Araştırma Makalesi
BibTex RIS Kaynak Göster

Contactless Power Transfer Systems for Electric Vehicles

Yıl 2016, Cilt: 6 Sayı: 11, 1 - 11, 30.06.2016

Öz

Electric vehicles are seen as a
solution to depletion of energy and air pollution. As a result of this vision
the idea of contactless battery charging has been widespread. Contactless
energy transfer idea was first proposed by Nikola Tesla. The concept is based
on the transfer of energy between two coils which are not on a common core
through a very large air gap. In order for this transfer to be efficient both
coils have to work in resonant mode. In this paper, a brief history of these
system is given, the operation principles and system components are discussed
.

 






Kaynakça

  • [1] W. W. Massie and C. R. Underhill, ‘‘The future of the wireless art,’’ Wireless Telegraphy Telephony, pp. 67–71, 1908.
  • [2] J. Garnica, R. A. Chinga and J. Lin, "Wireless Power Transmission: From Far Field to Near Field," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1321-1331, June 2013.
  • [3] Wheeler L. P., "II — Tesla's contribution to high frequency," in Electrical Engineering, vol. 62, no. 8, pp. 355-357, Aug. 1943.
  • [4] Hui S. Y. R., Zhong W. Ve Lee C. K., "A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer," in IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4500-4511, Sept. 2014.
  • [5] Secor, H. W., "Tesla Apparatus and Experiments—How to Build Both Large and Small Tesla and Oudin Coils and How to Carry On Spectacular Experiments With Them,", Practical Electrics, November 1921.
  • [6] Brown W. C., "Experiments Involving a Microwave Beam to Power and Position a Helicopter," in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-5, no. 5, pp. 692-702, Sept. 1969.
  • [7] A.B. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P.H. Fisher, and M. Soljacic, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science, 317, pp. 83-86, (2007).
  • [8] Shinohara N. ,Niwa N.,Takagi K., Hamamoto K.,Ujigawa S.,Ao J-P., etal. “Microwave building as an application of wireless power transfer”. Wireless Power Transfer Cambirdge Journals, 2014;1:1–9.
  • [9] Chen W., Chinga R. A., Yoshida S., Lin J., Chen C. and Lo W., "A 25.6 W 13.56 MHz wireless power transfer system with a 94% efficiency GaN Class-E power amplifier," Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, Montreal, QC, Canada, 2012, pp. 1-3.
  • [10] Chwei-Sen Wang; Stielau, O.H.; Covic, G.A., "Design considerations for a contactless electric vehicle battery charger," Industrial Electronics, IEEE Transactions on , vol.52, no.5, pp.1308,1314, Oct. 2005.
  • [11] Stielau, O.H.; Covic, G.A., "Design of loosely coupled inductive power transfer systems," Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on, vol.1, no., pp.85-90 vol.1, 2000.
  • [12] Sallan J., Villa J. L., Llombart A., ve Sanz J. F., “Optimal design of ICPT systems applied to electric vehicle battery charge,” in IEEE Trans. on Industrial Electronics, vol. 56, no. 6, pp. 2140-2149, June 2009.
  • [13] Kissin, M.L.G.; Boys, J.T.; Covic, G.A., "Interphase Mutual Inductance in Polyphase Inductive Power Transfer Systems," Industrial Electronics, IEEE Transactions on , vol.56, no.7, pp.2393,2400, July 2009
  • [14] Pedder D. A. G., Brown A. D. Ve Skinner J. A., "A contactless electrical energy transmission system," in IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 23-30, Feb 1999.
  • [15] Boys J. T., Covic G. A. ve Green A. W., "Stability and control of inductively coupled power transfer systems," in IEE Proceedings - Electric Power Applications, vol. 147, no. 1, pp. 37-43, Jan 2000.
  • [16] https://www.ise.fraunhofer.de/en/press-and-media/press-releases/presseinformationen-2013/cables-no-longer-needed.
  • [17] Aditya K. ve Williamson S. S., "Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging - A comprehensive review," Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, Dearborn, MI, 2014, pp. 1-6.
  • [18] Chopra S., Bauer P., "Analysis and design considerations for a contactless power transfer system,” in proc. IEEE 33rd International Telecommunications Energy Conference, Oct. 2011, pp.1-6.
  • [19] Wang C.S., Covic G. A., ve Stielau O. H., “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE Annual Conf. of the Industrial Electronics Society, Denver, CO, vol. 2, Nov. 2001, pp. 1049-1054.
  • [20] Wang C. S., Covic G. A., ve Stielau O. H., ‘‘Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,’’ IEEE Transaction on Industrial Electronics, vol. 51, no. 1, pp. 148–157, Feb. 2004
  • [21] Ho, T.C.Y.; Gomersall, B.; Li Ran, "Contactless charging for electric vehicles with a large air gap," Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, vol., no., pp.1,10, Aug. 30 2011-Sept. 1 2011.
  • [22] Wang C. S., Stielau O. H., Covic G. A., "Load models and their application in the design of loosely coupled Inductive power transfer systems," in proc. IEEE international conference on power system technology, 2000, pp. 1053-1058.
  • [23] Villa J. L., Sallan J., Sanz Osorio J. F. ve Llombart A., "High-Misalignment Tolerant Compensation Topology For ICPT Systems," in IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 945-951, Feb. 2012.
  • [24] Valtchev S., Borges B., Brandisky K. ve Klaassens J. B., "Resonant Contactless Energy Transfer With Improved Efficiency," in IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 685-699, March 2009.
  • [25] Sakamoto H., Harada K., Washimiya S., Takehara K., Matsuo Y. ve Nakao F., "Large air-gap coupler for inductive charger [for electric vehicles]," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 3526-3528, Sep 1999.
  • [26] Kim J. ve arkadaşları., "Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1332-1342, June 2013.
  • [27] Budhia M., Covic G. A. ve Boys J. T., "Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems," in IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
  • [28] Li S. ve Mi C. C., "Wireless Power Transfer for Electric Vehicle Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, March 2015.
  • [29] Nagatsuka Y., Ehara N., Kaneko Y., Abe S. ve Yasuda T., "Compact contactless power transfer system for electric vehicles," Power Electronics Conference (IPEC), 2010 International, Sapporo, 2010, pp. 807-813.
  • [30] Budhia M., Covic G. ve Boys J., "A new IPT magnetic coupler for electric vehicle charging systems," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 2487-2492
  • [31] Budhia M., Boys J. T., Covic G. A. ve Huang C. Y., "Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems," in IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318-328, Jan. 2013.
  • [32] Zaheer A., Kacprzak D. ve Covic G. A., "A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 283-290.
  • [33] Deng J., Li W., Nguyen T. D., Li S. ve Mi C. C., "Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis," in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6130-6140, Nov. 2015.
  • [34] Covic G. A. ve Boys J. T., “Inductive power transfer,” in Proc. of the IEEE, vol. 101, no. 6, pp. 1-14, June 2013.
  • [35] Diekhans, T.; De Doncker, R.W. "A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load", Power Electronics, IEEE Transactions on, On page(s): 6320 - 6328 Volume: 30, Issue: 11, Nov. 2015.
  • [36] John T. Boys ve Andrew W. Green, “Inductive power distribution system” U.S. Patent US5293308, 1991. H. Jin ve C. T. Rim, "KAIST wireless electric vehicles - OLEV," SAE International, vol. 1, pp. 1-10, 2011.
  • [37] J. Lee, H. Shen ve C. Li, “Three-phase inductive coupled structures for contactless PHEV charging system”, International Journal of Electronics, 2015.
  • [38] M. Kesler ve P. Foy. “Utah to deploy electric bus that needs no plug” , 2011.
  • [39] M. B. Scudiere ve J. M. Miller. , “Wireless Charging System for Electric Vehicles”, 2011.
  • [40] U. K. Madawala ve D. J. Thrimawithana, "A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems," IEEE Transactions on Industrial Electronics, vol. 58, pp. 4789-4796, 2011
  • [41] T. Horiuchi ve K. Kawashima, "Study on Planar Antennas for Wireless Power Transmission of Electric Vehicles," IEEE Transactions on Industry Applications, vol. 130, pp. 1371-1377, 2010.
  • [42] F. Sato, J. Morita, T. Takura, T. Sato, ve H. Matsuki, "Research on Highly Efficient Contactless Power Station System using Meander Coil for Moving Electric Vehicle Model," Journal of the Magnetics Society of Japan, vol. 36, pp. 249-252, 2012.
  • [43] H. H. Wu, A. Gilchrist, K. D. Sealy, ve D. Bronson, "A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control," IEEE Transactions on Industrial Informatics vol. 8, pp. 585-595, 2012.
  • [44] [1] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, ve M. Soljačić, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science, p. 83, 2007.
  • [45] T. Imura, H. Okabe, ve Y. Hori, "Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings," presented at the IEEE Vehicle Power & Propulsion Conference, 2009.
  • [46] T. Beh, M. Kato, T. Imura, ve Y. Hori, "Wireless power transfer system via magnetic resonant coupling at fixed resonance frequency. Power transfer system based on impedance matching," World Electric Vehicle Journal, vol. 4, pp. 744-753, 2012.
  • [47] M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, ve A. Suzuki, "Smallsize light-weight transformer with new core structure for contactless electric vehicle power transfer system," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 260-266.
  • [48] W. Li, "High efficiency wireless power transmission at low frequency using permanent magnetic coupling " Master of Applied Science, The Faculty of Graduate Studies The University of British Columbia, Vancouver, British Columbia, Canada, 2007.
  • [49] J. L. Villa, A. Llombart, J. F. Sanz and J. Sallan, "Practical Development of a 5 kW ICPT System SS Compensated with a Large Air gap," IEEE International Symposium on Industrial Electronics, Vigo, 2007, pp. 1219-1223.
  • [50] Uzun G., “Kablosuz Enerji Transferi”, Y. Lisans Tezi, 19 Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun, 2012
  • [51] Fincan B., “Elektrikli Araçlar İçin Kablosuz Şarj Cihazı Tasarımı”, Y. Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 2015.
  • [52] Ağçal, A.,“Kablosuz Enerji Transferinde Farklı Hava Aralıkları Ve Karakteristik Empedanslara Göre Verim Analizi”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul 2014

Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri

Yıl 2016, Cilt: 6 Sayı: 11, 1 - 11, 30.06.2016

Öz

Elektrikli araçların, enerji darboğazı ve çevre kirliliği sorunlarına
bir çözüm olarak görülmesi ile birlikte, bu araçların bataryalarının temassız
sistemlerle şarj edilmesi düşüncesi yaygınlaşmaya başlamıştır. İlk olarak
Nikola Tesla tarafından ortaya atılan temassız güç aktarımı düşüncesi,
enerjinin, ortak bir çekirdek üzerinde bulunmayan iki sargı arasında, oldukça
büyük bir hava aralığı üzerinden aktarılması ilkesine dayanmaktadır. Bu
aktarımın verimli olabilmesi için her iki sargının da rezonans koşullarında
çalışması gerekmektedir. Bu makalede, bu sistemlerin kısa bir tarihçesi
verilmekte, çalışma ilkesi ve bileşenleri tanıtılmaktadır.

Kaynakça

  • [1] W. W. Massie and C. R. Underhill, ‘‘The future of the wireless art,’’ Wireless Telegraphy Telephony, pp. 67–71, 1908.
  • [2] J. Garnica, R. A. Chinga and J. Lin, "Wireless Power Transmission: From Far Field to Near Field," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1321-1331, June 2013.
  • [3] Wheeler L. P., "II — Tesla's contribution to high frequency," in Electrical Engineering, vol. 62, no. 8, pp. 355-357, Aug. 1943.
  • [4] Hui S. Y. R., Zhong W. Ve Lee C. K., "A Critical Review of Recent Progress in Mid-Range Wireless Power Transfer," in IEEE Transactions on Power Electronics, vol. 29, no. 9, pp. 4500-4511, Sept. 2014.
  • [5] Secor, H. W., "Tesla Apparatus and Experiments—How to Build Both Large and Small Tesla and Oudin Coils and How to Carry On Spectacular Experiments With Them,", Practical Electrics, November 1921.
  • [6] Brown W. C., "Experiments Involving a Microwave Beam to Power and Position a Helicopter," in IEEE Transactions on Aerospace and Electronic Systems, vol. AES-5, no. 5, pp. 692-702, Sept. 1969.
  • [7] A.B. Kurs, A. Karalis, R. Moffatt, J.D. Joannopoulos, P.H. Fisher, and M. Soljacic, “Wireless Power Transfer via Strongly Coupled Magnetic Resonances”, Science, 317, pp. 83-86, (2007).
  • [8] Shinohara N. ,Niwa N.,Takagi K., Hamamoto K.,Ujigawa S.,Ao J-P., etal. “Microwave building as an application of wireless power transfer”. Wireless Power Transfer Cambirdge Journals, 2014;1:1–9.
  • [9] Chen W., Chinga R. A., Yoshida S., Lin J., Chen C. and Lo W., "A 25.6 W 13.56 MHz wireless power transfer system with a 94% efficiency GaN Class-E power amplifier," Microwave Symposium Digest (MTT), 2012 IEEE MTT-S International, Montreal, QC, Canada, 2012, pp. 1-3.
  • [10] Chwei-Sen Wang; Stielau, O.H.; Covic, G.A., "Design considerations for a contactless electric vehicle battery charger," Industrial Electronics, IEEE Transactions on , vol.52, no.5, pp.1308,1314, Oct. 2005.
  • [11] Stielau, O.H.; Covic, G.A., "Design of loosely coupled inductive power transfer systems," Power System Technology, 2000. Proceedings. PowerCon 2000. International Conference on, vol.1, no., pp.85-90 vol.1, 2000.
  • [12] Sallan J., Villa J. L., Llombart A., ve Sanz J. F., “Optimal design of ICPT systems applied to electric vehicle battery charge,” in IEEE Trans. on Industrial Electronics, vol. 56, no. 6, pp. 2140-2149, June 2009.
  • [13] Kissin, M.L.G.; Boys, J.T.; Covic, G.A., "Interphase Mutual Inductance in Polyphase Inductive Power Transfer Systems," Industrial Electronics, IEEE Transactions on , vol.56, no.7, pp.2393,2400, July 2009
  • [14] Pedder D. A. G., Brown A. D. Ve Skinner J. A., "A contactless electrical energy transmission system," in IEEE Transactions on Industrial Electronics, vol. 46, no. 1, pp. 23-30, Feb 1999.
  • [15] Boys J. T., Covic G. A. ve Green A. W., "Stability and control of inductively coupled power transfer systems," in IEE Proceedings - Electric Power Applications, vol. 147, no. 1, pp. 37-43, Jan 2000.
  • [16] https://www.ise.fraunhofer.de/en/press-and-media/press-releases/presseinformationen-2013/cables-no-longer-needed.
  • [17] Aditya K. ve Williamson S. S., "Design considerations for loosely coupled inductive power transfer (IPT) system for electric vehicle battery charging - A comprehensive review," Transportation Electrification Conference and Expo (ITEC), 2014 IEEE, Dearborn, MI, 2014, pp. 1-6.
  • [18] Chopra S., Bauer P., "Analysis and design considerations for a contactless power transfer system,” in proc. IEEE 33rd International Telecommunications Energy Conference, Oct. 2011, pp.1-6.
  • [19] Wang C.S., Covic G. A., ve Stielau O. H., “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” in Proc. IEEE Annual Conf. of the Industrial Electronics Society, Denver, CO, vol. 2, Nov. 2001, pp. 1049-1054.
  • [20] Wang C. S., Covic G. A., ve Stielau O. H., ‘‘Power transfer capability and bifurcation phenomena of loosely coupled inductive power transfer systems,’’ IEEE Transaction on Industrial Electronics, vol. 51, no. 1, pp. 148–157, Feb. 2004
  • [21] Ho, T.C.Y.; Gomersall, B.; Li Ran, "Contactless charging for electric vehicles with a large air gap," Power Electronics and Applications (EPE 2011), Proceedings of the 2011-14th European Conference on, vol., no., pp.1,10, Aug. 30 2011-Sept. 1 2011.
  • [22] Wang C. S., Stielau O. H., Covic G. A., "Load models and their application in the design of loosely coupled Inductive power transfer systems," in proc. IEEE international conference on power system technology, 2000, pp. 1053-1058.
  • [23] Villa J. L., Sallan J., Sanz Osorio J. F. ve Llombart A., "High-Misalignment Tolerant Compensation Topology For ICPT Systems," in IEEE Transactions on Industrial Electronics, vol. 59, no. 2, pp. 945-951, Feb. 2012.
  • [24] Valtchev S., Borges B., Brandisky K. ve Klaassens J. B., "Resonant Contactless Energy Transfer With Improved Efficiency," in IEEE Transactions on Power Electronics, vol. 24, no. 3, pp. 685-699, March 2009.
  • [25] Sakamoto H., Harada K., Washimiya S., Takehara K., Matsuo Y. ve Nakao F., "Large air-gap coupler for inductive charger [for electric vehicles]," in IEEE Transactions on Magnetics, vol. 35, no. 5, pp. 3526-3528, Sep 1999.
  • [26] Kim J. ve arkadaşları., "Coil Design and Shielding Methods for a Magnetic Resonant Wireless Power Transfer System," in Proceedings of the IEEE, vol. 101, no. 6, pp. 1332-1342, June 2013.
  • [27] Budhia M., Covic G. A. ve Boys J. T., "Design and Optimization of Circular Magnetic Structures for Lumped Inductive Power Transfer Systems," in IEEE Transactions on Power Electronics, vol. 26, no. 11, pp. 3096-3108, Nov. 2011.
  • [28] Li S. ve Mi C. C., "Wireless Power Transfer for Electric Vehicle Applications," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 4-17, March 2015.
  • [29] Nagatsuka Y., Ehara N., Kaneko Y., Abe S. ve Yasuda T., "Compact contactless power transfer system for electric vehicles," Power Electronics Conference (IPEC), 2010 International, Sapporo, 2010, pp. 807-813.
  • [30] Budhia M., Covic G. ve Boys J., "A new IPT magnetic coupler for electric vehicle charging systems," IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, Glendale, AZ, 2010, pp. 2487-2492
  • [31] Budhia M., Boys J. T., Covic G. A. ve Huang C. Y., "Development of a Single-Sided Flux Magnetic Coupler for Electric Vehicle IPT Charging Systems," in IEEE Transactions on Industrial Electronics, vol. 60, no. 1, pp. 318-328, Jan. 2013.
  • [32] Zaheer A., Kacprzak D. ve Covic G. A., "A bipolar receiver pad in a lumped IPT system for electric vehicle charging applications," 2012 IEEE Energy Conversion Congress and Exposition (ECCE), Raleigh, NC, 2012, pp. 283-290.
  • [33] Deng J., Li W., Nguyen T. D., Li S. ve Mi C. C., "Compact and Efficient Bipolar Coupler for Wireless Power Chargers: Design and Analysis," in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6130-6140, Nov. 2015.
  • [34] Covic G. A. ve Boys J. T., “Inductive power transfer,” in Proc. of the IEEE, vol. 101, no. 6, pp. 1-14, June 2013.
  • [35] Diekhans, T.; De Doncker, R.W. "A Dual-Side Controlled Inductive Power Transfer System Optimized for Large Coupling Factor Variations and Partial Load", Power Electronics, IEEE Transactions on, On page(s): 6320 - 6328 Volume: 30, Issue: 11, Nov. 2015.
  • [36] John T. Boys ve Andrew W. Green, “Inductive power distribution system” U.S. Patent US5293308, 1991. H. Jin ve C. T. Rim, "KAIST wireless electric vehicles - OLEV," SAE International, vol. 1, pp. 1-10, 2011.
  • [37] J. Lee, H. Shen ve C. Li, “Three-phase inductive coupled structures for contactless PHEV charging system”, International Journal of Electronics, 2015.
  • [38] M. Kesler ve P. Foy. “Utah to deploy electric bus that needs no plug” , 2011.
  • [39] M. B. Scudiere ve J. M. Miller. , “Wireless Charging System for Electric Vehicles”, 2011.
  • [40] U. K. Madawala ve D. J. Thrimawithana, "A Bidirectional Inductive Power Interface for Electric Vehicles in V2G Systems," IEEE Transactions on Industrial Electronics, vol. 58, pp. 4789-4796, 2011
  • [41] T. Horiuchi ve K. Kawashima, "Study on Planar Antennas for Wireless Power Transmission of Electric Vehicles," IEEE Transactions on Industry Applications, vol. 130, pp. 1371-1377, 2010.
  • [42] F. Sato, J. Morita, T. Takura, T. Sato, ve H. Matsuki, "Research on Highly Efficient Contactless Power Station System using Meander Coil for Moving Electric Vehicle Model," Journal of the Magnetics Society of Japan, vol. 36, pp. 249-252, 2012.
  • [43] H. H. Wu, A. Gilchrist, K. D. Sealy, ve D. Bronson, "A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control," IEEE Transactions on Industrial Informatics vol. 8, pp. 585-595, 2012.
  • [44] [1] A. Kurs, A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, ve M. Soljačić, "Wireless Power Transfer via Strongly Coupled Magnetic Resonances," Science, p. 83, 2007.
  • [45] T. Imura, H. Okabe, ve Y. Hori, "Basic experimental study on helical antennas of wireless power transfer for Electric Vehicles by using magnetic resonant couplings," presented at the IEEE Vehicle Power & Propulsion Conference, 2009.
  • [46] T. Beh, M. Kato, T. Imura, ve Y. Hori, "Wireless power transfer system via magnetic resonant coupling at fixed resonance frequency. Power transfer system based on impedance matching," World Electric Vehicle Journal, vol. 4, pp. 744-753, 2012.
  • [47] M. Chigira, Y. Nagatsuka, Y. Kaneko, S. Abe, T. Yasuda, ve A. Suzuki, "Smallsize light-weight transformer with new core structure for contactless electric vehicle power transfer system," in Energy Conversion Congress and Exposition (ECCE), 2011 IEEE, 2011, pp. 260-266.
  • [48] W. Li, "High efficiency wireless power transmission at low frequency using permanent magnetic coupling " Master of Applied Science, The Faculty of Graduate Studies The University of British Columbia, Vancouver, British Columbia, Canada, 2007.
  • [49] J. L. Villa, A. Llombart, J. F. Sanz and J. Sallan, "Practical Development of a 5 kW ICPT System SS Compensated with a Large Air gap," IEEE International Symposium on Industrial Electronics, Vigo, 2007, pp. 1219-1223.
  • [50] Uzun G., “Kablosuz Enerji Transferi”, Y. Lisans Tezi, 19 Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun, 2012
  • [51] Fincan B., “Elektrikli Araçlar İçin Kablosuz Şarj Cihazı Tasarımı”, Y. Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, 2015.
  • [52] Ağçal, A.,“Kablosuz Enerji Transferinde Farklı Hava Aralıkları Ve Karakteristik Empedanslara Göre Verim Analizi”, Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul 2014
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Konular Mühendislik
Bölüm Akademik ve/veya teknolojik bilimsel makale
Yazarlar

Ali Pashaei

Emrullah Aydın

Mehmet Polat Bu kişi benim

Emin Yıldırız

M. Timur Aydemir

Yayımlanma Tarihi 30 Haziran 2016
Gönderilme Tarihi 12 Ağustos 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 6 Sayı: 11

Kaynak Göster

APA Pashaei, A., Aydın, E., Polat, M., Yıldırız, E., vd. (2016). Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri. EMO Bilimsel Dergi, 6(11), 1-11.
AMA Pashaei A, Aydın E, Polat M, Yıldırız E, Aydemir MT. Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri. EMO Bilimsel Dergi. Haziran 2016;6(11):1-11.
Chicago Pashaei, Ali, Emrullah Aydın, Mehmet Polat, Emin Yıldırız, ve M. Timur Aydemir. “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri”. EMO Bilimsel Dergi 6, sy. 11 (Haziran 2016): 1-11.
EndNote Pashaei A, Aydın E, Polat M, Yıldırız E, Aydemir MT (01 Haziran 2016) Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri. EMO Bilimsel Dergi 6 11 1–11.
IEEE A. Pashaei, E. Aydın, M. Polat, E. Yıldırız, ve M. T. Aydemir, “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri”, EMO Bilimsel Dergi, c. 6, sy. 11, ss. 1–11, 2016.
ISNAD Pashaei, Ali vd. “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri”. EMO Bilimsel Dergi 6/11 (Haziran 2016), 1-11.
JAMA Pashaei A, Aydın E, Polat M, Yıldırız E, Aydemir MT. Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri. EMO Bilimsel Dergi. 2016;6:1–11.
MLA Pashaei, Ali vd. “Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri”. EMO Bilimsel Dergi, c. 6, sy. 11, 2016, ss. 1-11.
Vancouver Pashaei A, Aydın E, Polat M, Yıldırız E, Aydemir MT. Elektrikli Araçlar için Temassız Güç Aktarım Sistemleri. EMO Bilimsel Dergi. 2016;6(11):1-11.

EMO BİLİMSEL DERGİ
Elektrik, Elektronik, Bilgisayar, Biyomedikal, Kontrol Mühendisliği Bilimsel Hakemli Dergisi
TMMOB ELEKTRİK MÜHENDİSLERİ ODASI 
IHLAMUR SOKAK NO:10 KIZILAY/ANKARA
TEL: +90 (312) 425 32 72 (PBX) - FAKS: +90 (312) 417 38 18
bilimseldergi@emo.org.tr