. I., Robbie, K., "Nanomaterials and Nanoparticles: Sources and Toxicity", Biointerphases, 2007, 2 (4): MR17–MR71.
  • 26. ASTM E 2456–06 Standard Terminology Relating to Nanotechnology.
  • 27. Fahlman, B. D., “Materials Chemistry”, Springer, 2007, pp. 282–283.
  • 28. “Nanotechnology Timeline|Nano”, www.nano.gov, Retrieved 12 December 2016, Access Date: 16.11.2017.
  • 29. Laurent, S., Forge, D., Port, M., Roch, Robic, C., Vander E. L., Muller, R. N., "Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications", Chemical Reviews, 2008, 108 (6): 2064–110.
  • 30. Schulz, D. et al., "Inductively Heated Bridgman Method for the Growth of Zinc Oxide Single Crystals", Journal of Crystal Growth, 2008, 310 (7–9): 1832–1835.
  • 31. Buschow, K. H. G., “Hand Book of Magnetic Materials”, Elsevier, 2006.
  • 32. Teja, A. S., Koh, P.–Y., "Synthesis, Properties, and Applications of Magnetic Iron Oxide Nanoparticles", Progress in Crystal Growth and Characterization of Materials, 2009, 55: 22.
  • 33. Sugimoto, T., Matijević, E., “Formation of Uniform Spherical Magnetite Particles by Crystallization from Ferrous Hydroxide Gels”, Journal of Colloid and Interface Science, Elsevier, 1980, 227–243.
  • 34. Massart, R., Roger, J., Cabuil, V., “New Trends in Chemistry of Magnetic Colloids: Polar and Non Polar Magnetic Fluids, Emulsions, Capsules and Vesicles”, Brazilian Journal of Physics, 1995, 135–141.
  • 35. Laughlin, R., “An Expedient Technique for Determining Solubility Phase Boundaries in Surfactant Water Systems”, Journal of Colloid and Interface Science, 1976, 55–239.
  • 36. Beilby, G. T., “The Effects of Heat and of Solvents on Thin Films of Metal”, Proceedings of the Royal Society A, 1903, 72 (477–486): 226–235.
  • 37. Turner, T., “Transparent Silver and Other Metallic Films”, Proceedings of the Royal Society A (Transparent Silver and Other Metallic Films), 1908, 81 (548): 301–310.
  • 38. Hansen, S., Michelson, E., Kamper, A., Borling, P., Stuer–Lauridsen, F., Baun, A., “Categorization Framework to Aid Exposure Assessment of Nanomaterials in Consumer Products”, Ecotoxicology, 2008, 17, 438–447.
  • 39. Gubin, S. P., “Magnetic Nanoparticles”, Wiley–VCH, 2009.
  • 40. http://www.understandingnano.com/nanotechnology-energy.html, Access Date: 16.11.2017.
  • 41. http://www.crnano.org/whatis "Dais Analytic Corporation", Access Date: 16.11.2017.
  • 42. Johlin, E., Al–Obeidi, A., Nogay, G., Stuckelberger, M., Buonassisi, T., Grossman, J. C., “Nanohole Structuring for Improved Performance of Hydrogenated Amorphous Silicon Photovoltaics”, ACS Applied Materials & Interfaces, 2016, 8 (24): 15169–15176.
  • 43. Sheehan, S. W., Noh, H., Brudvig, G. W., Cao, H., Schmuttenmaer, C. A., “Plasmonic Enhancement of Dye–Sensitized Solar Cells Using Core–Shell–Shell Nanostructures”, The Journal of Physical Chemistry C, 2013, 117 (2): 927–934.
  • 44. Branham, M. S., Hsu, W.–C., Yerci, S., Loomis, J., Boriskina, S. V., Hoard, B. R., Han, S. E., Chen, G., “15.7 % Efficient 10–μm–Thick Crystalline Silicon Solar Cells Using Periodic Nanostructures”, Advanced Materials, 2015, 27(13): 2182–2188.
  • 45. Mann, S. A., Grote, R. R., Osgood, R. M., Alù, A., Garnett, E. C., “Opportunities and Limitations for Nanophotonic Structures to Exceed the Shockley–Queisser Limit”, ACS Nano, 2016, 10 (9): 8620–8631.
  • 46. Lee et al., “Fabrication of Supercapacitor Electrodes Using Fluorinated Single–Walled Carbon Nanotubes”, American Chemical Society, May 2003, Volume 103.
  • 47. https://webberenergyblog.wordpress.com/2013/05/05/increasing-solar-efficiency-by-using-nanotechnology-application/, Access Date: 16.11.2017.
  • 48. “About the National Nanotechnology Initiative”, United States National Nanotechnology Initiative, 2016.
  • 49. Paull, J., “Nanotechnology: No Free Lunch”, Platter, 2010, 1(1) 8–17.
  • 50. Paull, J., “Nanomaterials in Food and Agriculture: The Big Issue of Small Matter for Organic Food and Farming”, In: Neuhoff, D.; Halberg, N.; Rasmussen, I. A.; Hermansen, J. E.; Ssekyewa, C. and Sohn, S. M. (Eds.) Proceedings of the Third Scientific Conference of ISOFAR, Bonn, 2011, 2, pp. 96–99.
  • 51. Sun, T., Zhang, Y. S., Pang, B., Xia, Y., “Engineered Nanoparticles for Drug Delivery in Cancer Therapy”, October 2014, Angewandte Chemie International Edition 46 (5).
  • 52. Wagner, V., Dullaart, A, Bock, A. K., Zweck, A., “The Emerging Nanomedicine Landscape”, Nat. Biotechnol., 2006, 24 (10): 1211–1217.
  • 53. Freitas, R. A. Jr., “What is Nanomedicine?”, Nanomedicine: Nanotechnology, Biology and Medicine, 2005, 1 (1): 2–9.
  • 54. “Nanotechnology in Medicine and the Biosciences” by Coombs, R. R. H., Robinson, D. W., 1996.
  • 55. Muhammad, I., Chanbasha, B., Madiha, T., Muhammad, D., Nadeem, B., Farrukh, S., “Impact of Nanoparticles on Human and Environment: Review of Toxicity Factors, Exposures, Control Strategies, and Future Prospects”, March 2015, Volume 22, Issue 6, pp. 4122–4143.
  • 56. “Nanotechnology: A Gentle Introduction to the Next Big Idea” by Ratner, M. A., Ratner, D., 2002.
  • 57. http://spie.org/newsroom/1568-carbon-nanodevices-for-sensors-actuators-and-electronics, Access Date: 16.11.2017.
  • 58. Zhuang, Z., Viscusi, D., “CDC–NIOSH Science Blog–Respiratory Protection for Workers Handling Engineering Nanoparticles”, National Institute for Occupational Safety and Health, 2012.
  • 59. Ehud, G., “Plenty of Room for Biology at the Bottom: An Introduction to Bionanotechnology”, Imperial College Press, 2007.
  • 60. “Nanobiology”, Nanotech–Now.com, Access Date: 16.11.2017.
  • 61. http://www.azonano.com/article.aspx?ArticleID=3028, Access Date: 16.11.2017.
  • 62. Ng, C. K., Sivakumar, K., Liu, X., Madhaiyan, M., Ji, L., Yang, L., Tang, C., Song, H., Kjelleberg, S., Cao, B., “Influence of Outer Membrane C–Type Cytochromes on Particle Size and Activity of Extracellular Nanoparticles Produced by Shewanella Oneidensis”, Biotechnology and Bioengineering, 2013, 110 (7): 1831–7.
  • 63. Savelyev, Y., Gonchar, A., Movchan, B., Gornostay, A., Vozianov, S., Rudenko, A., Rozhnova, R., Travinskaya, T., “Antibacterial Polyurethane Materials with Silver and Copper Nanoparticles”, Materials Today: Proceedings, 2017, 87–94.
  • 64. http://www.medyafabrikasi.com/referanslarimiz/entekno-materials, Access Date: 16.11.2017.
  • 65. Gogotsi, Y., “How Safe are Nanotubes and Other Nanofilaments?” Mat. Res. Innovat., 2003, 7, 192–194.
  • 66. Buzea, C., Pacheco, I. and Robbie, K., “Nanomaterials and Nanoparticles: Sources and Toxicity”, Biointerphases, 2017, 2 (1007) MR17–MR71.
  • 67. Lam, C. W., James, J. T., McCluskey, R., Hunter, R. L., “Pulmonary Toxicity of Single–Wall Carbon Nanotubes in Mice 7 and 90 Days after Intratracheal Instillation” Toxicol. Sci., 2004, 77 (1), 126–134.
  • 68. “Carcinog. Ecotoxicol Rev.”, J. Environ. Sci. Health C Environ., Author manuscript; available in PMC, 2010.
  • 69. ETC Group Down on the Farm: The Impact of Nano–Scale Technologies on Food and Agriculture; Erosion, Technology and Concentration: 2004.
  • 70. “Opportunities and Uncertainties”, The Royal Society & The Royal Academy of Engineering Nanoscience and Nanotechnologies, London, 2004.
  • 71. Ashok, K. S., “Chapter 9 Human and Environmental Risk Characterization of Nanoparticles Book: Engineered Nanoparticles”, Elsevier, 2016, 451–514. 72. Kahru, A., Dubourguier, H.–C., “From Ecotoxicology to Nanoecotoxicology”, Toxicology, 2010, 105–119.
  • 73. Kennedy, A. J., Diamond, S., Stanley, J. K., Coleman, J. J., Jeffery, A. S., Mark, A. Chappell, M. A., Laird, J., Bednar, A., “Chapter 6 Nanomaterials Ecotoxicology a Case Study with Nanosilver Book: Nanotechnology Environmental Health and Safety”, Elsevier, 2014, 117–151.
  • 74. https://www.slideshare.net/SentryAirSystems/industrial-hygienists-should-address-nanoparticle-respiratory-hazards, Access Date: 16.11.2017.
  • 75.http://www.machinedesign.com/ASP/strArticleID/59554/strSite/MDSite/viewSelectedArticle.asp 2005, Access Date: 16.11.2017.
  • 76. http://www. cientifica. eu/index. php?option=com_content&task=view&id=37&Itemid=74 2005, Access Date: 16.11.2017.
  • 77. Roco, M. C., “U.S. National Nanotechnology Initiative: Planning for the Next Five Years”, In the Nano–Micro Interface: Bridging the Micro and Nano Worlds, Edited by Hans–Jörg Fecht and Matthias Werner, Ed.; WILEY–VCH Verlag GmbH & Co. KGaA: Weinheim, 2004, pp. 1–10.
  • 78. “Project of Emerging Nanotechnologies at the Woodrow Wilson International Center for Scholars A Nanotechnology Consumer Product Inventory”, http://www. nanotechproject. org/44 2007.
  • 79. http://www.news-medical.net/life-sciences/Safety-of-Nanoparticles.aspx, Access Date: 16.11.2017.
  • 80. Sun, X., Shi, J., Zou, X., Wang, C., Yang, Y., Zhang, H., “Silver Nanoparticles Interact with the Cell Membrane and Increase Endothelial Permeability by Promoting VE–Cadherin İnternalization”, Journal of Hazardous Materials, 2016, 570–578.
  • 81. Colvin, V., “The Potential Environmental Impact of Engineered Nanomaterials”, Nature Biotechnology, 2003, 21 (10), 1166–1170.
  • 82. KHAN, “Chemical Hazards of Nanoparticles to Human and Environment Orient” J. Chem., 2013, Vol. 29(4), 1399–1408.
  • 83. Lee, W. –H., Loo, C. –Y., Traini, D., Young, P. M., “Inhalation of Nanoparticle–Based Drug for Lung Cancer Treatment: Advantages and Challenges”, Asian Journal of Pharmaceutical Sciences, 2015, 481–489.
  • 84. http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08551, Access Date: 16.11.2017.
  • 85. “European Commission Nanotechnologies: A Preliminary Risk Analysis on the Basis of a Workshop Organized in Brussels on 1–2 March 2004 by the Health and Consumer Protection Directorate General of the European Commission; European Commission Community Health and Consumer Protection”, 2004.
  • 86. http://pubs.acs.org/doi/abs/10.1021/acsnano.6b08551, Access Date: 16.11.2017.
  • 87. Fortner, K. B., Chad, A., Grotegut, C. E., Ransom, R. C., Bentley, L. F., Lan, L., R. Heine, R. P., Seed, P. C., Murtha, A. P., “Bacteria Localization and Chorion Thinning among Preterm Premature Rupture of Membranes”, Plos One Tenth Anniversay, 2004.
  • 88. Sayes, C. M., Gobin, A. M., Ausman, K. D., Mendez, J, West, J. L., Colvin, V. L., “Nano–C60 Cytotoxicity is due to Lipid Peroxidation”, Elsevier, 2005, 7587–7595. 89. Lovern, S. B., Strickler, J. R. and Klaper, R., “Behavioral and Physiological Changes in Daphnia Magna When Exposed to Nanoparticle Suspensions (Titanium Dioxide, Nano–C60, and C60HxC70Hx)”, HHS Public Access, 2007, 4465–4470.
  • 90. Templeton, N., Xu, S., Roush, D. J., Chen, H., “13C Metabolic Flux Analysis Identifies Limitations to Increasing Specific Productivity in Fed–Batch and Perfusion”, Metabolic Engineering, 2017, 126–133.
  • 91. Canesi, L, Ciacci, C., Balbi, T., “Interactive Effects of Nanoparticles with Other Contaminants in Aquatic Organisms: Friend or Foe?”, Marine Environmental Research, Elsevier, 2015, 12–134.
  • 92. Smith, C. J., Shaw, B. J., Handy, R. D., “Toxicity of Single Walled Carbon Nanotubes to Rainbow Trout, (Oncorhynchus Mykiss): Respiratory Toxicity, Organ Pathologies, and Other Physiological Effects”, Elsevier, 2007, 94–109.
  • 93. Kashiwada, S., “Distribution of Nanoparticles in the See–through Medaka (Oryzias latipes)”, Environmental Health Perspectives, 2006, 1697–1702.
  • 94. “Environmental Pollution”, January 2015, Vol. 196, pp. 185–193.
  • 95. Anjum, N. A., Rodrigo, M. A. M., Moulick, A., Heger, Z., Kopel, P., Zítka, O., Adam, V., Lukatkin, A. S., Duarte, A. C., Pereira, E., Kizek, R., “Transport Phenomena of Nanoparticles in Plants and Animals/Humans”, Environmental Research, 2016, 233–243.
  • 96. Amde, M., Liu, J.–F., Tan, Z.–Q., Bekana, D., “Transformation and Bioavailability of Metal Oxide Nanoparticles in Aquatic and Terrestrial Environments: A Review”, Environmental Pollution, 2017, 250–267.
  • 97. https://chem.uiowa.edu/grassian-research-group/impact-manufactured-nanomaterials-metal-and-metal-oxides-the-environment, Access Date: 16.11.2017.
  • 98. Sheng, Z., Liu, Y., “Potential Impacts of Silver Nanoparticles on Bacteria in the Aquatic Environment”, Journal of Environmental Management, 2017, 290–296.
  • 99. Shamaila, S., Sajjad, A. K. L., Ryma, Najam–ul–Athar, Farooqi, S. A., Jabeen, N., Majeed, S., Farooq, I., “Advancements in Nanoparticle Fabrication by Hazard Free Eco-Friendly Green Routes”, Applied Materials Today, 2016, 150–199.
  • 100.Khan, I., Saeed, K., Khan, I., “Nanoparticles: Properties, Applications and Toxicities”, Elsevier, 2017.
  • 101.Ribeiro, A. R., Leite, P. E., Falagan–Lotsch, P., B–Netti, F., Micheletti, C., Budtz, H. C., Jacobsen, N. R., Lisboa–Filho, P. N., Rocha, L. A., Kühnel, D., Hristozov, D., Granjeiro, J. M., “Challenges on the Toxicological Predictions of Engineered Nanoparticles”, NanoImpact, 2017, 59–72.
  • 102.Zhu, S., Oberdörster, E., Haasch, M. L., “Toxicity of an Engineered Nanoparticle (Fullerene, C60) in Two Aquatic Species, Daphnia and Fathead Minnow”, Marine Environmental Research, 2006, 5–9.
  • 103.Wais, U., Jackson, A. W., He, T., Zhang, H., “Formation of Hydrophobic Drug Nanoparticles via Ambient Solvent Evaporation Facilitated by Branched Diblock Copolymers”, International Journal of Pharmaceutics, 2017, 245–253.
  • 104.Oberdörster, G., “Safety Assessment for Nanotechnology and Nanomedicine: Concepts of Nanotoxicology”, Journal of Internal Medicine, 2010, 89–105.
  • 105.Lecoanet, H., Hotze, M., Wiesner, M., “Comparison of Electrokinetic Properties of Colloidal Fullerenes (n-C60) Formed Using Two Procedures”, PubMed, 2005, 6343–51.
  • 106. Sayed, A. El–Din H., Soliman, H. A. M., “Developmental Toxicity and DNA Damaging Properties of Silver Nanoparticles in the Catfish (Clarias Gariepinus)”, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2017, 34–40.
  • 107.Gharbi, N., Moussa, F., Pressac, M., Tomberli, V., Bensasson, R. V., “In Vivo Acute Toxicity of Two C 60 Derivatives”, 2014.
  • 108.Bottini, M., Rosato, N., Bottini, N., “PEG–Modified Carbon Nanotubes in Biomedicine: Current Status and Challenges Ahead”, Biomacromolecules, 2011, 3381–3393.
  • 109.Mahmoud, N. N., Alkilany, A. M., Dietrich, D., Karst, U., Al–Bakri, A. G., Khalil, E. A., “Preferential Accumulation of Gold Nanorods into Human Skin Hair Follicles: Effect of Nanoparticle Surface Chemistry”, Journal of Colloid and Interface Science, 2017, 95–102.
  • 110.http://www.news-medical.net/life-sciences/Safety-of-Nanoparticles.aspx)87, Access Date: 16.11.2017.
  • 111. Ragelle, H., Danhier, F., Préat, V., Langer, R. & Anderson, D. G., “Nanoparticle–Based Drug Delivery Systems: A Commercial and Regulatory Outlook as the Field Matures”, 2016, 851–864.
  • 112. Beik, J., Abed, Z., Ghoreishi, F. S., Hosseini–Nami, S., Mehrzadi, S., Shakeri–Zadeh, A., Kamrava, S. K., “Nanotechnology in Hyperthermia Cancer Therapy: From Fundamental Principles to Advanced Applications”, Journal of Controlled Release, 2016, 205–221.
  • 113. Gao, W., Chen, Y., Zhang, Y., Zhang, Q., Zhang, L., “Nanoparticle–Based Local Antimicrobial Drug Delivery”, Advanced Drug Delivery Reviews, 2017.
  • 114. Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., Duhan, S., “Nanotechnology: The New Perspective in Precision Agriculture”, Biotechnology Reports, 2016.
  • 115. Kunduru, K. R., Nazarkovsky, M., Farah, S., Pawar, R. P., Basu, A., Domb, A. J., “2 Nanotechnology for Water Purification: Applications of Nanotechnology Methods in Waste Water Treatment”, Water Purification, 2017, 33–74.
  • 116. Uskokovic, V., “Nanotechnologies in Preventive and Regenerative Medicine”, Chapter 1 Nanotechnologies for Early Diagnosis, in Situ Disease Monitoring, and Prevention, Elsevier, 2018, 1–92E.
  • 117. Abdin, Z., Alim, M. A., Saidur, R., Islam, M. R., Rashmi, W., Mekhilef, S., Wadi, A., “Solar Energy Harvesting with the Application of Nanotechnology”, Renewable and Sustainable Energy Reviews, 2013, 837–852.
  • 118. Hussein, A. K., “Applications of Nanotechnology to Improve the Performance of Solar Collectors–Recent Advances and Overview”, Renewable and Sustainable Energy Reviews, 2016, 767–797.
  • 119. Akpinar, I. A., Gültekin, K., Akpinar, S., Akbulut, H., Ozel, A., “Research on Strength of Nanocomposite Adhesively Bonded Composite Joints”, Composites Part B: Engineering, 2017, 143–152.
  • 120. Sabatier, M., Chollet, B., “Is There a First Mover Advantage in Science? Pioneering Behavior and Scientific Production in Nanotechnology”, Research Policy, Elsevier, 2017, 522–533.
  • 121. Dong, H., Gao, Y., Sinko, P. J., Wu, Z., Xu, J., Jia, L., “The Nanotechnology Race between China and the United States”, Nano Today, 2016, pp. 7–12.
  • 122. Lazaro, A., Yu, Q. L., Brouwers, H. J. H., “4 Nanotechnologies for Sustainable Construction”, Elsevier, 2016, 55–78.
  • 123.Lowery, A. R., Gobin, A. M., Day, E. S., Halas, N. J., West, J. L., “Immunonanoshells for Targeted Photothermal Ablation of Tumor Cells”, PubMed, 2006, 149–154.
  • 124.Tekade, R. K., Maheshwari, R., Soni, N., Tekade, M., Chougule, M. B., “Chapter 1 Nanotechnology for the Development of Nanomedicine, Nanotechnology–Based Approaches for Targeting and Delivery of Drugs and Genes”, Elsevier, 2017, 3–61.
  • 125. Lau, H. C., Yu, M., Nguyen, Q. P., “Nanotechnology for Oilfield Applications: Challenges and Impact”, Journal of Petroleum Science and Engineering, 2017.
  • 126. Mihindukulasuriya, S. D. F., Lim, L.–T., “Nanotechnology Development in Food Packaging: A Review”, Trends in Food Science & Technology, 2014.
  • 127. “Chapter Five Nanotechnology for Food Packaging and Food Quality Assessment”, Advances in Food and Nutrition Research, Elsevier, 2017, 149–204.
  • 128. Misra, R., Acharya, S., Sahoo, S. K., “Cancer Nanotechnology: Application of Nanotechnology in Cancer Therapy”, Drug Discovery Today, 2010, 842–850.
  • 129.Hull, L. C., Farrell, D., Grodzinski, P., “Highlights of Recent Developments and Trends in Cancer Nanotechnology Research–View from NCI Alliance for Nanotechnology in Cancer”, Biotechnology Advances, 2014.
  • 130. Leite, M. L., da Cunha, N. B., Costa, F. F., “Antimicrobial Peptides, Nanotechnology, and Natural Metabolites as Novel Approaches for Cancer Treatment”, Pharmacology & Therapeutics, 2017.
Toplam 127 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm UMAS 2017 Ulusal Mühendislik Araştırmaları Sempozyumu
Yazarlar

Alper Koçak

Bekir Karasu Bu kişi benim

Yayımlanma Tarihi 31 Ocak 2018
Gönderilme Tarihi 4 Aralık 2017
Kabul Tarihi 6 Aralık 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 1

Kaynak Göster

IEEE A. Koçak ve B. Karasu, “Nanotaneciklerin Genel Değerlendirilmesi”, ECJSE, c. 5, sy. 1, ss. 191–236, 2018, doi: 10.31202/ecjse.361663.