Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Temperature on the Emissions of Shale Gas Combustion in USA

Yıl 2019, Sayı: 16, 186 - 193, 31.08.2019
https://doi.org/10.31590/ejosat.521589

Öz

The turbulent, non-adiabatic, and non-premixed combustion of shale gas and air in a cylindrical combustor is computationally investigated under the effects of equivalence ratio, wall temperature, fuel and oxide inlet temperatures. The results indicate that the mass fractions of NO come to the maximum values at 0.97, 1.03, and 1.03 equivalence ratios for Fayetteville, New Albany, and Haynesville. The rising equivalence ratio raises CO emissions for all the shale gas. The rearing oxide inlet temperature increases NO mass fractions up to 290 K for Fayetteville and 308 K for New Albany and Haynesville. It also enhances CO emissions. The escalating fuel inlet temperature boosts NO mass fractions. However, it reduces CO emissions at all the shale gas combustion. The ascending wall temperature uplifts both NO and CO mass fractions. 

Kaynakça

  • Chang Y., Huang R,. Ries R. J., and Masanet E., “Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China”, Energy, 86, 335-343, 2015. http://dx.doi.org/10.1016/j.energy.2015.04.034
  • Bilgen, S., and Sarıkaya, İ. “New horizon in energy: Shale gas”. Journal of Natural Gas Science and Engineering, 35:637-645, 2016. http://dx.doi.org/10.1016/j.jngse.2016.09.014
  • Lan, Y., Yang, Z., Wang, P., Yan, Y., Zhang, L., and Ran, J., “A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding”. Fuel, 238: 412-424, 2019. https://doi.org/10.1016/j.fuel.2018.10.130
  • Wang, Y., Liao, B., Qiu, L., Wang, D., Xue, Q., “Numerical simulation of enhancing shale gas recovery using electrical resistance heating method”. International Journal of Heat and Mass Transfer, 128: 1218-1228, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.075
  • Wang Q., Chen X., Jha A. N., and Rogers H., “Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States”, Renewable and Sustainable Energy Reviews, 30, 1-28, 2014. http://dx.doi.org/10.1016/j.rser.2013.08.065
  • Bocola W., and Cirillo M. C., “Air pollutant emissions by combustion processes in Italy”, Atmospheric Environment, 23 (1), 17-24, 1989.
  • Jerzak, W., “Emissions of NOx and CO from natural gas combustion with adding CO2 at varying distances from the burner”, Middle Pomeranian Scientific Society Of The Environment Protection 16, 148-160, 2014.
  • Michael Alberts W., “Indoor air pollution: NO, NO2, CO, and CO2”, J Allergy Clin Immunol, 94, 289-95, 1994.
  • Alyüz B., and Veli S., “İç ortam havasında bulunan uçucu organik bileşikler ve sağlık üzerine etkileri”, Trakya Univ J Sci, 7 (2), 109–116, 2006.
  • Somarathne K. D. K. A., Parwatha G., Oguri S., Nada Y., Ito T., and Noda S., “NOx reduction of non-premixed flames by combination of burner and furnaces”, Journal of Environment and Engineering, 8 (1), 1-10, 2013. http://dx.doi.org/10.1299/jee.8.1
  • Akça H., Ürel G., Karacan C. D., Tuygun N., and Polat E., “The effect of carbon monoxide poisoning on platelet volume in children”, J Pediatr Emerg Intensive Care Med, 4, 13-16, 2017. http://dx.doi.org/10.4274/cayd.52523
  • Ozturk, S. “A Computational evaluation for hazardous emissions of non-premixed shale gas combustion”. Journal of Scientific and Engineering Research, 5(11):256-264, 2018.
  • United States Environmental Protection Agency (EPA), Air Pollutant Emissions, https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data1970_2017, 15.11.2018.
  • Cohen B, and Winkler H., “Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa”, S Afr J Sci., 110 (3/4), 1-5, 2014. http://dx.doi.org/10.1590/sajs.2014/20130194
  • Vargas A. C., Arrieta A. A., and Arrieta C. E., “Combustion characteristics of several typical shale gas mixtures”, Journal of Natural Gas Science and Engineering, 33, 296-304, 2016. http://dx.doi.org/10.1016/j.jngse.2016.03.039
  • Gebhardt, Z., “Analysis of the possibilities for using shale gas to supply gas appliances based on the comparative assessment of gas”. Nafta-Gaz, 11:924-928, 2015. http://dx.doi.org/10.18668/NG2015.11.16
  • Bullin K., Krouskop P., and Bryan Research and Engineering Inc. Bryan, Tex., “Composition variety complicates processing plans for US shale gas”, E-book, Based on: Annual Forum, Gas Processors Association, Houston Chapter, Houston, Oct. 7, 2008.

ABD’de Kaya Gazı Yanmasının Emisyonları Üzerinde Sıcaklığın Etkisi

Yıl 2019, Sayı: 16, 186 - 193, 31.08.2019
https://doi.org/10.31590/ejosat.521589

Öz

Silindirik bir yakıcıda kaya gazı ve havanın türbülanslı, adyabatik olmayan ve önkarışımsız yanması ekivalans oranı, duvar sıcaklığı, yakıt ve oksit giriş sıcaklıklarının etkileri altında hesaplamalı olarak incelenmiştir. Sonuçlar NO’in kütle kesitlerinin Fayetteville, New Albany ve Haynesville için 0.97, 1.03 ve 1.03 ekivalans oranlarında maksimum değerlerine ulaştığını göstermektedir. Artan ekivalans oranı tüm kaya gazları için CO emisyonlarını yükseltmektedir. Yükselen oksit giriş sıcaklığı Fayetteville için 290 K ve New Albany ve Haynesville için 308 K’e kadar NO kütle kesitlerini artırmaktadır. CO emisyonlarını da yükseltmektedir. Artan yakıt giriş sıcaklığı NO kütle kesitlerini artırmaktadır. Bununla birlikte, tüm kaya gazları yanmalarında CO emisyonlarını düşürmektedir. Artan duvar sıcaklığı hem NO hem de CO kütle kesitlerini yükseltmektedir.

Kaynakça

  • Chang Y., Huang R,. Ries R. J., and Masanet E., “Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China”, Energy, 86, 335-343, 2015. http://dx.doi.org/10.1016/j.energy.2015.04.034
  • Bilgen, S., and Sarıkaya, İ. “New horizon in energy: Shale gas”. Journal of Natural Gas Science and Engineering, 35:637-645, 2016. http://dx.doi.org/10.1016/j.jngse.2016.09.014
  • Lan, Y., Yang, Z., Wang, P., Yan, Y., Zhang, L., and Ran, J., “A review of microscopic seepage mechanism for shale gas extracted by supercritical CO2 flooding”. Fuel, 238: 412-424, 2019. https://doi.org/10.1016/j.fuel.2018.10.130
  • Wang, Y., Liao, B., Qiu, L., Wang, D., Xue, Q., “Numerical simulation of enhancing shale gas recovery using electrical resistance heating method”. International Journal of Heat and Mass Transfer, 128: 1218-1228, 2019. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.075
  • Wang Q., Chen X., Jha A. N., and Rogers H., “Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in United States”, Renewable and Sustainable Energy Reviews, 30, 1-28, 2014. http://dx.doi.org/10.1016/j.rser.2013.08.065
  • Bocola W., and Cirillo M. C., “Air pollutant emissions by combustion processes in Italy”, Atmospheric Environment, 23 (1), 17-24, 1989.
  • Jerzak, W., “Emissions of NOx and CO from natural gas combustion with adding CO2 at varying distances from the burner”, Middle Pomeranian Scientific Society Of The Environment Protection 16, 148-160, 2014.
  • Michael Alberts W., “Indoor air pollution: NO, NO2, CO, and CO2”, J Allergy Clin Immunol, 94, 289-95, 1994.
  • Alyüz B., and Veli S., “İç ortam havasında bulunan uçucu organik bileşikler ve sağlık üzerine etkileri”, Trakya Univ J Sci, 7 (2), 109–116, 2006.
  • Somarathne K. D. K. A., Parwatha G., Oguri S., Nada Y., Ito T., and Noda S., “NOx reduction of non-premixed flames by combination of burner and furnaces”, Journal of Environment and Engineering, 8 (1), 1-10, 2013. http://dx.doi.org/10.1299/jee.8.1
  • Akça H., Ürel G., Karacan C. D., Tuygun N., and Polat E., “The effect of carbon monoxide poisoning on platelet volume in children”, J Pediatr Emerg Intensive Care Med, 4, 13-16, 2017. http://dx.doi.org/10.4274/cayd.52523
  • Ozturk, S. “A Computational evaluation for hazardous emissions of non-premixed shale gas combustion”. Journal of Scientific and Engineering Research, 5(11):256-264, 2018.
  • United States Environmental Protection Agency (EPA), Air Pollutant Emissions, https://www.epa.gov/air-emissions-inventories/air-pollutant-emissions-trends-data1970_2017, 15.11.2018.
  • Cohen B, and Winkler H., “Greenhouse gas emissions from shale gas and coal for electricity generation in South Africa”, S Afr J Sci., 110 (3/4), 1-5, 2014. http://dx.doi.org/10.1590/sajs.2014/20130194
  • Vargas A. C., Arrieta A. A., and Arrieta C. E., “Combustion characteristics of several typical shale gas mixtures”, Journal of Natural Gas Science and Engineering, 33, 296-304, 2016. http://dx.doi.org/10.1016/j.jngse.2016.03.039
  • Gebhardt, Z., “Analysis of the possibilities for using shale gas to supply gas appliances based on the comparative assessment of gas”. Nafta-Gaz, 11:924-928, 2015. http://dx.doi.org/10.18668/NG2015.11.16
  • Bullin K., Krouskop P., and Bryan Research and Engineering Inc. Bryan, Tex., “Composition variety complicates processing plans for US shale gas”, E-book, Based on: Annual Forum, Gas Processors Association, Houston Chapter, Houston, Oct. 7, 2008.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Suat Öztürk 0000-0002-8147-9943

Yayımlanma Tarihi 31 Ağustos 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 16

Kaynak Göster

APA Öztürk, S. (2019). The Effect of Temperature on the Emissions of Shale Gas Combustion in USA. Avrupa Bilim Ve Teknoloji Dergisi(16), 186-193. https://doi.org/10.31590/ejosat.521589