Loading [a11y]/accessibility-menu.js
Quasi ideals of nearness semirings
Year 2021 ,
Volume: 42 Issue: 2, 333 - 338, 30.06.2021
Özlem Tekin
Abstract
This article introduces quasi-ideals in semirings on weak nearness approximation spaces. Concepts and definitions are given to clarify the subject of quasi ideals in semirings on weak nearness approximation spaces. Some basic properties of quasi ideals are also given. Furthermore, it is given that the definition of upper-near quasi ideals. And, it is examined that the relationship between quasi ideals and upper near quasi ideals. Therefore, the features described in this study will contribute greatly to the theoretical development of the nearness semirings theory.
References
[1] Pawlak Z., Rough sets, Int. J. Comput. Inform. Sci., 11 (5) (1982) 341–356.
[2] Peters J. F., Near sets, General theory about nearness of objects, Appl. Math. Sci., 1 (53-56) (2007) 2609–2629.
[3] Peters J. F., Near sets, Special theory about nearness of objects, Fund. Inform., 75 (1-4) (2007) 407–433.
[4] Peters J. F., Near sets: An introduction, Math. Comput. Sci., 7 (1) (2013) 3–9.
[5] İnan E., Öztürk M. A., Near groups on nearness approximation spaces, Hacet. J. Math. Stat., 41 (4) (2012) 545-558.
[6] İnan E., Öztürk M. A., Erratum and notes for near groups on nearness approximation spaces, Hacet. J. Math. Stat., 43 (2) (2014) 279-281.
[7] İnan E., Öztürk M. A., Nearness rings, Ann. Fuzzy Math. Inform., 17(2) (2019) 115-132.
[8] Öztürk M. A., Bekmezci İ. H., Gamma nearness semirings, Southeast sian Bull. Math., 44(4) (2020) 567-586.
[9] Öztürk M. A., Jun Y. B., İz A., Gamma semigroups on weak nearness approximation spaces, J. Int. Math. Virtual Inst., 9(1) (2019) 53-72.
[10] Öztürk M. A., Prime ideals of gamma semigroups on weak nearness approximation spaces, Asian-Eur. J. Math., 12 (2019).
[11] Öztürk M. A., Bekmezci İ. H., Gamma nearness semirings, Southeast Asian Bull. Math., 44(4) (2020) 567-586.
[12] Öztürk, M. A., and Temur, İ., Prime ideals of nearness semirings, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2) (2019) 1867-1878.
[13] Öztürk M. A., Semiring on weak nearness approximation spaces, Ann. Fuzzy Math. Inform., 15(3) (2018) 227-241.
[14] Vandier H. S., Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Am. Math. Soc., 40(12) (1934) 914-920.
[15] Shabir A. M, Ali A., Batol S., A note on quasi ideal in semirings, Southeast Asian Bull. Math., 27 (5) (2004) 923-928.
[16] Steinfeld, O, Quasi-Ideals in Rings and Semigroups, Akad´emiai Kiad´o, Budapest (1978).
[17] Iseki K., Quasi-ideals in semirings without zero, Proc. Japan Acad., 34 (1958) 79-81.
[18] Rao M. M. K., A study of quasi-interior ideals of semirings, Bull. Int. Math. Virtual Inst., 9(1) (2019) 287-300.
[19] Rao M. M. K., Bi-quasi ideals and fuzzy bi-quasi ideals of Γ-semirings, Bull. Int. Math. Virtual Inst., 8(1) (2018) 45-53.
[20] El-Madhoun N. R., Quasi ideals and bi-ideals on semigroups and semirings, MSc Thesis, The Islamic University of Gaza, Faculty of Science, 2007.
[21] Golan J. S., Semirings and Their Applications, Kluwer Academic Publishers, 1999.
Year 2021 ,
Volume: 42 Issue: 2, 333 - 338, 30.06.2021
Özlem Tekin
References
[1] Pawlak Z., Rough sets, Int. J. Comput. Inform. Sci., 11 (5) (1982) 341–356.
[2] Peters J. F., Near sets, General theory about nearness of objects, Appl. Math. Sci., 1 (53-56) (2007) 2609–2629.
[3] Peters J. F., Near sets, Special theory about nearness of objects, Fund. Inform., 75 (1-4) (2007) 407–433.
[4] Peters J. F., Near sets: An introduction, Math. Comput. Sci., 7 (1) (2013) 3–9.
[5] İnan E., Öztürk M. A., Near groups on nearness approximation spaces, Hacet. J. Math. Stat., 41 (4) (2012) 545-558.
[6] İnan E., Öztürk M. A., Erratum and notes for near groups on nearness approximation spaces, Hacet. J. Math. Stat., 43 (2) (2014) 279-281.
[7] İnan E., Öztürk M. A., Nearness rings, Ann. Fuzzy Math. Inform., 17(2) (2019) 115-132.
[8] Öztürk M. A., Bekmezci İ. H., Gamma nearness semirings, Southeast sian Bull. Math., 44(4) (2020) 567-586.
[9] Öztürk M. A., Jun Y. B., İz A., Gamma semigroups on weak nearness approximation spaces, J. Int. Math. Virtual Inst., 9(1) (2019) 53-72.
[10] Öztürk M. A., Prime ideals of gamma semigroups on weak nearness approximation spaces, Asian-Eur. J. Math., 12 (2019).
[11] Öztürk M. A., Bekmezci İ. H., Gamma nearness semirings, Southeast Asian Bull. Math., 44(4) (2020) 567-586.
[12] Öztürk, M. A., and Temur, İ., Prime ideals of nearness semirings, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 68(2) (2019) 1867-1878.
[13] Öztürk M. A., Semiring on weak nearness approximation spaces, Ann. Fuzzy Math. Inform., 15(3) (2018) 227-241.
[14] Vandier H. S., Note on a simple type of algebra in which cancellation law of addition does not hold, Bull. Am. Math. Soc., 40(12) (1934) 914-920.
[15] Shabir A. M, Ali A., Batol S., A note on quasi ideal in semirings, Southeast Asian Bull. Math., 27 (5) (2004) 923-928.
[16] Steinfeld, O, Quasi-Ideals in Rings and Semigroups, Akad´emiai Kiad´o, Budapest (1978).
[17] Iseki K., Quasi-ideals in semirings without zero, Proc. Japan Acad., 34 (1958) 79-81.
[18] Rao M. M. K., A study of quasi-interior ideals of semirings, Bull. Int. Math. Virtual Inst., 9(1) (2019) 287-300.
[19] Rao M. M. K., Bi-quasi ideals and fuzzy bi-quasi ideals of Γ-semirings, Bull. Int. Math. Virtual Inst., 8(1) (2018) 45-53.
[20] El-Madhoun N. R., Quasi ideals and bi-ideals on semigroups and semirings, MSc Thesis, The Islamic University of Gaza, Faculty of Science, 2007.
[21] Golan J. S., Semirings and Their Applications, Kluwer Academic Publishers, 1999.
Show All References
Show Less References
There are 21 citations in total.
Details
Primary Language
English
Subjects
Mathematical Sciences
Journal Section
Natural Sciences
Authors
Özlem Tekin
ADIYAMAN ÜNİVERSİTESİ
0000-0001-9223-6149
Türkiye
Publication Date
June 30, 2021
Submission Date
January 22, 2021
Acceptance Date
May 4, 2021
Published in Issue
Year 2021Volume: 42 Issue: 2
Cite
APA
Tekin, Ö. (2021). Quasi ideals of nearness semirings. Cumhuriyet Science Journal, 42(2), 333-338. https://doi.org/10.17776/csj.866436