Derleme
BibTex RIS Kaynak Göster

Organik Camlar

Yıl 2018, Cilt: 5 Sayı: 2, 512 - 536, 31.05.2018
https://doi.org/10.31202/ecjse.407306

Öz



Poli akrilat, polis tren ve
polikarbonat gibi organik polimerlerden ve metil metakrilatlı vinil klorür
kopolimerlerinden elde edilen şeffaf, katı malzemelere teknik bağlamda organik
cam adı verilmektedir. Endüstride, “organik cam” terimi ile genellikle metil
metakrilatın blok polimerizasyonuyla üretilen bir malzeme tabakası
anlaşılmaktadır.



Organik cam, vakum ya da pnömatik şekillendirme
veya baskılanma yöntemleriyle işlenebilmektedir, ayrıca, mekanik sürece tabi
tutulabilmekte ve yapıştırılıp kaynaklanabilmektedir. Hava araçlarında,
otomobillerde ve gemilerde yapı malzemesi, kış bahçelerinde, pencere ve
verandalarda örtücü olarak kullanılmaktadır. Binalar sıklıkla organik camlarla
dekore edilmekte ve cihaz parçalarında, protezlerde, lenslerde, optik uygulama
pirizmalarında, ayrıca yiyecek endüstrisi borularında değerlendirilmektedir. Bu
çalışmada organik camlar tanımlanmakta, türleri, üretimleri ve son dönem
çalışmaları sunulmaktadır.

Kaynakça

  • [1] Pulker H. L., “Coatings on Glass”, 2nd Edition, Elsevier Science Press, 1999.
  • [2] Roth Connie B., “Polymer Glasses”, CRC Press, 2017.
  • [3] Yılmaz R., Karasu B., “Havacılık ve Uzay Endüstrisinde Kullanılan Camlar”, Şişe Cam Teknik Bülten, 2017, Cilt: 46, Sayı: 3(232), 5–14.
  • [4] http://www.medicontur.com/pmma_lenses (Erişim tarihi 15.12.2017).
  • [5] https://www.dhgate.com/product/custom-shop-organic-glass-electric guitars/214251141 (Erişim tarihi 15.12.2017).
  • [6] http://www.techionix.com/tech-updates/meet-valkyrie-a-super-sleek-aircraft-taking-on-the-private-plane-industry/ (Erişim tarihi 15.12.2017).
  • [7] https://i.pinimg.com/originals/41/2d/62/412d621e63d7f6ef28e4b0a6c665d0ed.jpg (Erişim tarihi 15.12.2017).
  • [8] Heavens O. S. and Smith, D. S., “Dielectric Thin Films”, J. Opt. Soc. Am., 1957, 47, 469.
  • [9] Ay B., “Organik Polimerler ve Kullanım Alanları, Pamukkale Üniversitesi, Denizli, Bitirme Tezi, 2007.
  • [10] Şenvar C., “Polimer Kimyasına Giriş, “Zincir (Katılma) Polimerizasyonu”, “Basamaklı Polimerizasyon”, “Kimyasal Kinetik ve Makromoleküller”, Fizikokimya, Cilt 4, Marmara Üniversitesi, İstanbul, 1986.
  • [11] http://megep.meb.gov.tr/mte_program_modul/moduller_pdf/Polimer%20Eldesi.pdf (Erişim tarihi 15.12.2017).
  • [12] Büyükyıldız H. Z., “Coatings and Tints of Spectacle Lenses”, TOD 45. Ulusal Oftalmoloji Kongresi’, Girne, Kıbrıs, 2011.
  • [13] Özmumcu M., “ Özel Bir Termiyonik Vakum Ark (TVA) Tekniği Kullanılarak Organik Gözlük Camlarının Çeşitli Kaplamalarının Yapılması ve Bazı Fiziksel Özelliklerinin İncelenmesi, Osmangazi Üniversitesi, Fizik Ana Bilim Dalı, Eskişehir, Yüksek Lisans Tezi, 2011.
  • [14] Buyukyıldız H. Z., “ Gözlük Camları, Cam Materyalleri ve Kişiye Özel Gözlük Camları”, İstanbul Göz Hastanesi, İstanbul, 2011.
  • [15] https://tr.pinterest.com/source/thepittsburghhistoryjournal.com/ (Erişim tarihi 15.12.2017).
  • [16] http://www.ppgoptical.com/Home.aspx (Erişim tarihi 15.12.2017).
  • [17] Saydam N., “Polimetilmetakrilat (PMMA) Plastik Atıkların Katalitik Pirolizi”, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Ana Bilim Dalı, Ankara, Yüksek Lisans Tezi, 2012.
  • [18] Saçak, M., “Polimer Kimyası”, Gazi Kitapevi, Ankara s. 483, 2002.
  • [19] Saçak M., “Polimer Teknolojisi”, Gazi Kitapevi, Ankara, s. 431, 2005.
  • [20] Shishir S., Vinay K., “Polymer Systems and Applications”, 2010.
  • [21] http://spartansigns.com/category/acrylic-sheets-accessories/ (Erişim tarihi 15.12.2017).
  • [22] https://healthyliving.azcentral.com/benefits-acrylic-glasses-7921.html (Erişim tarihi 15.12.2017).
  • [23] http://www.couponsaregreat.net/georgia-aquarium-discount/ (Erişim tarihi 15.12.2017).
  • [24] https://tr.aliexpress.com/item/Sailboat-3D-Lamp-7-Color-Changing-RGB-Night-Light-Acrylic-Sailling-Boat-Model-Crafts-3D-Table/32811619794.html (Erişim tarihi 15.12.2017).
  • [25] Scheirs J., Timothy E. L., “Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters”, 1st ed., Wiley Series in Polymer Science, England, 2003.
  • [26] Brunelle D. J., Korn M. R., “Advances in Polycarbonates”, 1st ed., American Chemical Society Symposium Series, Washington, 2005.
  • [27] Othmer K., “Kirk-Othmer Encyclopedia of Chemical Technology”, 5th ed., John Wiley & Sons, 2004.
  • [28] Yıldız S., “Poli(Laktik Asit)’in Silikon Kauçuk ile Toklaştırılması”, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2012.
  • [29] Ebewele R. O., “Polymer Science and Technology”, 1st ed., CRC Press LLC., New York, 11–13, 2000.
  • [30] http://www.polikarbondeposu.com/ (Erişim tarihi 15.12.2017).
  • [31] http://www.polikarbon.com.tr/solid-polikarbonat-levha.htm (Erişim tarihi 15.12.2017).
  • [32] Kurt A., Yavuz R., Bozdağ G., “Polistiren–Kil Nanokompozitlerin Sentezi, Termal ve Optik Özelliklerinin İncelenmesi”, Adıyaman Üniversitesi, Fen Bilimleri Dergisi, 2013, 3 (2), 58–70.
  • [33] http://www.bayar.edu.tr/besergil/6_PP_PS_PVC.pdf (Erişim tarihi 15.12.2017).
  • [34] Kaya A., “Genleştirilmiş Polistren (EPS) Atığının Çeşitli Bağlayıcı Kombinasyonlarında Yeniden Değerlendirilmesi”, Fırat Üniversitesi, Kimya Mühendisliği Anabilim Dalı, Doktora Tezi, 2016.
  • [35] http://www.separplastik.com/index.php?ks=324&sayfa=574 (Erişim tarihi 15.12.2017).
  • [36] http://www.polimerplastik.com/ (Erişim tarihi 15.12.2017).
  • [37] Awaja F., Pavel D., “Recycling of PET”, European Polymer Journal, 2005, 41:1453–1477.
  • [38] Acar I., “Polietilen Tereftalat Atıklarının Hidroksiaminlerle Reaksiyon Ara Ürünlerinin Arastırılması”, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul, 1996.
  • [39] http://muhendisoldum.blogspot.com.tr/2012/09/plastikler.html (Erişim tarihi 15.12.2017).
  • [40] http://tekn-mak.blogspot.com.tr/2013/05/yaygn-olarak-kullanlan-plastik-turleri.html (Erişim tarihi 15.12.2017).
  • [41] Renge I., Wild, U. P., “Inhomogeneous Broadening and Pressure Shifts of the Optical Spectra in Organic Glasses at Low Temperatures”, Journal of Luminescence 86, 2000, 241–247.
  • [42] Cong H. N., Dieng M., Sene C., Chartier, P., “Hybrid Organic–Inorganic Solar Cells: Case of the All Thin PMeT(Y)/CdS(X) Junctions”, Solar Energy Materials & Solar Cells 63, 2000 23–35.
  • [43] Kobayashi H., Takahashi H., Hiki Y., “Viscosity Measurement of Organic Glasses below and above Glass Transition Temperature”, Journal of Non–Crystalline Solids 290, 2001, 32–40.
  • [44] Łączka M., Cholewa–Kowalska K., Kogut M., “Organic-Inorganic Hybrid Glasses of Selective Optical Transmission”, Journal of Non–Crystalline Solids 287, 2001, 10–14.
  • [45] Müller J., Haarer D., Kharlamov B. M., “Non-Lorentzian Hole Profiles in Organic Glasses Caused by a Distribution of Optical Line Widths”, Physics Letters A 281, 2001, 64–69.
  • [46] Kharlamov B. M., “Non–TLS Relaxations in Polymer Glasses”, Journal of Luminescence 94–95, 2001, 695–699.
  • [47] Grazulevicius J. V., Strohriegl P., “Charge–Transporting Polymers and Molecular Glasses”, Chapter 5 in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H.S. Nalwa Volume 10: Light–Emitting Diodes, Lithium Batteries, and Polymer Devices, 2001, 233–268.
  • [48] Imrie C. T., Ingram M. D., “Decoupled Ion Transport in Mesomorphic Polymer Electrolyte Glasses”, Electrochimica Acta 46, 2001, 1413–1417.
  • [49] Okumoto K., Shirota Y., “Development of New Hole–Transporting Amorphous Molecular Materials for Organic Electroluminescent Devices and Their Charge–Transport Properties”, Materials Science and Engineering B85, 2001, 135–139.
  • [50] Saiter A., Devallencourt C., Saiter J. M., Grenet J., “Thermodynamically “Strong” and Kinetically “Fragile” Polymeric Glass Exemplified by Melamine Formaldehyde Resins”, European Polymer Journal 37, 2001, 1083–1090.
  • [51] Kuwata N., Kawamura J, Nakamura Y., “New Organic–Inorganic Hybrid Superionic Conductor Glasses Consisting of Silver Iodide and Alkylbis–Trimethylammonium Diiodides”, Solid State Communications 124, 2002, 221–226.
  • [52] Ohtsuki C., Miyazaki T., Tanihara M., “Development of Bioactive Organic–Inorganic Hybrid for Bone Substitutes”, Materials Science and Engineering C 22, 2002, 27–34.
  • [53] Vogel M., Tschirwitz C., Schneider G., Koplin C., Medick P., Rössler E., “A 2H NMR and Dielelectric Spectroscopy Study of the Slow β–Process in Organic Glass Formers”, Journal of Non-Crystalline Solids 307–310, 2002, 326–335.
  • [54] Chun H., Kim, N.–J., Joo W.–J., Han J. W., Oh C. O., Kim N., “Synthesis and Characterization of Organic Photorefractive Glass”, Synthetic Metals 129, 2002, 281–283.
  • [55] Hung L. S., Chen C. H., “Recent Progress of Molecular Organic Electroluminescent Materials and Devices”, Materials Science and Engineering R 39, 2002, 143–222.
  • [56] Takahashi M., Niida, H., Tokuda Y., Yoko T., “Organic–Inorganic Hybrid Phosphite Low–Melting Glasses for Photonic Applications”, Journal of Non–Crystalline Solids 326 & 327, 2003, 524–528.
  • [57] Mutaguchi D., Okumoto K., Ohsedo Y., Moriwaki K., Shirota Y., “Development of a New Class Hole–Transporting and Emitting Vinyl Polymers and Their Applications in Organic Electroluminescent Devices”, Organic Electronics 4, 2003, 49–59.
  • [58] Houbertz R., Domann G., Cronauer C., Schmitt A., Martin H., Park J.–U., Fröhlich L., Buestrich R., Popall M., Streppel U., Dannberg P., Wächter C., Bräuer A., “Inorganic–Organic Hybrid Materials for Application in Optical Devices”, Thin Solid Films 442, 2003, 194–200.
  • [59] Cardoso A. V., de Abreu W. M., “Water and the Glass Transition Temperature of Organic (Caramel) Glasses”, Journal of Non–Crystalline Solids 348, 2004, 51–58.
  • [60] Brabec, C. J., “Organic Photovoltaics: Technology and Market”, Solar Energy Materials & Solar Cells 83, 2004, 273–292.
  • [61] Mecerreyes D., Marcilla R., Ochoteco E., Grande H., Pomposo J. A., Vergaz R., Pena J. M. S., “A Simplified All–Polymer Fexible Electrochromic Device”, Electrochimica Acta 49, 2004, 3555–3559.
  • [62] Nocuń M., Leja E., Jedliński J., Najman J., “Structure and Optical Properties of Hybrid Glasses Based on Tetraethylorthosilicate–Trimethoxyoctylsilane and Tetraethylorthosilicate–Tetraethylorthotitanate–Trimethoxyoctylsilane Systems”, Journal of Molecular Structure 744–747, 2005, 3555–3559.
  • [63] Uğur Ş., Pekcan Ö., “Small Molecule Desorption from a Swelling Polymeric Glass in Polymer Solution: Energy Transfer Method”, Materials Chemistry and Physics 92, 2005, 269–273.
  • [64] Kois J., Bereznev S., Raudoja J., Mellikov E., Öpik A., “Glass/ITO/In(O,S)/CuIn(S,Se)2 Solar Cell with Conductive Polymer Window Layer”, Solar Energy Materials & Solar Cells 87, 2005, 657–665.
  • [65] Oh S.–W., Rhee H. W., Lee C., Kim Y. C., Kim J. K., Yu J.–W., “The Photovoltaic Effect of the p–n Heterojunction Organic Photovoltaic Device Using a Nano Template Method”, Current Applied Physics 5, 2005, 55–58.
  • [66] Meneaa B., Mizono M., Takahashi M., Tokuda Y., Yoko T., “Polycarboxylic Acid as Network Modifiers for Water Durability Improvement of Inorganic–Organic Hybrid Tin–Silico–Phosphate Low–Melting Glass”, Journal of Solid State Chemistry 179, 2006, 492–499.
  • [67] Lyulin A. V., Michels M. A. J., “Simulation of Polymer Glasses: From Segmental Dynamics to Bulk Mechanics”, Journal of Non–Crystalline Solids 352, 2006, 5008–5012.
  • [68] Mortimer R. J., Dyer A. L., Reynolds J. R., “Electrochromic Organic and Polymeric Materials for Display Applications”, Display 27, 2006, 2–18.
  • [69] Fabbri P., Messori M., Montecchi M., Nannarone S., Pasquali L., Pilati F., Tonelli C., Toselli M., “Perfluoropolyether–Based Organic–Inorganic Hybrid Coatings”, Polymer 47, 2006, 1055–1062.
  • [70] Mozer A. J., Sariciftci, N. S., “Conjugated Polymer Photovoltaic Devices and Materials”, C. R. Chimie 9, 2006, 568–577.
  • [71] Carella A., Centore R., Mager L., Barsella A., Fort A., “Crosslinkable Organic Glasses with Quadratic Nonlinear Optical Acivity”, Organic Electronics 8, 2007, 57–62.
  • [72] Choi K. M., “A Chemical Strategy to Improve the Fluorescence Environments of Erbium–Ions Doped into Organically Modified Hybrid Glasses for Laser Amplifier Applications”, Materials Chemistry and Physics 103, 2007, 176–182.
  • [73] Getautis V., Stumbraite J., Gaidelis V., Jankauskas V., Kliucius A., Paulauskas V., “Molecular Glasses Possessing a Phenyl–1,2,3,4–Tetrahydroquinoline Moiety as Hole Transporting Materials for Electrophotography”, Synthetic Metals 157, 2007, 176–182.
  • [74] Urman K., Otaigbe J. U., “New Phosphate Glass/Polymer Hybrids–Current Status and Future Prospects”, Prog. Polym. Sci. 32, 2007, 1462–1498.
  • [75] Wojtach K., Laczka M., Cholewa–Kovalska K., Olejniczak Z., Sokolowsa J., “Characteristics of Colored Inorganic–Organic Hybrid Materials”, Journal of Non–Crystalline Solids 353, 2007, 2099–2103.
  • [76] Etienne S., Hazeg N., Duval E., Mermet A., Wypych A., David L., “Physical Aging and Molecular Mobility of Amorphous Polymers”, Journal of Non–Crystalline Solids 353, 2007, 3871–3878.
  • [77] Ishii K., Nakayama H., “Formation and Stability of Amorphous Molecular Systems: As the Prototype of Functional Amorphous Organic Materials”, Journal of Non–Crystalline Solids 353, 2007, 1279–1282.
  • [78] Hanisch J., Ahlswede E, Powalla M., “All–Sputtered Contacts for Organic Solar Cells”, Thin Solid Films 516, 2008, 7241–7244.
  • [79] Malinauskas T., Gaidelis V., Jankauskas V., Getautis V., “Novel Highly Soluble 3,3’–Bicarbazolyl Based Polymers for Optoelectronics”, European Polymer Journal 44, 2008, 3620–3627.
  • [80] Alévêque O., Leriche P., Cocherel N., Frère P., Cravino A., Roncali J., “Star–Shaped Conjugated Systems Derived from Dithiafulvenyl–Derivatized Triphenylamines as Active Materials for Organic Solar Cells”, Solar Energy Materials & Solar Cells 92, 2008, 1170–1174.
  • [81] Gorelov Y. P., Chmykhova T. G., Shalaginova I. A., “New Organic Glasses for the Aircraft Industry”, Polymer Science and Technology, 2009, 37, No. 5.
  • [82] Sheng K., Yan B., “Coordination Bonding Assembly and Photophysical Properties of Europium Organic/Inorganic/Polimeric Hybrid Materials”, Journal of Photochemistry and Photobiology A: Chemistry 206, 2009, 140–147.
  • [83] Bricaud Q., Cravino A., Leriche P., Roncali J., “Terthiophene–Cyanovinylene π–Conjugated Polymers as Donor Material for Organic Solar Cells”, Sythetic Metals 119, 2009, 2534–2538.
  • [84] Bedeloglu A., Demir, A., Bozkurt Y., Sariciftci, N. S., “A Flexible Textile Structure Based on Polymeric Photovoltaics Using Transparent Cathode”, Sythetic Metals 159, 2009, 2043–2048.
  • [85] Kirkus M., Grazulevicius J. V., Grigalevicius S., Gu R., Dehaen V., Jankauskas V.,”Hole–Transporting Glass Forming Indilo[3,2–b]Carbazole–Based Diepoxy Monomer and Polymers”, European Polymer Journal 45, 2009, 410–417.
  • [86] Wu J., Huang, G. Qu L., Zheng J., “Correlations between Dynamic Fragility and Dynamic Mechanical Properties of Several Amorphous Polymers”, Journal of Non–Crystalline Solids 355, 2009, 1755–1759.
  • [87] Ramirez C. L., Parise A. R., “Solvent Resistant Electrochromic Polymer Based on Methylene–Bridged Arylamines”, Organic Electronics 10, 2009, 747–752.
  • [88] Saxena K., Jain V. K., Mehda D. S., “A Review on the Light Extraction Techniques in Organic Electroluminescent Devices”, Optical Materials 32, 2009, 221–233.
  • [89] Xhi H., Wei Z., Xu W., Bo Z., Hu W., Zhu D., “Organic Photovoltaic Cells Based on Tetrathia[22]Annulene[2,1,2,1]/PCBM Heterojunction”, Chemical Physics Letters 484, 2009, 41–43.
  • [90] Tanaka S., Zakhidov A. A., Ovalle–Robles R., Yoshida Y., Hiromitsu I., Fujita Y., Yoshino K., “Semitransparent Organic Photovoltaic Cell with Carbon Nanotube–Sheet Anodes and Ga–Doped ZnO Cathods”, Sythetic Metals 159, 2009, 2326–2328.
  • [91] Zhu L., Yu L., “Generality of Forming Stable Organic Glasses by Vapor Deposition”, Chemical Physics Letters 499, 2010, 62–65.
  • [92] Pokrass M., Burshtein S., Gvishi R., “Thermo–Optic Coefficient in Some Hybrid Organic/Inorganic Fast Sol–Gel Glasses”, Optical Materials 32, 2010, 975–981.
  • [93] Boccaccini A. R., Erol M., Stark W. J., Mohn D., Hong Z., Mano J. F., “Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review”, Computer Science and Technology 70, 2010, 1767–1776.
  • [94] Horie M., Shen I.-W., Tuladhar S. M., Leventis H., Haque S. A., Nelson J., Saunders B. R., Turner M. L., “Poly(Thienylenevinylene) Prepared by Ring–Opening Metathesis Polimerization: Performance as a Donor in Bulk Heterojunction Organic Photovoltaic Devices”, Polymer 51, 2010, 1541–1547.
  • [95] Bedeloglu A. (C), Demir A., Bozkurt Y., Sariciftci N. S., “Photovoltaic Properties of Polymer Based Organic Solar Cells Adapted for Non–Transparent Substrates”, Renewable Energy 35, 2010, 2301–2306.
  • [96] Sivakumar R., Akila K., Anandan S., “New Type of Inorganic–Organic Hybrid (Heteropolytungsticacid–Polyepichlorohydrin) Polymer Electrolyte with TiO2 Nanofiller for Solid State Dye Sensitized Solar Cells”, Current Applied Physics 10, 2010, 1255–1260.
  • [97] Zhao Z., Teki R., Koratkar N., Efstathiadis H., Haldar P., “Metal Oxide Buffer Layer for Improving Performance of Polymer Solar Cells”, Applied Surface Science 256, 2010, 6053–6056.
  • [98] Chung D. S., Kong H., Yun W. M., Cha H., Shim H.–K., Kim Y.–H., Park C. E., “Effects of Selenophene Substitution on the Mobility and Photovoltaic Efficiency of Polyquaterthiophene–Based Organic Solar Cells”, Organic Electronics 11, 2010, 899–904.
  • [99] Martínez A. B., Artús P., Dürsteter J. C., Arencón D., “Fracture Behaviour of Termosetting Polymers for Opthalmic Lenses”, Engineering Failure Analysis 17, 2010, 4–10.
  • [100] Jeong S., Han Y. S., Kwon Y., Choi M.–S., Cho G., Kim K.–S., Kim Y., “Effects of n Type Perylene Derivative as an Additive on the Power Conversion Efficiencies of Polymer Solar Cells”, Synthetic Metals 160, 2010, 2109–2115.
  • [101] Messori M., Fabbri P., Pilati F., Tonelli C., Toselli M., “Perfluoropolyether–Based Organic–Inorganic Coatings”, Progress in Organic Coatings 72, 2011, 461–468.
  • [102] Cetin B., Odabasi M., “Polibrominated Diphenyl Ethers (PBDEs) in Indoor and Outdoor Window Organic Films in Izmir, Turkey”, Journal of Hazardous Materials 185, 2011, 784–791.
  • [103] Yu D., Kleemeier M., Wu G. M., Schartel B., Liu W. Q., Hartwig A., “A Low Melting Organic-Inorganic Glass and Its Effect on Flame Retardancy of Clay/Epoxy Composites”, Polymer 52, 2011, 2120–2131.
  • [104] Kim J.–R., Cho J. M., Lee A.–R., Chae E. A., Park J.–U., Byun W.–B., Lee S. K., Lee J.–C., So W.–W., Yoo S., Moon S.–J., Shin W. S., “Improvement of the Performance of Inverted Polymer Solar Cells with a Fluorine–Doped Tin Oxide Electrode”, Current Applied Physics 11, 2011, S175–S178.
  • [105] Zhang M., Chiu T.–L., Lin C.–F., Lee J.–H., Wang J.–K., Wu Y., “Roughness Characterization of Silver Oxide Anodes for Use in Efficient Top–Illuminated Organic Solar Cells”, Solar Energy Materials & Solar Cells 95, 2011, 2606–2609.
  • [106] Jeong S., Woo S.-H., Lyu H.–K., Han Y. S., “Effects of a Perfluorinated Compound as an Additive on the Power Conversion Efficiencies of Polymer Solar Cells”, Solar Energy Materials & Solar Cells 95, 2011, 1908–1914.
  • [107] Luk W. C., Yeung K. M., Tam K. C., Ng K. L., Kwok K. C., Kwong C. Y., Ng A. M. C., Durišić A. B., “Enhanced Conversion Efficiency of Polymeric Photovoltaic Cell by Nanostructured Antireflection Coating”, Organic Electronics 12, 2011, 557–561.
  • [108] Nasybulin E., Feinstein J., Cox M., Kymissis I., Levon K., “Electrochemically Prepared Polymer Solar Cells by Three–Layer Deposition of Poly(3,4–Ethylenedioxythiopene)/Poly(2,2’–Bithiopene)/Fullerene (PEDOT/PBT/C60)”, Polymer 52, 2011, 3627–3632.
  • [109] Delpouve N., Vuillequez A., Saiter A., Youssef B., Saiter J. M., “Fragility and Cooperativity Concepts in Hydrogen–Bonded Organic Glasses”, Physica B 407, 2012, 3561–3565.
  • [110] Liu X., Zhang J., Tang P., Yu G., Zhang Z., Chen H., Chen Y., Zhao B., Tan S., Shen P., “Development of a New Diindenopyrazine–Benzotriazole Copolymer for Multifunctional Application in Organic Field–Effect Transistors, Polymer Solar Cells and Light–Emitting Diodes”, Organic Electronics 13, 2012, 1671–1679.
  • [111] Ikena H., Kirsanov, D., Legin A. and Schöning, M. J., “Novel Thin–Film Polymeric Materials for the Detection of Heavy Metals”, Procedia Engineering 47, 2012, 322–325.
  • [112] Kim T.–S., Na, S.–I., Oh S.–H., Kang R., Yu B.–K., Yeo J.–S., Lee J., Kim D.–Y., “All–Solution–Processed ITO–Free Polymer Solar Cells Fabricated on Copper Sheets”, Solar Energy Materials & Solar Cells 98, 2012, 168–171.
  • [113] Du X., He D., Xiao Z., Ding L., “The Double-Edged Function of UV Light in Polymer Solar Cells with an Inverted Structure”, Synthetic Metals 162, 2012, 2302–2306.
  • [114] Woestenborghs W., De Visschere P., Beunis F., Van Steenberge G., Neyts K., Vetsuypens A., “Analysis of a Transparent Organic Photoconductive Sensor”, Organic Electronics 13, 2012, 2250–2256.
  • [115] Lin H.–W., Chen Y.–H., Huang Z.–Y., Chen C.–W., Lin L.–Y., Lin F., Wong K.–T., “Highly Efficient Bifacial Transparent Organic Solar Cells with Power Conversion Efficency Greater than 3 % and Transparency of 50 %”, Organic Electronics 13, 2012, 1722–1728.
  • [116] Ripaud E., Demeter D., Rousseau T., Boucard-Cétol E., Allain M., Po R., Leriche P., Roncali J., “Structure Properties Relationships in Conjugated Molecules Based on Diketopyrrolepyrrole for Organic Photovoltaics”, Dyes and Pigments 95, 2012, 126–133.
  • [117] Choi E. H., Chae S. H., Kim K., Lee S. J., Joo J., “Photovoltaic Characteristics of Organic Solar Cells Using Zn–Porphyrin Derivatives with Controlled π Conjugation Structure”, Synthetic Metals 162, 2012, 813–819.
  • [118] Zhu X., Choy W. C. H., Xie F., Duan C., Wang C., He W., Huang F., Cao Y., “A Study of Optical Properties Enhancement in Low–Bandgap Polymer Solar Cells with Embedded PEDOT:PSS Gratings”, Solar Energy Materials & Solar Cells 99, 2012, 327–332.
  • [119] Nasybulin E., Cox M., Kymissis I., Levon K., “Electrochemical Codeposition of Poly(Thieno[3,2-b]Thiopene) and Fullerene: An Approach to a Bulk Heterojunction Organic Photovoltaic Device”, Synthetic Metals 162, 2012, 10–17.
  • [120] Oo T. Z., Chandra R. D., Yantara N., Prabhakar R. R., Wong L. H., Mathews N., Mhaisalkar S. G., “Zinc Tin Oxide (ZTO) Electron Trasporting Buffer Layer in Inverted Organic Solar Cell”, Organic Electronics 13, 2012, 870–874.
  • [121] Li Y., Huang H., Wang M., Nie W., Huang W., Fang G., Carrol D. L., “Spectral Response of Fiber–Based Organic Photovoltaics”, Solar Energy Materials & Solar Cells 98, 2012, 273–276.
  • [122] http://www.dailymail.co.uk/sciencetech/article-4762440/Organic-solar-cell-glasses charge-phone.html#ixzz58PjORNZd (Erişim Tarihi 02.03.2018).
  • [123] Aleksejeva J., Teteris J., Tokmakovs A., “Azobenzene Containing Low–Molecular Weight Organic Glasses for Optical Recording”, Physics Procedia 44, 2013, 19–24.
  • [124] Ouyang Q., Yu H., Wu H., Lei Z., Qi L., Chen Y., “Graphene/MoS2 Organic Glasses: Fabrication and Enhanced Reverse Saturable Absorption Properties”, Optical Materials 35, 2013, 2352–2356.
  • [125] Traskovskis K., Lazdovica K., Tokmakovs A., Kokars V., Rutkis M., “Modular Approach to Obtaining Organic Glasses from Low–Molecular Weight Dyes Using 1,1,1–Triphenylpentane Auxiliary Groups: Non Lineer Optical Properties”, Dyes and Pigment 99, 2013, 1044–1050.
  • [126] Rahimi R., Roberts A., Narang V., Kumbham V. K., Korakakis D., “Study of the Effect of the Charge Transport Layer in the Electrical Characteristics of the Organic Photovoltaics”, Optical Materials 35, 2013, 1077–1080.
  • [127] Kumar V., Wang H., “Selection of Metal Substrates for Completely Solution–Processed Inverted Organic Photovoltaic Devices”, Solar Energy Materials & Solar Cells 113, 2013, 179–185.
  • [128] Hsu M.–H., Chen P.–H., Yu P., Huang J.–H., Chang C.–H., Cheng Y.–C., Chu C.–W., “Ubiquitous Carrier Harvesting in Organic Solar Cells with Embedded Indium–Tin–Oxide Nano–Electrodes”, Solar Energy Materials & Solar Cells 118, 2013, 102–108.
  • [129] Liang Z., Gao R., Lan J.–L., Wiranwetchayan O., Zhang Q., Li C., Cao G., “Growth of Vertically Aligned ZnO Nanowalls for Inverted Polymer Solar Cells”, Solar Energy Materials & Solar Cells 117, 2013, 34–40.
  • [130] Kozanoglu D., Apaydin D. H., Cirpan A., Esenturk E. N., “Power Conversion Efficiency Enhancement of Organic Solar Cells by Addition of Gold Nanostars, Nanorods, and Nanospheres”, Organic Electronics 14, 2013, 1720–1727.
  • [131] Noh H. S., Cho E. H., Kim H. M., Han Y. D., Joo J., “Organic Solar Cells Using Plasmonic of Ag Nanoprisms”, Organic Electronics 14, 2013, 278–285.
  • [132] Cheng P., Shi Q., Lin Y., Li Y., Zhan X., “Evolved Structure of Thiazolothiazole Based Small Molecules towards Enhanced Efficiency in Organic Solar Cells”, Organic Electronics 14, 2013, 599–606.
  • [133] Lao X. C., Desai C., Mitra S., “Functionalized Nanodiamond as a Charge Transporter in Organic Solar Cells”, Solar Energy 91, 2013, 204–211.
  • [134] Ouyang Q., Xu Z., Lei Z., Dong H., Yu H., Qi L., Li C., Chen Y., “Enhanced Nonlinear Optical and Optical Limiting Properties of Graphene/ZnO Hybrid Organic Glasses”, Carbon 67, 2014, 214–220.
  • [135] Wadams R. C., Yen C.–W., Bucher Jr D. P., Koerner H., Durstock M. F., Fabris L., Tabor C. E., “Gold Nanorod Enhanced Organic Photovoltaics: The Importance of Morphology Effects”, Organic Electronics 15, 2014, 1448–1457.
  • [136] Abidin T., Zhang Q., Wang K.–L., Liaw D.–J., “Recent Advances in Electrocromic Polymers”, Polymer 55, 2014, 5293–5304.
  • [137] Gutiérrez E. P., Maldonado J.–L, Nolasco J., Ramos–Ortíz G., Rodríguez M., Mendoza–De la Torre U., Meneses–Nava M.–A., Barbosa–García O., García–Ortega H., Farfán N., Granados G., Santillan R., Juaristi E., “Titanium Oxide: Fullerene Composite Films as Electron Collector Layer in Organic Solar Cells and the Use of an Easy–Deposition Cathode”, Optical Materials 36, 2014, 1336–1341.
  • [138] Hwang I., McNeill C. R., Greenham N. C., “Evaluation of Phase Separation upon Annealing and the Influence on Photocurrent Generation n Ternary Blend Organic Solar Cells”, Synthetic Metals 189, 2014, 63–68.
  • [139] Kim W., Kim J. K., Lim Y., Park I., Choi Y. S., Park J. H., “Tungsten Oxide /PEDOT:PSS Hybrid Cascade Hole Extraction Layer for Polymer Solar Cells with Enhanced Long–Term Stability and Power Conversion Efficency”, Solar Energy Materials & Solar Cells 122, 2014, 24–30.
  • [140] Lan J.–L., Liang Z., Yang Y.–H., Ohuchi F. S., Jenekhe S. A., Cao G., “The Effect of SrTiO3:ZnO as Cathodic Buffer Layer for Inverted Polymer Solar Cells”, Nano Energy 4, 2014, 140–149.
  • [141] Han Y.–K., Chang M.–Y., Ho K.–S., Hsieh T.–H., Tsai J.–L., Huang P.–C., “Electrochemically Deposited Nano Polyaniline Films as Hole Transporting Layers in Organic Solar Cells”, Solar Energy Materials & Solar Cells 128, 2014, 198–203.
  • [142] Lau X. C., Wang Z., Mitra S., “Effect of Low Concentrations Carbon Black in Organic Solar Cells”, Solar Energy Materials & Solar Cells 128, 2014, 69–76.
  • [143] Kösemen A., Tore N., Parlak E. A., Kösemen Z. A., Ulbricht C., Usluer O., Egbe D. A. M., Yerli Y., San S. E., “An Efficient Organic Inverted Solar Cell with AnE-PVStat: PCBM Active Layer and V2O5/Al Anode Layer”, Solar Energy 99, 2014, 88–94.
  • [144] Raja R., Liu W.-S., Hsiow C.-Y., Hsieh Y.-J., Rwei S.-P., Chiu W.-Y., Wang L., “Novel Fulleropyrrolidines Bearing π –Conjugated Thiophene Derivatives as Compatibilizing Group for Developing Highly Stable Polymer Solar Cells”, Organic Electronics 15, 2014, 2223–2233.
  • [145] Kumar A. M., Latthe S. S., Sudhagar P., Obot I. B., Gasem Z. M., “In–situ Synthesis of Hydrophobic SiO2–PMMA Composite for Surface Protective Coatings: Experimental and Quantum Chemical Analysis”, Polymer 77, 2015.
  • [146] Wu, N., Luo Q., Bao Z., Lin J., Li Y.–Q., Ma, C.–Q., “Zinc Oxide:Conjugated Polymer Nanocomposite as Cathode Buffer Layer for Solution Processed Inverted Organic Solar Cells”, Solar Energy Materials & Solar Cells 141, 2015, 248–259.
  • [147] Berrebi M., Fabre–Francke I., Lavédrine B., Fichet O., “Development of Organic Glass Using Interpenetrating Polymer Networks with Enhanced Resistance toward Sctratches and Solvents”, European Polymer Journal 63, 2015, 132–140.
  • [148] Lin G., Cui R., Huang H., Guo X., Yang S., Li C., Dong J., Sun B., “Facile Synthesis of Isomeric Fullerene Derivatives as Acceptors for High Performance Organic Photovoltaic”, Tetrahedron 71, 2015, 7998–8002.
  • [149] Çağlar A., Cengiz U., Yıldırım M., Kaya İ., “Effect of Deposition Charges on the Wettability Performance of Electrochromic Polymers”, Applied Surface Science 331, 2015, 262–270.
  • [150] Yu H., Ge Y., Shi S., “Improving Power Conversion Efficency of Polymer Solar Cells by Doping Copper Phthalocyanine”, Electrochimica Acta 180, 2015, 645–650.
  • [151] Wang Y., Bai H., Zhan X., “Comparison of Conventional and Inverted Structures in Fullerene–Free Organic Solar Cells”, Journal of Energy Chemistry 24, 2015, 744–749.
  • [152] Qiu, Y., Leung, S.–F., Zhang, Q., Mu, C., Hua B., Yan H., Yang, S., Fan Z., “Nanobowl Optical Concentrator for Efficient Light Trapping and High–Performance Organic Photovoltaics”, Sci. Bull., 2015, 60(1):109–115.
  • [153] Tessarolo M., Guerrero A., Gedefaw D., Bolognesi M., Prosa M., Xu X., Mansour M., Wang E., Seri M., Anderson M. R., Muccini M., Garcia-Belmonte G., “Predicting Thermal Stability of Organic Solar Cells through an Easy and Fast Capacitance Measurement”, Solar Energy Materials & Solar Cells 141, 2015, 240–247.
  • [154] Lei H., Qin P., Ke W., Guo Y., Dai X., Chen Z., Wang H., Li B., Zheng Q., Fang G., “Performance Enhancement of Polymer Solar Cells with High Work Function CuS Modified ITO as Anodes”, Organic Electronics 22, 2015, 173–179.
  • [155] Fan L., Cui R., Jiang L., Zou Y., Li, Y., Qian D., “A New Small Molecule with Indolone Chromophore as the Electron Accepting Unit for Efficient Organic Solar Cells”, Dyes and Pigments 113, 2015, 458–464.
  • [156] Zu Q., Bao X., Yu J., Yang R., Dong L., “Simple Synthesis of Solution-Processable Oxygen-Enriched Graphene as Anode Buffer Layer for Efficient Organic Solar Cells”, Organic Electronics 27, 2015, 143–150.
  • [157] Yang Y., Qing J., Ou J., Lin X., Yuan Z., Yu D., Zhou X., Chen X., “Rational Design of Metallic Nanowire-Based Plasmonic Architectures for Efficient Inverted Polymer Solar Cells”, Solar Energy 122, 2015, 231–238.
  • [158] Carlson J. S., Marleau P., Zarkesh R. A., Feng P. L., “Melt–Cast Organic Glasses as High–Efficiency Fast Neutron Scintillators”, Nuclear Instruments and Methods in Physics Research A 832, 2016, 152-157.
  • [159] Baba E. M., Cansoy C. E., Zayim E. O., “Investigation of Wettability and Optical Properties of Superhydrophobic Polystyrene–SiO2 Composite Surfaces”, Progress in Organic Coatings 99, 2016, 378–385.
  • [160] Wei J., Li H., Zhao Y., Zhou W., Fu R., Leprince–Wang Y., Yu D., Zhao Q., “Supressed Hysteresis and Improved Stability in Perovskite Solar Cells with Conductive Organic Network”, Nano Energy 26, 2016, 139–147.
  • [161] Jia X., Wu, N., Wei J., Zhang L., Luo Q., Bao Z., Li Y.–Q., Yang Y., Liu X., Ma C.–Q., “A Low–Cost and Low–Temperature Processable Zinc Oxide–Polyethylenimine (ZnO:PEI) Nano–Composite as Cathode Buffer Layer for Organic and Perovskite Solar Cells”, Organic Electronics 38, 2016, 150–157.
  • [162] Dusza M., Stefanski M., Wozniak M., Hreniak D., Gerasymchuck Y., Marciniak L., Granek F., Strek W., “Luminescent Sr2CeO4 Nanocrystals for Applications in Organic Solar Cells with Conjuguated Polymers”, Journal of Luminescence 169, 2016, 857–861.
  • [163] Rault J., “Aging of Oriented Polymer Glasses”, Journal of Non–Crystalline Solids 352, 2016, 4946–4955.
  • [164] Zadarozhnny M. Y., Chukov D. I., Churyukanova M. N., Gorshenkov M. V., Zadarozhnny V. Y., Stepashkin A. A., Tsarkov A. A., Louzguine–Luzgin D. V., Kaloshin S. D., “Investigation of Contact Surfaces between Polymer Matrix and Metallic Glasses in Composite Materials Based on High–Density Polyethylene”, Materials and Design 92, 2016, 306–312.
  • [165] Nakashima M., Murata N., Suenaga Y., Naito H., Sasaki T., Kunugi Y., Ohshita J., “Disilanobithiophene–Dithienylbenzothiadiazole Alternating Polymer as Donor Material of Bulk Heterojunction Polymer Solar Cells”, Synthetic Metals 215, 2016, 116–120.
  • [166] Khanum K. K., Ramamurthy P. C., “Instigating Network Structure in Bulk Heterojunction Organic Solar Cells Creating a Unique Approach in Augmenting The Optical Aborption”, Polymer 91, 2016, 146–155.
  • [167] Kao, S.–Y., Kung C.–W., Chen H.–W., Hu C.–W., Ho K.–C., “An Electrochromic Device Based on All–in–One Polymer Gel through in–situ Thermal Polimerization”, Solar Energy Materials & Solar Cells 145, 2016, 61–68.
  • [168] Liu Z., Wang N., Fu Y., “Effect of Thermal Annealing Treatment with Titanium Chelate on Buffer Layer in Inverted Polymer Solar Cells”, Applied Surface Science 389, 2016, 1120–1125.
  • [169] Bolognesi M., Prosa M., Tessarolo M., Donati G., Toffanin S., Muccini M., Seri M., “Impact of Environmentally Friendly Processing on Polymer Solar Cells: Performance, Thermal Stability and Morphological Study by Imaging Techniques”, Solar Energy Materials & Solar Cells 155, 2016, 436–445.
  • [170] Carlson J. S., Marleau P., Zarkesh R.A., Feng P. L., “Taking Advantage of Disorder: Small–Molecule Organic Glasses for Radiation Detection and Particle Discrimination”, J. Am. Chem. Soc., 2017, 139 (28), 9621–9626.
  • [171] Jung S. E., Lee E. J., Moon D. K., Haw J. R., “Surface Modification of Line–Patterned Electron Transfer Layer for Enhancing the Performance of Organic Solar Cells”, Journal of Industrial and Engineering Chemistry 52, 2017, 147–152.
  • [172] Chander N., Singh S., Iyer S. S. K., “Stability and Reliability of P3HT:PC61BM Inverted Organic Solar Cells”, Solar Energy Materials & Solar Cells 161, 2017, 407–415.
  • [173] Zeynali A., Ghiasi T. S., Riazi G., Ajeian R., “Organic Solar Cells Based on Photosystem I Pigment–Protein Complex, Fabrication and Optimization”, Organic Electronics 51, 2017, 341–348.
  • [174] Rolston N., Printz A. D., Dupont S. R., Voroshazi E., Dauskardt R. H., “Effect of Heat, UV Radiation, and Moisture on the Decohesion Kinetics of Inverted Organic Solar Cells”, Solar Energy Materials & Solar Cells 170, 2017, 239–245.
  • [175] Liu W., Zhang X., Liu J., Ma X., Zeng J., Liu P., Xu T., “Electrochromic Properties of Organic–Inorganic Composite Materials”, Journal of Alloys and Compounds 718, 2017, 379–385.
  • [176] Tran V.–H., Khan R., Lee I.–H., Lee S.–H., “Low–Temperature Solution–Processed Ionic Liquid Modfied SnO2 as an Excellent Electron Transport Layer for Inverted Organic Solar Cellls”, Solar Energy Materials and Solar Cells, 2017, doi:https://doi.org/10.1016/j.solmat.2017.12.013.
  • [177] Kim E. C., Na Se.-I., Park J. T., “Fogging, Reflection, and Dust–Free Transparent Conducting Glasses Based on Superhydrophilic Nanotextures for Organic Photovoltaics”, Journal of Industrial and Engineering Chemistry 52, 2017, 243–250.
  • [178] Liu J., Li M., Wu J., Shi Y., Zheng J., Xu C., “Electrochromic Polymer Achieving Synchronous Electrofluorochromic Switching for Optoelectronic Application”, Organic Electronics 51, 2017, 295–303.
  • [179] Lakshminarayana G., Tkaczyk S., Ebothe J., El–Naggar A. M., Albassam A. A., Kityk I. V., Mahdi M. A., “Laser Operated PVA Polymer/(TeO2–(x))–ZnO–WO3–TiO2–Na2O (x = Bi2O3 or Pr2O3 mol %) Glass Composites”, Journal of Non–Crystalline Solids 471, 2017, 146–150.
  • [180] Shi Y., Fu J., Ji Z., “Efficient Ternary Polymer Solar Cells by Doping Fullerene Derivatives”, Thin Solid Films 636, 2017, 20–25.
  • [181] Li W., Zhang S. Zhang H., Hou J., “The Investigations of Two Conjugated Polymers that Show Distinctly Different Photovoltaic Properties in Polymer Solar Cells”, Organic Electronics 44, 2017, 42–49.
  • [182] “Light Emitting Based on Polymer”, Section 7 in Polymer Materials for Energy and Electronic Applications, Elsevier 2017, 243.
  • [183] Cheng J., Ren X., Zhu H. L., Mao J., Liang C., Zhuang J., Roy V. A. L., Choy W. C. H., “Pre– and Post–Treatments Free Nanocomposite Based Hole Transport Layer for High Performance Organic Solar Cells with Considerably Enhanced Reproducibility”, Nano Energy 34, 2017, 76–85.
  • [184] Li Y., Yu H., Huang X., Wu Z., Xu, H., “Improved Performance for Polymer Solar Cells Using CTAB–Modified MoO3 as an Anode Buffer Layer”, Solar Energy Materials & Solar Cells 171, 2017, 72–84.
  • [185] Li Z., Jiang W., Li W., Hong L., Lei T., Mi D., Peng R., Ouyang X., Ge Z., “Reducible Fabrication Cost for P3HT–Based Organic Solar Cells by Using One–Step Synthesized Novel Fulleren Derivatives”, Solar Energy Materials & Solar Cells 159, 2017, 172–178.
  • [186] Liu Z., Hui S., Wang S., “Improved Performance and Stability of Inverted Polymer Solar Cells with Ammonium Heptamolybdate Acted as Hole Extraction Layers via Thermal Annealing Method”, Journal of Luminescence 181, 2017, 310–314.
  • [187] Choi J., Moon D. S., Jang J. U., Yin W. B., Lee B., Lee K. J., “Synthesis of Highly Functionalized Thermoplastic Polyurethanes and Their Potential Applications”, Polymer 116, 2017, 287–294.
  • [188] Bi P., Xiao T., Yang X., Niu M., Wen Z., Zhang K., Qin W., So K. S., Lu G., Hao X., Liu H., “Regulating the Vertical Phase Distribution by Fullerene-Derivative in High Performance Ternary Organic Solar Cells”, Nano Energy 46, 2018, 81–90.
  • [189] Charles U. A., Ibrahim M. A., Teridi M. A. M., “Electrodeposition of Organic–Inorganic Tri-Halide Perovskites Solar Cell”, Journal of Power Sources 378, 2018, 717–731.
  • [190] Serio L., Gawne D. T., Bao Y., “Effect of Tin fluoride Content on the Structure and Properties of Phosphate Glass–Polyamide 11 Hybrids”, European Polymer Journal 99, 2018, 134–141.
  • [191] Wang H., Barrett M., Duane B., Gu J., Zenhausern F., “Materials and Processing of Polymer–Based Electrochromic Devices”, Materials Science & Engineering B 228, 2018, 167–174.
  • [192] John L., “Selected Developments and Medical Applications of Organic–Inorganic Hybrid Biomaterials Based on Functionalized Spherosilicates”, Materials Science & Engineering C, 2018, https://doi.org/10.1016/j.msec.2018.02.007.
  • [193] Liu R., Du Z., Wen S., Wu Y., Zhu D., Yang R., “Energy Levels Modulation of Small Molecule Acceptors for Polymer Solar Cells”, Synthetic Metals 235, 2018, 131–135.

Organic Glasses

Yıl 2018, Cilt: 5 Sayı: 2, 512 - 536, 31.05.2018
https://doi.org/10.31202/ecjse.407306

Öz



The technical name for transparent solid
materials made from organic polymers as polyacrylates, polystyrene, and
polycarbonates and from the copolymers of vinyl chloride with methyl
methacrylate is organic glass. In industry, the term “organic glass” is usually
understood as a sheet material produced by the block polymerization of methyl
methacrylate.



Organic glass may be treated by vacuum or pneumatic
forming and by stamping. It can be processed mechanically and can also be glued
or welded. It is used as a structural material in aircraft, automotive
vehicles, and ships. It is also used for enclosing hotbeds and for glazing
greenhouses, domes, windows, and porches. Buildings are often decorated with
organic glass, and the material is also used in fashioning instrument parts,
prostheses, lenses and prisms used in optics, and pipes used in food
processing. The present study gives knowledge about description, types,
production and latest development of organic glasses.

Kaynakça

  • [1] Pulker H. L., “Coatings on Glass”, 2nd Edition, Elsevier Science Press, 1999.
  • [2] Roth Connie B., “Polymer Glasses”, CRC Press, 2017.
  • [3] Yılmaz R., Karasu B., “Havacılık ve Uzay Endüstrisinde Kullanılan Camlar”, Şişe Cam Teknik Bülten, 2017, Cilt: 46, Sayı: 3(232), 5–14.
  • [4] http://www.medicontur.com/pmma_lenses (Erişim tarihi 15.12.2017).
  • [5] https://www.dhgate.com/product/custom-shop-organic-glass-electric guitars/214251141 (Erişim tarihi 15.12.2017).
  • [6] http://www.techionix.com/tech-updates/meet-valkyrie-a-super-sleek-aircraft-taking-on-the-private-plane-industry/ (Erişim tarihi 15.12.2017).
  • [7] https://i.pinimg.com/originals/41/2d/62/412d621e63d7f6ef28e4b0a6c665d0ed.jpg (Erişim tarihi 15.12.2017).
  • [8] Heavens O. S. and Smith, D. S., “Dielectric Thin Films”, J. Opt. Soc. Am., 1957, 47, 469.
  • [9] Ay B., “Organik Polimerler ve Kullanım Alanları, Pamukkale Üniversitesi, Denizli, Bitirme Tezi, 2007.
  • [10] Şenvar C., “Polimer Kimyasına Giriş, “Zincir (Katılma) Polimerizasyonu”, “Basamaklı Polimerizasyon”, “Kimyasal Kinetik ve Makromoleküller”, Fizikokimya, Cilt 4, Marmara Üniversitesi, İstanbul, 1986.
  • [11] http://megep.meb.gov.tr/mte_program_modul/moduller_pdf/Polimer%20Eldesi.pdf (Erişim tarihi 15.12.2017).
  • [12] Büyükyıldız H. Z., “Coatings and Tints of Spectacle Lenses”, TOD 45. Ulusal Oftalmoloji Kongresi’, Girne, Kıbrıs, 2011.
  • [13] Özmumcu M., “ Özel Bir Termiyonik Vakum Ark (TVA) Tekniği Kullanılarak Organik Gözlük Camlarının Çeşitli Kaplamalarının Yapılması ve Bazı Fiziksel Özelliklerinin İncelenmesi, Osmangazi Üniversitesi, Fizik Ana Bilim Dalı, Eskişehir, Yüksek Lisans Tezi, 2011.
  • [14] Buyukyıldız H. Z., “ Gözlük Camları, Cam Materyalleri ve Kişiye Özel Gözlük Camları”, İstanbul Göz Hastanesi, İstanbul, 2011.
  • [15] https://tr.pinterest.com/source/thepittsburghhistoryjournal.com/ (Erişim tarihi 15.12.2017).
  • [16] http://www.ppgoptical.com/Home.aspx (Erişim tarihi 15.12.2017).
  • [17] Saydam N., “Polimetilmetakrilat (PMMA) Plastik Atıkların Katalitik Pirolizi”, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Kimya Mühendisliği Ana Bilim Dalı, Ankara, Yüksek Lisans Tezi, 2012.
  • [18] Saçak, M., “Polimer Kimyası”, Gazi Kitapevi, Ankara s. 483, 2002.
  • [19] Saçak M., “Polimer Teknolojisi”, Gazi Kitapevi, Ankara, s. 431, 2005.
  • [20] Shishir S., Vinay K., “Polymer Systems and Applications”, 2010.
  • [21] http://spartansigns.com/category/acrylic-sheets-accessories/ (Erişim tarihi 15.12.2017).
  • [22] https://healthyliving.azcentral.com/benefits-acrylic-glasses-7921.html (Erişim tarihi 15.12.2017).
  • [23] http://www.couponsaregreat.net/georgia-aquarium-discount/ (Erişim tarihi 15.12.2017).
  • [24] https://tr.aliexpress.com/item/Sailboat-3D-Lamp-7-Color-Changing-RGB-Night-Light-Acrylic-Sailling-Boat-Model-Crafts-3D-Table/32811619794.html (Erişim tarihi 15.12.2017).
  • [25] Scheirs J., Timothy E. L., “Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters”, 1st ed., Wiley Series in Polymer Science, England, 2003.
  • [26] Brunelle D. J., Korn M. R., “Advances in Polycarbonates”, 1st ed., American Chemical Society Symposium Series, Washington, 2005.
  • [27] Othmer K., “Kirk-Othmer Encyclopedia of Chemical Technology”, 5th ed., John Wiley & Sons, 2004.
  • [28] Yıldız S., “Poli(Laktik Asit)’in Silikon Kauçuk ile Toklaştırılması”, Kocaeli Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 2012.
  • [29] Ebewele R. O., “Polymer Science and Technology”, 1st ed., CRC Press LLC., New York, 11–13, 2000.
  • [30] http://www.polikarbondeposu.com/ (Erişim tarihi 15.12.2017).
  • [31] http://www.polikarbon.com.tr/solid-polikarbonat-levha.htm (Erişim tarihi 15.12.2017).
  • [32] Kurt A., Yavuz R., Bozdağ G., “Polistiren–Kil Nanokompozitlerin Sentezi, Termal ve Optik Özelliklerinin İncelenmesi”, Adıyaman Üniversitesi, Fen Bilimleri Dergisi, 2013, 3 (2), 58–70.
  • [33] http://www.bayar.edu.tr/besergil/6_PP_PS_PVC.pdf (Erişim tarihi 15.12.2017).
  • [34] Kaya A., “Genleştirilmiş Polistren (EPS) Atığının Çeşitli Bağlayıcı Kombinasyonlarında Yeniden Değerlendirilmesi”, Fırat Üniversitesi, Kimya Mühendisliği Anabilim Dalı, Doktora Tezi, 2016.
  • [35] http://www.separplastik.com/index.php?ks=324&sayfa=574 (Erişim tarihi 15.12.2017).
  • [36] http://www.polimerplastik.com/ (Erişim tarihi 15.12.2017).
  • [37] Awaja F., Pavel D., “Recycling of PET”, European Polymer Journal, 2005, 41:1453–1477.
  • [38] Acar I., “Polietilen Tereftalat Atıklarının Hidroksiaminlerle Reaksiyon Ara Ürünlerinin Arastırılması”, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul, 1996.
  • [39] http://muhendisoldum.blogspot.com.tr/2012/09/plastikler.html (Erişim tarihi 15.12.2017).
  • [40] http://tekn-mak.blogspot.com.tr/2013/05/yaygn-olarak-kullanlan-plastik-turleri.html (Erişim tarihi 15.12.2017).
  • [41] Renge I., Wild, U. P., “Inhomogeneous Broadening and Pressure Shifts of the Optical Spectra in Organic Glasses at Low Temperatures”, Journal of Luminescence 86, 2000, 241–247.
  • [42] Cong H. N., Dieng M., Sene C., Chartier, P., “Hybrid Organic–Inorganic Solar Cells: Case of the All Thin PMeT(Y)/CdS(X) Junctions”, Solar Energy Materials & Solar Cells 63, 2000 23–35.
  • [43] Kobayashi H., Takahashi H., Hiki Y., “Viscosity Measurement of Organic Glasses below and above Glass Transition Temperature”, Journal of Non–Crystalline Solids 290, 2001, 32–40.
  • [44] Łączka M., Cholewa–Kowalska K., Kogut M., “Organic-Inorganic Hybrid Glasses of Selective Optical Transmission”, Journal of Non–Crystalline Solids 287, 2001, 10–14.
  • [45] Müller J., Haarer D., Kharlamov B. M., “Non-Lorentzian Hole Profiles in Organic Glasses Caused by a Distribution of Optical Line Widths”, Physics Letters A 281, 2001, 64–69.
  • [46] Kharlamov B. M., “Non–TLS Relaxations in Polymer Glasses”, Journal of Luminescence 94–95, 2001, 695–699.
  • [47] Grazulevicius J. V., Strohriegl P., “Charge–Transporting Polymers and Molecular Glasses”, Chapter 5 in Handbook of Advanced Electronic and Photonic Materials and Devices, edited by H.S. Nalwa Volume 10: Light–Emitting Diodes, Lithium Batteries, and Polymer Devices, 2001, 233–268.
  • [48] Imrie C. T., Ingram M. D., “Decoupled Ion Transport in Mesomorphic Polymer Electrolyte Glasses”, Electrochimica Acta 46, 2001, 1413–1417.
  • [49] Okumoto K., Shirota Y., “Development of New Hole–Transporting Amorphous Molecular Materials for Organic Electroluminescent Devices and Their Charge–Transport Properties”, Materials Science and Engineering B85, 2001, 135–139.
  • [50] Saiter A., Devallencourt C., Saiter J. M., Grenet J., “Thermodynamically “Strong” and Kinetically “Fragile” Polymeric Glass Exemplified by Melamine Formaldehyde Resins”, European Polymer Journal 37, 2001, 1083–1090.
  • [51] Kuwata N., Kawamura J, Nakamura Y., “New Organic–Inorganic Hybrid Superionic Conductor Glasses Consisting of Silver Iodide and Alkylbis–Trimethylammonium Diiodides”, Solid State Communications 124, 2002, 221–226.
  • [52] Ohtsuki C., Miyazaki T., Tanihara M., “Development of Bioactive Organic–Inorganic Hybrid for Bone Substitutes”, Materials Science and Engineering C 22, 2002, 27–34.
  • [53] Vogel M., Tschirwitz C., Schneider G., Koplin C., Medick P., Rössler E., “A 2H NMR and Dielelectric Spectroscopy Study of the Slow β–Process in Organic Glass Formers”, Journal of Non-Crystalline Solids 307–310, 2002, 326–335.
  • [54] Chun H., Kim, N.–J., Joo W.–J., Han J. W., Oh C. O., Kim N., “Synthesis and Characterization of Organic Photorefractive Glass”, Synthetic Metals 129, 2002, 281–283.
  • [55] Hung L. S., Chen C. H., “Recent Progress of Molecular Organic Electroluminescent Materials and Devices”, Materials Science and Engineering R 39, 2002, 143–222.
  • [56] Takahashi M., Niida, H., Tokuda Y., Yoko T., “Organic–Inorganic Hybrid Phosphite Low–Melting Glasses for Photonic Applications”, Journal of Non–Crystalline Solids 326 & 327, 2003, 524–528.
  • [57] Mutaguchi D., Okumoto K., Ohsedo Y., Moriwaki K., Shirota Y., “Development of a New Class Hole–Transporting and Emitting Vinyl Polymers and Their Applications in Organic Electroluminescent Devices”, Organic Electronics 4, 2003, 49–59.
  • [58] Houbertz R., Domann G., Cronauer C., Schmitt A., Martin H., Park J.–U., Fröhlich L., Buestrich R., Popall M., Streppel U., Dannberg P., Wächter C., Bräuer A., “Inorganic–Organic Hybrid Materials for Application in Optical Devices”, Thin Solid Films 442, 2003, 194–200.
  • [59] Cardoso A. V., de Abreu W. M., “Water and the Glass Transition Temperature of Organic (Caramel) Glasses”, Journal of Non–Crystalline Solids 348, 2004, 51–58.
  • [60] Brabec, C. J., “Organic Photovoltaics: Technology and Market”, Solar Energy Materials & Solar Cells 83, 2004, 273–292.
  • [61] Mecerreyes D., Marcilla R., Ochoteco E., Grande H., Pomposo J. A., Vergaz R., Pena J. M. S., “A Simplified All–Polymer Fexible Electrochromic Device”, Electrochimica Acta 49, 2004, 3555–3559.
  • [62] Nocuń M., Leja E., Jedliński J., Najman J., “Structure and Optical Properties of Hybrid Glasses Based on Tetraethylorthosilicate–Trimethoxyoctylsilane and Tetraethylorthosilicate–Tetraethylorthotitanate–Trimethoxyoctylsilane Systems”, Journal of Molecular Structure 744–747, 2005, 3555–3559.
  • [63] Uğur Ş., Pekcan Ö., “Small Molecule Desorption from a Swelling Polymeric Glass in Polymer Solution: Energy Transfer Method”, Materials Chemistry and Physics 92, 2005, 269–273.
  • [64] Kois J., Bereznev S., Raudoja J., Mellikov E., Öpik A., “Glass/ITO/In(O,S)/CuIn(S,Se)2 Solar Cell with Conductive Polymer Window Layer”, Solar Energy Materials & Solar Cells 87, 2005, 657–665.
  • [65] Oh S.–W., Rhee H. W., Lee C., Kim Y. C., Kim J. K., Yu J.–W., “The Photovoltaic Effect of the p–n Heterojunction Organic Photovoltaic Device Using a Nano Template Method”, Current Applied Physics 5, 2005, 55–58.
  • [66] Meneaa B., Mizono M., Takahashi M., Tokuda Y., Yoko T., “Polycarboxylic Acid as Network Modifiers for Water Durability Improvement of Inorganic–Organic Hybrid Tin–Silico–Phosphate Low–Melting Glass”, Journal of Solid State Chemistry 179, 2006, 492–499.
  • [67] Lyulin A. V., Michels M. A. J., “Simulation of Polymer Glasses: From Segmental Dynamics to Bulk Mechanics”, Journal of Non–Crystalline Solids 352, 2006, 5008–5012.
  • [68] Mortimer R. J., Dyer A. L., Reynolds J. R., “Electrochromic Organic and Polymeric Materials for Display Applications”, Display 27, 2006, 2–18.
  • [69] Fabbri P., Messori M., Montecchi M., Nannarone S., Pasquali L., Pilati F., Tonelli C., Toselli M., “Perfluoropolyether–Based Organic–Inorganic Hybrid Coatings”, Polymer 47, 2006, 1055–1062.
  • [70] Mozer A. J., Sariciftci, N. S., “Conjugated Polymer Photovoltaic Devices and Materials”, C. R. Chimie 9, 2006, 568–577.
  • [71] Carella A., Centore R., Mager L., Barsella A., Fort A., “Crosslinkable Organic Glasses with Quadratic Nonlinear Optical Acivity”, Organic Electronics 8, 2007, 57–62.
  • [72] Choi K. M., “A Chemical Strategy to Improve the Fluorescence Environments of Erbium–Ions Doped into Organically Modified Hybrid Glasses for Laser Amplifier Applications”, Materials Chemistry and Physics 103, 2007, 176–182.
  • [73] Getautis V., Stumbraite J., Gaidelis V., Jankauskas V., Kliucius A., Paulauskas V., “Molecular Glasses Possessing a Phenyl–1,2,3,4–Tetrahydroquinoline Moiety as Hole Transporting Materials for Electrophotography”, Synthetic Metals 157, 2007, 176–182.
  • [74] Urman K., Otaigbe J. U., “New Phosphate Glass/Polymer Hybrids–Current Status and Future Prospects”, Prog. Polym. Sci. 32, 2007, 1462–1498.
  • [75] Wojtach K., Laczka M., Cholewa–Kovalska K., Olejniczak Z., Sokolowsa J., “Characteristics of Colored Inorganic–Organic Hybrid Materials”, Journal of Non–Crystalline Solids 353, 2007, 2099–2103.
  • [76] Etienne S., Hazeg N., Duval E., Mermet A., Wypych A., David L., “Physical Aging and Molecular Mobility of Amorphous Polymers”, Journal of Non–Crystalline Solids 353, 2007, 3871–3878.
  • [77] Ishii K., Nakayama H., “Formation and Stability of Amorphous Molecular Systems: As the Prototype of Functional Amorphous Organic Materials”, Journal of Non–Crystalline Solids 353, 2007, 1279–1282.
  • [78] Hanisch J., Ahlswede E, Powalla M., “All–Sputtered Contacts for Organic Solar Cells”, Thin Solid Films 516, 2008, 7241–7244.
  • [79] Malinauskas T., Gaidelis V., Jankauskas V., Getautis V., “Novel Highly Soluble 3,3’–Bicarbazolyl Based Polymers for Optoelectronics”, European Polymer Journal 44, 2008, 3620–3627.
  • [80] Alévêque O., Leriche P., Cocherel N., Frère P., Cravino A., Roncali J., “Star–Shaped Conjugated Systems Derived from Dithiafulvenyl–Derivatized Triphenylamines as Active Materials for Organic Solar Cells”, Solar Energy Materials & Solar Cells 92, 2008, 1170–1174.
  • [81] Gorelov Y. P., Chmykhova T. G., Shalaginova I. A., “New Organic Glasses for the Aircraft Industry”, Polymer Science and Technology, 2009, 37, No. 5.
  • [82] Sheng K., Yan B., “Coordination Bonding Assembly and Photophysical Properties of Europium Organic/Inorganic/Polimeric Hybrid Materials”, Journal of Photochemistry and Photobiology A: Chemistry 206, 2009, 140–147.
  • [83] Bricaud Q., Cravino A., Leriche P., Roncali J., “Terthiophene–Cyanovinylene π–Conjugated Polymers as Donor Material for Organic Solar Cells”, Sythetic Metals 119, 2009, 2534–2538.
  • [84] Bedeloglu A., Demir, A., Bozkurt Y., Sariciftci, N. S., “A Flexible Textile Structure Based on Polymeric Photovoltaics Using Transparent Cathode”, Sythetic Metals 159, 2009, 2043–2048.
  • [85] Kirkus M., Grazulevicius J. V., Grigalevicius S., Gu R., Dehaen V., Jankauskas V.,”Hole–Transporting Glass Forming Indilo[3,2–b]Carbazole–Based Diepoxy Monomer and Polymers”, European Polymer Journal 45, 2009, 410–417.
  • [86] Wu J., Huang, G. Qu L., Zheng J., “Correlations between Dynamic Fragility and Dynamic Mechanical Properties of Several Amorphous Polymers”, Journal of Non–Crystalline Solids 355, 2009, 1755–1759.
  • [87] Ramirez C. L., Parise A. R., “Solvent Resistant Electrochromic Polymer Based on Methylene–Bridged Arylamines”, Organic Electronics 10, 2009, 747–752.
  • [88] Saxena K., Jain V. K., Mehda D. S., “A Review on the Light Extraction Techniques in Organic Electroluminescent Devices”, Optical Materials 32, 2009, 221–233.
  • [89] Xhi H., Wei Z., Xu W., Bo Z., Hu W., Zhu D., “Organic Photovoltaic Cells Based on Tetrathia[22]Annulene[2,1,2,1]/PCBM Heterojunction”, Chemical Physics Letters 484, 2009, 41–43.
  • [90] Tanaka S., Zakhidov A. A., Ovalle–Robles R., Yoshida Y., Hiromitsu I., Fujita Y., Yoshino K., “Semitransparent Organic Photovoltaic Cell with Carbon Nanotube–Sheet Anodes and Ga–Doped ZnO Cathods”, Sythetic Metals 159, 2009, 2326–2328.
  • [91] Zhu L., Yu L., “Generality of Forming Stable Organic Glasses by Vapor Deposition”, Chemical Physics Letters 499, 2010, 62–65.
  • [92] Pokrass M., Burshtein S., Gvishi R., “Thermo–Optic Coefficient in Some Hybrid Organic/Inorganic Fast Sol–Gel Glasses”, Optical Materials 32, 2010, 975–981.
  • [93] Boccaccini A. R., Erol M., Stark W. J., Mohn D., Hong Z., Mano J. F., “Polymer/Bioactive Glass Nanocomposites for Biomedical Applications: A Review”, Computer Science and Technology 70, 2010, 1767–1776.
  • [94] Horie M., Shen I.-W., Tuladhar S. M., Leventis H., Haque S. A., Nelson J., Saunders B. R., Turner M. L., “Poly(Thienylenevinylene) Prepared by Ring–Opening Metathesis Polimerization: Performance as a Donor in Bulk Heterojunction Organic Photovoltaic Devices”, Polymer 51, 2010, 1541–1547.
  • [95] Bedeloglu A. (C), Demir A., Bozkurt Y., Sariciftci N. S., “Photovoltaic Properties of Polymer Based Organic Solar Cells Adapted for Non–Transparent Substrates”, Renewable Energy 35, 2010, 2301–2306.
  • [96] Sivakumar R., Akila K., Anandan S., “New Type of Inorganic–Organic Hybrid (Heteropolytungsticacid–Polyepichlorohydrin) Polymer Electrolyte with TiO2 Nanofiller for Solid State Dye Sensitized Solar Cells”, Current Applied Physics 10, 2010, 1255–1260.
  • [97] Zhao Z., Teki R., Koratkar N., Efstathiadis H., Haldar P., “Metal Oxide Buffer Layer for Improving Performance of Polymer Solar Cells”, Applied Surface Science 256, 2010, 6053–6056.
  • [98] Chung D. S., Kong H., Yun W. M., Cha H., Shim H.–K., Kim Y.–H., Park C. E., “Effects of Selenophene Substitution on the Mobility and Photovoltaic Efficiency of Polyquaterthiophene–Based Organic Solar Cells”, Organic Electronics 11, 2010, 899–904.
  • [99] Martínez A. B., Artús P., Dürsteter J. C., Arencón D., “Fracture Behaviour of Termosetting Polymers for Opthalmic Lenses”, Engineering Failure Analysis 17, 2010, 4–10.
  • [100] Jeong S., Han Y. S., Kwon Y., Choi M.–S., Cho G., Kim K.–S., Kim Y., “Effects of n Type Perylene Derivative as an Additive on the Power Conversion Efficiencies of Polymer Solar Cells”, Synthetic Metals 160, 2010, 2109–2115.
  • [101] Messori M., Fabbri P., Pilati F., Tonelli C., Toselli M., “Perfluoropolyether–Based Organic–Inorganic Coatings”, Progress in Organic Coatings 72, 2011, 461–468.
  • [102] Cetin B., Odabasi M., “Polibrominated Diphenyl Ethers (PBDEs) in Indoor and Outdoor Window Organic Films in Izmir, Turkey”, Journal of Hazardous Materials 185, 2011, 784–791.
  • [103] Yu D., Kleemeier M., Wu G. M., Schartel B., Liu W. Q., Hartwig A., “A Low Melting Organic-Inorganic Glass and Its Effect on Flame Retardancy of Clay/Epoxy Composites”, Polymer 52, 2011, 2120–2131.
  • [104] Kim J.–R., Cho J. M., Lee A.–R., Chae E. A., Park J.–U., Byun W.–B., Lee S. K., Lee J.–C., So W.–W., Yoo S., Moon S.–J., Shin W. S., “Improvement of the Performance of Inverted Polymer Solar Cells with a Fluorine–Doped Tin Oxide Electrode”, Current Applied Physics 11, 2011, S175–S178.
  • [105] Zhang M., Chiu T.–L., Lin C.–F., Lee J.–H., Wang J.–K., Wu Y., “Roughness Characterization of Silver Oxide Anodes for Use in Efficient Top–Illuminated Organic Solar Cells”, Solar Energy Materials & Solar Cells 95, 2011, 2606–2609.
  • [106] Jeong S., Woo S.-H., Lyu H.–K., Han Y. S., “Effects of a Perfluorinated Compound as an Additive on the Power Conversion Efficiencies of Polymer Solar Cells”, Solar Energy Materials & Solar Cells 95, 2011, 1908–1914.
  • [107] Luk W. C., Yeung K. M., Tam K. C., Ng K. L., Kwok K. C., Kwong C. Y., Ng A. M. C., Durišić A. B., “Enhanced Conversion Efficiency of Polymeric Photovoltaic Cell by Nanostructured Antireflection Coating”, Organic Electronics 12, 2011, 557–561.
  • [108] Nasybulin E., Feinstein J., Cox M., Kymissis I., Levon K., “Electrochemically Prepared Polymer Solar Cells by Three–Layer Deposition of Poly(3,4–Ethylenedioxythiopene)/Poly(2,2’–Bithiopene)/Fullerene (PEDOT/PBT/C60)”, Polymer 52, 2011, 3627–3632.
  • [109] Delpouve N., Vuillequez A., Saiter A., Youssef B., Saiter J. M., “Fragility and Cooperativity Concepts in Hydrogen–Bonded Organic Glasses”, Physica B 407, 2012, 3561–3565.
  • [110] Liu X., Zhang J., Tang P., Yu G., Zhang Z., Chen H., Chen Y., Zhao B., Tan S., Shen P., “Development of a New Diindenopyrazine–Benzotriazole Copolymer for Multifunctional Application in Organic Field–Effect Transistors, Polymer Solar Cells and Light–Emitting Diodes”, Organic Electronics 13, 2012, 1671–1679.
  • [111] Ikena H., Kirsanov, D., Legin A. and Schöning, M. J., “Novel Thin–Film Polymeric Materials for the Detection of Heavy Metals”, Procedia Engineering 47, 2012, 322–325.
  • [112] Kim T.–S., Na, S.–I., Oh S.–H., Kang R., Yu B.–K., Yeo J.–S., Lee J., Kim D.–Y., “All–Solution–Processed ITO–Free Polymer Solar Cells Fabricated on Copper Sheets”, Solar Energy Materials & Solar Cells 98, 2012, 168–171.
  • [113] Du X., He D., Xiao Z., Ding L., “The Double-Edged Function of UV Light in Polymer Solar Cells with an Inverted Structure”, Synthetic Metals 162, 2012, 2302–2306.
  • [114] Woestenborghs W., De Visschere P., Beunis F., Van Steenberge G., Neyts K., Vetsuypens A., “Analysis of a Transparent Organic Photoconductive Sensor”, Organic Electronics 13, 2012, 2250–2256.
  • [115] Lin H.–W., Chen Y.–H., Huang Z.–Y., Chen C.–W., Lin L.–Y., Lin F., Wong K.–T., “Highly Efficient Bifacial Transparent Organic Solar Cells with Power Conversion Efficency Greater than 3 % and Transparency of 50 %”, Organic Electronics 13, 2012, 1722–1728.
  • [116] Ripaud E., Demeter D., Rousseau T., Boucard-Cétol E., Allain M., Po R., Leriche P., Roncali J., “Structure Properties Relationships in Conjugated Molecules Based on Diketopyrrolepyrrole for Organic Photovoltaics”, Dyes and Pigments 95, 2012, 126–133.
  • [117] Choi E. H., Chae S. H., Kim K., Lee S. J., Joo J., “Photovoltaic Characteristics of Organic Solar Cells Using Zn–Porphyrin Derivatives with Controlled π Conjugation Structure”, Synthetic Metals 162, 2012, 813–819.
  • [118] Zhu X., Choy W. C. H., Xie F., Duan C., Wang C., He W., Huang F., Cao Y., “A Study of Optical Properties Enhancement in Low–Bandgap Polymer Solar Cells with Embedded PEDOT:PSS Gratings”, Solar Energy Materials & Solar Cells 99, 2012, 327–332.
  • [119] Nasybulin E., Cox M., Kymissis I., Levon K., “Electrochemical Codeposition of Poly(Thieno[3,2-b]Thiopene) and Fullerene: An Approach to a Bulk Heterojunction Organic Photovoltaic Device”, Synthetic Metals 162, 2012, 10–17.
  • [120] Oo T. Z., Chandra R. D., Yantara N., Prabhakar R. R., Wong L. H., Mathews N., Mhaisalkar S. G., “Zinc Tin Oxide (ZTO) Electron Trasporting Buffer Layer in Inverted Organic Solar Cell”, Organic Electronics 13, 2012, 870–874.
  • [121] Li Y., Huang H., Wang M., Nie W., Huang W., Fang G., Carrol D. L., “Spectral Response of Fiber–Based Organic Photovoltaics”, Solar Energy Materials & Solar Cells 98, 2012, 273–276.
  • [122] http://www.dailymail.co.uk/sciencetech/article-4762440/Organic-solar-cell-glasses charge-phone.html#ixzz58PjORNZd (Erişim Tarihi 02.03.2018).
  • [123] Aleksejeva J., Teteris J., Tokmakovs A., “Azobenzene Containing Low–Molecular Weight Organic Glasses for Optical Recording”, Physics Procedia 44, 2013, 19–24.
  • [124] Ouyang Q., Yu H., Wu H., Lei Z., Qi L., Chen Y., “Graphene/MoS2 Organic Glasses: Fabrication and Enhanced Reverse Saturable Absorption Properties”, Optical Materials 35, 2013, 2352–2356.
  • [125] Traskovskis K., Lazdovica K., Tokmakovs A., Kokars V., Rutkis M., “Modular Approach to Obtaining Organic Glasses from Low–Molecular Weight Dyes Using 1,1,1–Triphenylpentane Auxiliary Groups: Non Lineer Optical Properties”, Dyes and Pigment 99, 2013, 1044–1050.
  • [126] Rahimi R., Roberts A., Narang V., Kumbham V. K., Korakakis D., “Study of the Effect of the Charge Transport Layer in the Electrical Characteristics of the Organic Photovoltaics”, Optical Materials 35, 2013, 1077–1080.
  • [127] Kumar V., Wang H., “Selection of Metal Substrates for Completely Solution–Processed Inverted Organic Photovoltaic Devices”, Solar Energy Materials & Solar Cells 113, 2013, 179–185.
  • [128] Hsu M.–H., Chen P.–H., Yu P., Huang J.–H., Chang C.–H., Cheng Y.–C., Chu C.–W., “Ubiquitous Carrier Harvesting in Organic Solar Cells with Embedded Indium–Tin–Oxide Nano–Electrodes”, Solar Energy Materials & Solar Cells 118, 2013, 102–108.
  • [129] Liang Z., Gao R., Lan J.–L., Wiranwetchayan O., Zhang Q., Li C., Cao G., “Growth of Vertically Aligned ZnO Nanowalls for Inverted Polymer Solar Cells”, Solar Energy Materials & Solar Cells 117, 2013, 34–40.
  • [130] Kozanoglu D., Apaydin D. H., Cirpan A., Esenturk E. N., “Power Conversion Efficiency Enhancement of Organic Solar Cells by Addition of Gold Nanostars, Nanorods, and Nanospheres”, Organic Electronics 14, 2013, 1720–1727.
  • [131] Noh H. S., Cho E. H., Kim H. M., Han Y. D., Joo J., “Organic Solar Cells Using Plasmonic of Ag Nanoprisms”, Organic Electronics 14, 2013, 278–285.
  • [132] Cheng P., Shi Q., Lin Y., Li Y., Zhan X., “Evolved Structure of Thiazolothiazole Based Small Molecules towards Enhanced Efficiency in Organic Solar Cells”, Organic Electronics 14, 2013, 599–606.
  • [133] Lao X. C., Desai C., Mitra S., “Functionalized Nanodiamond as a Charge Transporter in Organic Solar Cells”, Solar Energy 91, 2013, 204–211.
  • [134] Ouyang Q., Xu Z., Lei Z., Dong H., Yu H., Qi L., Li C., Chen Y., “Enhanced Nonlinear Optical and Optical Limiting Properties of Graphene/ZnO Hybrid Organic Glasses”, Carbon 67, 2014, 214–220.
  • [135] Wadams R. C., Yen C.–W., Bucher Jr D. P., Koerner H., Durstock M. F., Fabris L., Tabor C. E., “Gold Nanorod Enhanced Organic Photovoltaics: The Importance of Morphology Effects”, Organic Electronics 15, 2014, 1448–1457.
  • [136] Abidin T., Zhang Q., Wang K.–L., Liaw D.–J., “Recent Advances in Electrocromic Polymers”, Polymer 55, 2014, 5293–5304.
  • [137] Gutiérrez E. P., Maldonado J.–L, Nolasco J., Ramos–Ortíz G., Rodríguez M., Mendoza–De la Torre U., Meneses–Nava M.–A., Barbosa–García O., García–Ortega H., Farfán N., Granados G., Santillan R., Juaristi E., “Titanium Oxide: Fullerene Composite Films as Electron Collector Layer in Organic Solar Cells and the Use of an Easy–Deposition Cathode”, Optical Materials 36, 2014, 1336–1341.
  • [138] Hwang I., McNeill C. R., Greenham N. C., “Evaluation of Phase Separation upon Annealing and the Influence on Photocurrent Generation n Ternary Blend Organic Solar Cells”, Synthetic Metals 189, 2014, 63–68.
  • [139] Kim W., Kim J. K., Lim Y., Park I., Choi Y. S., Park J. H., “Tungsten Oxide /PEDOT:PSS Hybrid Cascade Hole Extraction Layer for Polymer Solar Cells with Enhanced Long–Term Stability and Power Conversion Efficency”, Solar Energy Materials & Solar Cells 122, 2014, 24–30.
  • [140] Lan J.–L., Liang Z., Yang Y.–H., Ohuchi F. S., Jenekhe S. A., Cao G., “The Effect of SrTiO3:ZnO as Cathodic Buffer Layer for Inverted Polymer Solar Cells”, Nano Energy 4, 2014, 140–149.
  • [141] Han Y.–K., Chang M.–Y., Ho K.–S., Hsieh T.–H., Tsai J.–L., Huang P.–C., “Electrochemically Deposited Nano Polyaniline Films as Hole Transporting Layers in Organic Solar Cells”, Solar Energy Materials & Solar Cells 128, 2014, 198–203.
  • [142] Lau X. C., Wang Z., Mitra S., “Effect of Low Concentrations Carbon Black in Organic Solar Cells”, Solar Energy Materials & Solar Cells 128, 2014, 69–76.
  • [143] Kösemen A., Tore N., Parlak E. A., Kösemen Z. A., Ulbricht C., Usluer O., Egbe D. A. M., Yerli Y., San S. E., “An Efficient Organic Inverted Solar Cell with AnE-PVStat: PCBM Active Layer and V2O5/Al Anode Layer”, Solar Energy 99, 2014, 88–94.
  • [144] Raja R., Liu W.-S., Hsiow C.-Y., Hsieh Y.-J., Rwei S.-P., Chiu W.-Y., Wang L., “Novel Fulleropyrrolidines Bearing π –Conjugated Thiophene Derivatives as Compatibilizing Group for Developing Highly Stable Polymer Solar Cells”, Organic Electronics 15, 2014, 2223–2233.
  • [145] Kumar A. M., Latthe S. S., Sudhagar P., Obot I. B., Gasem Z. M., “In–situ Synthesis of Hydrophobic SiO2–PMMA Composite for Surface Protective Coatings: Experimental and Quantum Chemical Analysis”, Polymer 77, 2015.
  • [146] Wu, N., Luo Q., Bao Z., Lin J., Li Y.–Q., Ma, C.–Q., “Zinc Oxide:Conjugated Polymer Nanocomposite as Cathode Buffer Layer for Solution Processed Inverted Organic Solar Cells”, Solar Energy Materials & Solar Cells 141, 2015, 248–259.
  • [147] Berrebi M., Fabre–Francke I., Lavédrine B., Fichet O., “Development of Organic Glass Using Interpenetrating Polymer Networks with Enhanced Resistance toward Sctratches and Solvents”, European Polymer Journal 63, 2015, 132–140.
  • [148] Lin G., Cui R., Huang H., Guo X., Yang S., Li C., Dong J., Sun B., “Facile Synthesis of Isomeric Fullerene Derivatives as Acceptors for High Performance Organic Photovoltaic”, Tetrahedron 71, 2015, 7998–8002.
  • [149] Çağlar A., Cengiz U., Yıldırım M., Kaya İ., “Effect of Deposition Charges on the Wettability Performance of Electrochromic Polymers”, Applied Surface Science 331, 2015, 262–270.
  • [150] Yu H., Ge Y., Shi S., “Improving Power Conversion Efficency of Polymer Solar Cells by Doping Copper Phthalocyanine”, Electrochimica Acta 180, 2015, 645–650.
  • [151] Wang Y., Bai H., Zhan X., “Comparison of Conventional and Inverted Structures in Fullerene–Free Organic Solar Cells”, Journal of Energy Chemistry 24, 2015, 744–749.
  • [152] Qiu, Y., Leung, S.–F., Zhang, Q., Mu, C., Hua B., Yan H., Yang, S., Fan Z., “Nanobowl Optical Concentrator for Efficient Light Trapping and High–Performance Organic Photovoltaics”, Sci. Bull., 2015, 60(1):109–115.
  • [153] Tessarolo M., Guerrero A., Gedefaw D., Bolognesi M., Prosa M., Xu X., Mansour M., Wang E., Seri M., Anderson M. R., Muccini M., Garcia-Belmonte G., “Predicting Thermal Stability of Organic Solar Cells through an Easy and Fast Capacitance Measurement”, Solar Energy Materials & Solar Cells 141, 2015, 240–247.
  • [154] Lei H., Qin P., Ke W., Guo Y., Dai X., Chen Z., Wang H., Li B., Zheng Q., Fang G., “Performance Enhancement of Polymer Solar Cells with High Work Function CuS Modified ITO as Anodes”, Organic Electronics 22, 2015, 173–179.
  • [155] Fan L., Cui R., Jiang L., Zou Y., Li, Y., Qian D., “A New Small Molecule with Indolone Chromophore as the Electron Accepting Unit for Efficient Organic Solar Cells”, Dyes and Pigments 113, 2015, 458–464.
  • [156] Zu Q., Bao X., Yu J., Yang R., Dong L., “Simple Synthesis of Solution-Processable Oxygen-Enriched Graphene as Anode Buffer Layer for Efficient Organic Solar Cells”, Organic Electronics 27, 2015, 143–150.
  • [157] Yang Y., Qing J., Ou J., Lin X., Yuan Z., Yu D., Zhou X., Chen X., “Rational Design of Metallic Nanowire-Based Plasmonic Architectures for Efficient Inverted Polymer Solar Cells”, Solar Energy 122, 2015, 231–238.
  • [158] Carlson J. S., Marleau P., Zarkesh R. A., Feng P. L., “Melt–Cast Organic Glasses as High–Efficiency Fast Neutron Scintillators”, Nuclear Instruments and Methods in Physics Research A 832, 2016, 152-157.
  • [159] Baba E. M., Cansoy C. E., Zayim E. O., “Investigation of Wettability and Optical Properties of Superhydrophobic Polystyrene–SiO2 Composite Surfaces”, Progress in Organic Coatings 99, 2016, 378–385.
  • [160] Wei J., Li H., Zhao Y., Zhou W., Fu R., Leprince–Wang Y., Yu D., Zhao Q., “Supressed Hysteresis and Improved Stability in Perovskite Solar Cells with Conductive Organic Network”, Nano Energy 26, 2016, 139–147.
  • [161] Jia X., Wu, N., Wei J., Zhang L., Luo Q., Bao Z., Li Y.–Q., Yang Y., Liu X., Ma C.–Q., “A Low–Cost and Low–Temperature Processable Zinc Oxide–Polyethylenimine (ZnO:PEI) Nano–Composite as Cathode Buffer Layer for Organic and Perovskite Solar Cells”, Organic Electronics 38, 2016, 150–157.
  • [162] Dusza M., Stefanski M., Wozniak M., Hreniak D., Gerasymchuck Y., Marciniak L., Granek F., Strek W., “Luminescent Sr2CeO4 Nanocrystals for Applications in Organic Solar Cells with Conjuguated Polymers”, Journal of Luminescence 169, 2016, 857–861.
  • [163] Rault J., “Aging of Oriented Polymer Glasses”, Journal of Non–Crystalline Solids 352, 2016, 4946–4955.
  • [164] Zadarozhnny M. Y., Chukov D. I., Churyukanova M. N., Gorshenkov M. V., Zadarozhnny V. Y., Stepashkin A. A., Tsarkov A. A., Louzguine–Luzgin D. V., Kaloshin S. D., “Investigation of Contact Surfaces between Polymer Matrix and Metallic Glasses in Composite Materials Based on High–Density Polyethylene”, Materials and Design 92, 2016, 306–312.
  • [165] Nakashima M., Murata N., Suenaga Y., Naito H., Sasaki T., Kunugi Y., Ohshita J., “Disilanobithiophene–Dithienylbenzothiadiazole Alternating Polymer as Donor Material of Bulk Heterojunction Polymer Solar Cells”, Synthetic Metals 215, 2016, 116–120.
  • [166] Khanum K. K., Ramamurthy P. C., “Instigating Network Structure in Bulk Heterojunction Organic Solar Cells Creating a Unique Approach in Augmenting The Optical Aborption”, Polymer 91, 2016, 146–155.
  • [167] Kao, S.–Y., Kung C.–W., Chen H.–W., Hu C.–W., Ho K.–C., “An Electrochromic Device Based on All–in–One Polymer Gel through in–situ Thermal Polimerization”, Solar Energy Materials & Solar Cells 145, 2016, 61–68.
  • [168] Liu Z., Wang N., Fu Y., “Effect of Thermal Annealing Treatment with Titanium Chelate on Buffer Layer in Inverted Polymer Solar Cells”, Applied Surface Science 389, 2016, 1120–1125.
  • [169] Bolognesi M., Prosa M., Tessarolo M., Donati G., Toffanin S., Muccini M., Seri M., “Impact of Environmentally Friendly Processing on Polymer Solar Cells: Performance, Thermal Stability and Morphological Study by Imaging Techniques”, Solar Energy Materials & Solar Cells 155, 2016, 436–445.
  • [170] Carlson J. S., Marleau P., Zarkesh R.A., Feng P. L., “Taking Advantage of Disorder: Small–Molecule Organic Glasses for Radiation Detection and Particle Discrimination”, J. Am. Chem. Soc., 2017, 139 (28), 9621–9626.
  • [171] Jung S. E., Lee E. J., Moon D. K., Haw J. R., “Surface Modification of Line–Patterned Electron Transfer Layer for Enhancing the Performance of Organic Solar Cells”, Journal of Industrial and Engineering Chemistry 52, 2017, 147–152.
  • [172] Chander N., Singh S., Iyer S. S. K., “Stability and Reliability of P3HT:PC61BM Inverted Organic Solar Cells”, Solar Energy Materials & Solar Cells 161, 2017, 407–415.
  • [173] Zeynali A., Ghiasi T. S., Riazi G., Ajeian R., “Organic Solar Cells Based on Photosystem I Pigment–Protein Complex, Fabrication and Optimization”, Organic Electronics 51, 2017, 341–348.
  • [174] Rolston N., Printz A. D., Dupont S. R., Voroshazi E., Dauskardt R. H., “Effect of Heat, UV Radiation, and Moisture on the Decohesion Kinetics of Inverted Organic Solar Cells”, Solar Energy Materials & Solar Cells 170, 2017, 239–245.
  • [175] Liu W., Zhang X., Liu J., Ma X., Zeng J., Liu P., Xu T., “Electrochromic Properties of Organic–Inorganic Composite Materials”, Journal of Alloys and Compounds 718, 2017, 379–385.
  • [176] Tran V.–H., Khan R., Lee I.–H., Lee S.–H., “Low–Temperature Solution–Processed Ionic Liquid Modfied SnO2 as an Excellent Electron Transport Layer for Inverted Organic Solar Cellls”, Solar Energy Materials and Solar Cells, 2017, doi:https://doi.org/10.1016/j.solmat.2017.12.013.
  • [177] Kim E. C., Na Se.-I., Park J. T., “Fogging, Reflection, and Dust–Free Transparent Conducting Glasses Based on Superhydrophilic Nanotextures for Organic Photovoltaics”, Journal of Industrial and Engineering Chemistry 52, 2017, 243–250.
  • [178] Liu J., Li M., Wu J., Shi Y., Zheng J., Xu C., “Electrochromic Polymer Achieving Synchronous Electrofluorochromic Switching for Optoelectronic Application”, Organic Electronics 51, 2017, 295–303.
  • [179] Lakshminarayana G., Tkaczyk S., Ebothe J., El–Naggar A. M., Albassam A. A., Kityk I. V., Mahdi M. A., “Laser Operated PVA Polymer/(TeO2–(x))–ZnO–WO3–TiO2–Na2O (x = Bi2O3 or Pr2O3 mol %) Glass Composites”, Journal of Non–Crystalline Solids 471, 2017, 146–150.
  • [180] Shi Y., Fu J., Ji Z., “Efficient Ternary Polymer Solar Cells by Doping Fullerene Derivatives”, Thin Solid Films 636, 2017, 20–25.
  • [181] Li W., Zhang S. Zhang H., Hou J., “The Investigations of Two Conjugated Polymers that Show Distinctly Different Photovoltaic Properties in Polymer Solar Cells”, Organic Electronics 44, 2017, 42–49.
  • [182] “Light Emitting Based on Polymer”, Section 7 in Polymer Materials for Energy and Electronic Applications, Elsevier 2017, 243.
  • [183] Cheng J., Ren X., Zhu H. L., Mao J., Liang C., Zhuang J., Roy V. A. L., Choy W. C. H., “Pre– and Post–Treatments Free Nanocomposite Based Hole Transport Layer for High Performance Organic Solar Cells with Considerably Enhanced Reproducibility”, Nano Energy 34, 2017, 76–85.
  • [184] Li Y., Yu H., Huang X., Wu Z., Xu, H., “Improved Performance for Polymer Solar Cells Using CTAB–Modified MoO3 as an Anode Buffer Layer”, Solar Energy Materials & Solar Cells 171, 2017, 72–84.
  • [185] Li Z., Jiang W., Li W., Hong L., Lei T., Mi D., Peng R., Ouyang X., Ge Z., “Reducible Fabrication Cost for P3HT–Based Organic Solar Cells by Using One–Step Synthesized Novel Fulleren Derivatives”, Solar Energy Materials & Solar Cells 159, 2017, 172–178.
  • [186] Liu Z., Hui S., Wang S., “Improved Performance and Stability of Inverted Polymer Solar Cells with Ammonium Heptamolybdate Acted as Hole Extraction Layers via Thermal Annealing Method”, Journal of Luminescence 181, 2017, 310–314.
  • [187] Choi J., Moon D. S., Jang J. U., Yin W. B., Lee B., Lee K. J., “Synthesis of Highly Functionalized Thermoplastic Polyurethanes and Their Potential Applications”, Polymer 116, 2017, 287–294.
  • [188] Bi P., Xiao T., Yang X., Niu M., Wen Z., Zhang K., Qin W., So K. S., Lu G., Hao X., Liu H., “Regulating the Vertical Phase Distribution by Fullerene-Derivative in High Performance Ternary Organic Solar Cells”, Nano Energy 46, 2018, 81–90.
  • [189] Charles U. A., Ibrahim M. A., Teridi M. A. M., “Electrodeposition of Organic–Inorganic Tri-Halide Perovskites Solar Cell”, Journal of Power Sources 378, 2018, 717–731.
  • [190] Serio L., Gawne D. T., Bao Y., “Effect of Tin fluoride Content on the Structure and Properties of Phosphate Glass–Polyamide 11 Hybrids”, European Polymer Journal 99, 2018, 134–141.
  • [191] Wang H., Barrett M., Duane B., Gu J., Zenhausern F., “Materials and Processing of Polymer–Based Electrochromic Devices”, Materials Science & Engineering B 228, 2018, 167–174.
  • [192] John L., “Selected Developments and Medical Applications of Organic–Inorganic Hybrid Biomaterials Based on Functionalized Spherosilicates”, Materials Science & Engineering C, 2018, https://doi.org/10.1016/j.msec.2018.02.007.
  • [193] Liu R., Du Z., Wen S., Wu Y., Zhu D., Yang R., “Energy Levels Modulation of Small Molecule Acceptors for Polymer Solar Cells”, Synthetic Metals 235, 2018, 131–135.
Toplam 193 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ezgi Akkaşoğlu Bu kişi benim

Bekir Karasu Bu kişi benim

Yayımlanma Tarihi 31 Mayıs 2018
Gönderilme Tarihi 17 Mart 2018
Kabul Tarihi 25 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 5 Sayı: 2

Kaynak Göster

IEEE E. Akkaşoğlu ve B. Karasu, “Organik Camlar”, ECJSE, c. 5, sy. 2, ss. 512–536, 2018, doi: 10.31202/ecjse.407306.